SlideShare una empresa de Scribd logo
1 de 35
MCE 565
Wave Motion & Vibration in Continuous Media
Spring 2005
Professor M. H. Sadd
Introduction to Finite Element Methods
Need for Computational Methods
• Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry
• Many Applicaitons Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior
• Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods
• This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods
Introduction to Finite Element Analysis
The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and
practical tool.
Advantages of Finite Element Analysis
- Models Bodies of Complex Shape
- Can Handle General Loading/Boundary Conditions
- Models Bodies Composed of Composite and Multiphase Materials
- Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)
- Time Dependent and Dynamic Effects Can Be Included
- Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.
Basic Concept of the Finite Element Method
Any continuous solution field such as stress, displacement,
temperature, pressure, etc. can be approximated by a
discrete model composed of a set of piecewise continuous
functions defined over a finite number of subdomains.
Exact Analytical Solution
x
T
Approximate Piecewise
Linear Solution
x
T
One-Dimensional Temperature Distribution
Two-Dimensional Discretization
-1
-0.5
0
0.5
1
1.5
2
2.5
3
1
1.5
2
2.5
3
3.5
4
-3
-2
-1
0
1
2
x
y
u(x,y)
Approximate Piecewise
Linear Representation
Discretization Concepts
x
T
Exact Temperature Distribution, T(x)
Finite Element Discretization
Linear Interpolation Model
(Four Elements)
Quadratic Interpolation Model
(Two Elements)
T1
T2
T2
T3 T3
T4 T4
T5
T1
T2
T3
T4 T5
Piecewise Linear Approximation
T
x
T1
T2
T3 T3
T4 T5
T
T1
T2
T3
T4 T5
Piecewise Quadratic Approximation
x
Temperature Continuous but with
Discontinuous Temperature Gradients
Temperature and Temperature Gradients
Continuous
Common Types of Elements
One-Dimensional Elements
Line
Rods, Beams, Trusses, Frames
Two-Dimensional Elements
Triangular, Quadrilateral
Plates, Shells, 2-D Continua
Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua
Discretization Examples
One-Dimensional
Frame Elements
Two-Dimensional
Triangular Elements
Three-Dimensional
Brick Elements
Basic Steps in the Finite Element Method
Time Independent Problems
- Domain Discretization
- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)
- Assemble Element Equations to Form Global System
[K]{U} = {F}
[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector
- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values
Common Sources of Error in FEA
• Domain Approximation
• Element Interpolation/Approximation
• Numerical Integration Errors
(Including Spatial and Time Integration)
• Computer Errors (Round-Off, Etc., )
Measures of Accuracy in FEA
Accuracy
Error = |(Exact Solution)-(FEM Solution)|
Convergence
Limit of Error as:
Number of Elements (h-convergence)
or
Approximation Order (p-convergence)
Increases
Ideally, Error  0 as Number of Elements or
Approximation Order  
Two-Dimensional Discretization Refinement
(Discretization with 228 Elements)
(Discretization with 912 Elements)
(Triangular Element)
(Node)



One Dimensional Examples
Static Case
1 2
u1 u2
Bar Element
Uniaxial Deformation of Bars
Using Strength of Materials Theory
Beam Element
Deflection of Elastic Beams
Using Euler-Bernouli Theory
1 2
w1
w2
q2
q1
dx
du
a
u
q
cu
au
dx
d
,
:
ion
Specificat
Condtions
Boundary
0
)
(
:
Equation
al
Differenti




)
(
,
,
,
:
ion
Specificat
Condtions
Boundary
)
(
)
(
:
Equation
al
Differenti
2
2
2
2
2
2
2
2
dx
w
d
b
dx
d
dx
w
d
b
dx
dw
w
x
f
dx
w
d
b
dx
d


Two Dimensional Examples
u1
u2
1
2
3 u3
v1
v2
v3
1
2
3
f1
f2
f3
Triangular Element
Scalar-Valued, Two-Dimensional
Field Problems
Triangular Element
Vector/Tensor-Valued, Two-
Dimensional Field Problems
y
x n
y
n
x
dn
d
y
x
f
y
x

f



f


f
f


f



f

,
:
ion
Specificat
Condtions
Boundary
)
,
(
:
Equation
ial
Different
Example
2
2
2
2
y
x
y
y
x
x
y
x
n
y
v
C
x
u
C
n
x
v
y
u
C
T
n
x
v
y
u
C
n
y
v
C
x
u
C
T
F
y
v
x
u
y
E
v
F
y
v
x
u
x
E
u




































































































22
12
66
66
12
11
2
2
Conditons
Boundary
0
)
1
(
2
0
)
1
(
2
ents
Displacem
of
Terms
in
Equations
Field
Elasticity
Development of Finite Element Equation
• The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem
• For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity
• FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods
Variational-Virtual Work Method
Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium
Weighted Residual Method
Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.
Direct Method
Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process
Simple Element Equation Example
Direct Stiffness Derivation
1 2
k
u1 u2
F1 F2
}
{
}
]{
[
rm
Matrix Fo
in
or
2
Node
at
m
Equilibriu
1
Node
at
m
Equilibriu
2
1
2
1
2
1
2
2
1
1
F
u
K
F
F
u
u
k
k
k
k
ku
ku
F
ku
ku
F





























Stiffness Matrix Nodal Force Vector
Common Approximation Schemes
One-Dimensional Examples
Linear Quadratic Cubic
Polynomial Approximation
Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.
Special Approximation
For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations
One-Dimensional Bar Element






 
 

udV
f
u
P
u
P
edV j
j
i
i
}
]{
[
:
Law
Strain
-
Stress
}
]{
[
}
{
]
[
)
(
:
Strain
}
{
]
[
)
(
:
ion
Approximat
d
B
d
B
d
N
d
N
E
Ee
dx
d
u
x
dx
d
dx
du
e
u
x
u
k
k
k
k
k
k





















 

L
T
T
j
i
T
L
T
T
fdx
A
P
P
dx
E
A
0
0
]
[
}
{
}
{
}
{
]
[
]
[
}
{ N
δd
δd
d
B
B
δd

 

L
T
L
T
fdx
A
dx
E
A
0
0
]
[
}
{
}
{
]
[
]
[ N
P
d
B
B
Vector
ent
Displacem
Nodal
}
{
Vector
Loading
]
[
}
{
Matrix
Stiffness
]
[
]
[
]
[
0
0





















j
i
L
T
j
i
L
T
u
u
fdx
A
P
P
dx
E
A
K
d
N
F
B
B
}
{
}
]{
[ F
d
K 
One-Dimensional Bar Element
A = Cross-sectional Area
E = Elastic Modulus
f(x) = Distributed Loading
dV
u
F
dS
u
T
dV
e i
V
i
S
i
n
i
ij
V
ij
t





 


Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
For One-Dimensional Case

 






 udV
f
u
P
u
P
edV j
j
i
i

(i) (j)
Axial Deformation of an Elastic Bar
Typical Bar Element
dx
du
AE
P i
i 

dx
du
AE
P
j
j 

i
u j
u
L
x
(Two Degrees of Freedom)
Linear Approximation Scheme
 
Vector
ent
Displacem
Nodal
}
{
Matrix
Function
ion
Approximat
]
[
}
]{
[
1
)
(
)
(
1
2
1
2
1
2
1
2
2
1
1
2
1
1
2
1
2
1
2
1
1
2
1























































d
N
d
N
nt
Displaceme
Elastic
e
Approximat
u
u
L
x
L
x
u
u
u
u
x
u
x
u
L
x
u
L
x
x
L
u
u
u
u
L
a
a
u
a
u
x
a
a
u
x (local coordinate system)
(1) (2)
i
u j
u
L
x
(1) (2)
u(x)
x
(1) (2)
1(x) 2(x)
1
k(x) – Lagrange Interpolation Functions
Element Equation
Linear Approximation Scheme, Constant Properties
Vector
ent
Displacem
Nodal
}
{
1
1
2
]
[
}
{
1
1
1
1
1
1
1
1
]
[
]
[
]
[
]
[
]
[
2
1
2
1
0
2
1
0
2
1
0
0



















































































u
u
L
Af
P
P
dx
L
x
L
x
Af
P
P
fdx
A
P
P
L
AE
L
L
L
L
L
AE
dx
AE
dx
E
A
K
o
L
o
L
T
L
T
L
T
d
N
F
B
B
B
B






























1
1
2
1
1
1
1
}
{
}
]{
[
2
1
2
1 L
Af
P
P
u
u
L
AE o
F
d
K
Quadratic Approximation Scheme
  }
]{
[
)
(
)
(
)
(
4
2
3
2
1
3
2
1
3
3
2
2
1
1
2
3
2
1
3
2
3
2
1
2
1
1
2
3
2
1
d
N
nt
Displaceme
Elastic
e
Approximat
































u
u
u
u
u
x
u
x
u
x
u
L
a
L
a
a
u
L
a
L
a
a
u
a
u
x
a
x
a
a
u
x
(1) (3)
1
u 3
u
(2)
2
u
L
u(x)
x
(1) (3)
(2)
x
(1) (3)
(2)
1
1(x) 3(x)
2(x)



































3
2
1
3
2
1
7
8
1
8
16
8
1
8
7
3
F
F
F
u
u
u
L
AE
Equation
Element
Lagrange Interpolation Functions
Using Natural or Normalized Coordinates
1
1 




(1) (2)
)
1
(
2
1
)
1
(
2
1
2
1








)
1
(
2
1
)
1
)(
1
(
)
1
(
2
1
3
2
1

















)
1
)(
3
1
)(
3
1
(
16
9
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
3
1
)(
1
(
16
9
4
3
2
1



































(1) (2) (3)

(1) (2) (3) (4)








j
i
j
i
j
i
,
0
,
1
)
(
Simple Example
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2

































0
0
0
0
0
1
1
0
1
1
1
Element
Equation
Global
)
1
(
2
)
1
(
1
3
2
1
1
1
1
P
P
U
U
U
L
E
A

































)
2
(
2
)
2
(
1
3
2
1
2
2
2
0
1
1
0
1
1
0
0
0
0
2
Element
Equation
Global
P
P
U
U
U
L
E
A
























































3
2
1
)
2
(
2
)
2
(
1
)
1
(
2
)
1
(
1
3
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
Equation
System
Global
Assembled
P
P
P
P
P
P
P
U
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
Loading
ed
Distribut
Zero
Take

f
Simple Example Continued
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2
0
0
Conditions
Boundary
)
2
(
1
)
1
(
2
)
2
(
2
1




P
P
P
P
U












































P
P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
0
0
0
Equation
System
Global
Reduced
)
1
(
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1




























P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
L
E
A ,
,
Properties
m
For Unifor





















P
U
U
L
AE 0
1
1
1
2
3
2
P
P
AE
PL
U
AE
PL
U 



 )
1
(
1
3
2 ,
2
,
Solving
One-Dimensional Beam Element
Deflection of an Elastic Beam
2
2
4
2
3
1
1
2
1
1
2
2
2
4
2
2
2
3
1
2
2
2
1
2
2
1
,
,
,
,
,
dx
dw
u
w
u
dx
dw
u
w
u
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q


q




q








































I = Section Moment of Inertia
E = Elastic Modulus
f(x) = Distributed Loading

(1) (2)
Typical Beam Element
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
x
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces








 
 

wdV
f
w
Q
u
Q
u
Q
u
Q
edV 4
4
3
3
2
2
1
1

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T
(Four Degrees of Freedom)
Beam Approximation Functions
To approximate deflection and slope at each
node requires approximation of the form
3
4
2
3
2
1
)
( x
c
x
c
x
c
c
x
w 



Evaluating deflection and slope at each node
allows the determination of ci thus leading to
Functions
ion
Approximat
Cubic
Hermite
the
are
where
,
)
(
)
(
)
(
)
(
)
( 4
4
3
3
2
2
1
1
i
u
x
u
x
u
x
u
x
x
w
f
f

f

f

f

Beam Element Equation

 




L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T















4
3
2
1
}
{
u
u
u
u
d ]
[
]
[
]
[ 4
3
2
1
dx
d
dx
d
dx
d
dx
d
dx
d f
f
f
f


N
B



















 
2
2
2
2
3
0
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
]
[
]
[
]
[
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
dx
EI
L
B
B
K T































































L
L
fL
Q
Q
Q
Q
u
u
u
u
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
6
6
12
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
4
3
2
1
4
3
2
1
2
2
2
2
3






























f
f
f
f
 

L
L
fL
dx
f
dx
f
L
L
T
6
6
12
]
[
0
4
3
2
1
0
N
FEA Beam Problem
f
a b
Uniform EI
































































































0
0
0
0
6
6
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
2 )
1
(
4
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
EI
1
Element







































































)
2
(
4
)
2
(
3
)
2
(
2
)
2
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
Q
Q
Q
Q
U
U
U
U
U
U
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
EI
2
Element
(1) (3)
(2)
1 2
FEA Beam Problem



















































































































)
2
(
4
)
2
(
3
)
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
3
2
2
3
2
2
3
3
2
2
3
2
3
0
0
6
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
0
0
/
1
/
3
/
2
0
0
/
3
/
6
/
3
/
6
2
Q
Q
Q
Q
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
a
a
a
a
a
a
a
EI
System
Assembled
Global
0
,
0
,
0 )
2
(
4
)
2
(
3
)
1
(
1
2
)
1
(
1
1 


q


 Q
Q
U
w
U
Conditions
Boundary
0
,
0 )
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3 


 Q
Q
Q
Q
Conditions
Matching






































































0
0
0
0
0
0
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
2
4
3
2
1
2
3
2
3
3
2
2
3
3
a
fa
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
EI
System
Reduced
Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4
Nodal Forces Q1 and Q2 Can Then Be Determined
(1) (3)
(2)
1 2
Special Features of Beam FEA
Analytical Solution Gives
Cubic Deflection Curve
Analytical Solution Gives
Quartic Deflection Curve
FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions
Truss Element
Generalization of Bar Element With Arbitrary Orientation
x
y
k=AE/L
q

q
 cos
,
sin c
s
Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation

(1) (2)
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
2
P
1
P
1
u 2
u





































q
q






































4
3
2
2
1
1
2
2
2
1
1
1
2
2
2
3
2
3
2
2
2
3
2
3
4
6
0
2
6
0
6
12
0
6
12
0
0
0
0
0
2
6
0
4
6
0
6
12
0
6
12
0
0
0
0
0
Q
Q
P
Q
Q
P
w
u
w
u
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
Some Standard FEA References
Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.
Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993
Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.
Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.
Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.
Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley,
1989.
Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.
Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.
Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.
Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994.
Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.
Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992.
Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003.
Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.
Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986.
Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998.
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.
Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993.
Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.
Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.

Más contenido relacionado

La actualidad más candente

INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISAchyuth Peri
 
Application of Boundary Conditions to Obtain Better FEA Results
Application of Boundary Conditions to Obtain Better FEA ResultsApplication of Boundary Conditions to Obtain Better FEA Results
Application of Boundary Conditions to Obtain Better FEA ResultsKee H. Lee, P.Eng.
 
Intro to fea software
Intro to fea softwareIntro to fea software
Intro to fea softwarekubigs
 
Finite Element Analysis Rajendra M.pdf
Finite Element Analysis Rajendra M.pdfFinite Element Analysis Rajendra M.pdf
Finite Element Analysis Rajendra M.pdfRaviSekhar35
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation NAVEEN UTHANDI
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-finaljagadish108
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate MethodsTeja Ande
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS velliyangiri1
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Dr. Mohd Zameeruddin
 

La actualidad más candente (20)

Lecture 10,11 Basics of FEM
Lecture 10,11   Basics of FEMLecture 10,11   Basics of FEM
Lecture 10,11 Basics of FEM
 
Finite element method
Finite element methodFinite element method
Finite element method
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Modeling of elastic properties of laminates
Modeling of elastic properties of laminatesModeling of elastic properties of laminates
Modeling of elastic properties of laminates
 
INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSIS
 
Application of Boundary Conditions to Obtain Better FEA Results
Application of Boundary Conditions to Obtain Better FEA ResultsApplication of Boundary Conditions to Obtain Better FEA Results
Application of Boundary Conditions to Obtain Better FEA Results
 
Intro to fea software
Intro to fea softwareIntro to fea software
Intro to fea software
 
Lecture3
Lecture3Lecture3
Lecture3
 
Finite Element Analysis Rajendra M.pdf
Finite Element Analysis Rajendra M.pdfFinite Element Analysis Rajendra M.pdf
Finite Element Analysis Rajendra M.pdf
 
Introduction to Finite Elements
Introduction to Finite ElementsIntroduction to Finite Elements
Introduction to Finite Elements
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
 
Unit 1 notes-final
Unit 1 notes-finalUnit 1 notes-final
Unit 1 notes-final
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Approximate Methods
Approximate MethodsApproximate Methods
Approximate Methods
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
 
Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018Basics of finite element method 19.04.2018
Basics of finite element method 19.04.2018
 
Fea unit 1
Fea unit 1Fea unit 1
Fea unit 1
 
TENSOR .pptx
TENSOR .pptxTENSOR .pptx
TENSOR .pptx
 
Finite element method
Finite element methodFinite element method
Finite element method
 

Similar a FEM Lecture.ppt

Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element methodshahzaib601980
 
Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfMustafaELALAMI
 
Lecture on Introduction to finite element methods & its contents
Lecture on Introduction  to  finite element methods  & its  contentsLecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction to finite element methods & its contentsMesayAlemuTolcha1
 
Finite Element Method.pptx
Finite Element Method.pptxFinite Element Method.pptx
Finite Element Method.pptxHassanShah396906
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1ssuser2209b4
 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applicationsPadmanabhan Krishnan
 
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptUnit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptAdityaChavan99
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxtiffanyd4
 
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...IJERA Editor
 

Similar a FEM Lecture.ppt (20)

Fem lecture
Fem lectureFem lecture
Fem lecture
 
Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element method
 
ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
ED7201 FEMMD_notes
 
Fem notes
Fem notesFem notes
Fem notes
 
Fem utkarsh
Fem utkarshFem utkarsh
Fem utkarsh
 
Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdf
 
Lecture on Introduction to finite element methods & its contents
Lecture on Introduction  to  finite element methods  & its  contentsLecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction to finite element methods & its contents
 
Finite Element Method.pptx
Finite Element Method.pptxFinite Element Method.pptx
Finite Element Method.pptx
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applications
 
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptUnit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
 
FEA_Theory.ppt
FEA_Theory.pptFEA_Theory.ppt
FEA_Theory.ppt
 
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
 
Fea theory
Fea theoryFea theory
Fea theory
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to fem
 
Weighted residual.pdf
Weighted residual.pdfWeighted residual.pdf
Weighted residual.pdf
 
Lecture 11 & 12
Lecture 11 & 12Lecture 11 & 12
Lecture 11 & 12
 
20pce039.pptx
20pce039.pptx20pce039.pptx
20pce039.pptx
 

Último

Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 

Último (20)

Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 

FEM Lecture.ppt

  • 1. MCE 565 Wave Motion & Vibration in Continuous Media Spring 2005 Professor M. H. Sadd Introduction to Finite Element Methods
  • 2. Need for Computational Methods • Solutions Using Either Strength of Materials or Theory of Elasticity Are Normally Accomplished for Regions and Loadings With Relatively Simple Geometry • Many Applicaitons Involve Cases with Complex Shape, Boundary Conditions and Material Behavior • Therefore a Gap Exists Between What Is Needed in Applications and What Can Be Solved by Analytical Closed- form Methods • This Has Lead to the Development of Several Numerical/Computational Schemes Including: Finite Difference, Finite Element and Boundary Element Methods
  • 3. Introduction to Finite Element Analysis The finite element method is a computational scheme to solve field problems in engineering and science. The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental concept involves dividing the body under study into a finite number of pieces (subdomains) called elements (see Figure). Particular assumptions are then made on the variation of the unknown dependent variable(s) across each element using so-called interpolation or approximation functions. This approximated variation is quantified in terms of solution values at special element locations called nodes. Through this discretization process, the method sets up an algebraic system of equations for unknown nodal values which approximate the continuous solution. Because element size, shape and approximating scheme can be varied to suit the problem, the method can accurately simulate solutions to problems of complex geometry and loading and thus this technique has become a very useful and practical tool.
  • 4. Advantages of Finite Element Analysis - Models Bodies of Complex Shape - Can Handle General Loading/Boundary Conditions - Models Bodies Composed of Composite and Multiphase Materials - Model is Easily Refined for Improved Accuracy by Varying Element Size and Type (Approximation Scheme) - Time Dependent and Dynamic Effects Can Be Included - Can Handle a Variety Nonlinear Effects Including Material Behavior, Large Deformations, Boundary Conditions, Etc.
  • 5. Basic Concept of the Finite Element Method Any continuous solution field such as stress, displacement, temperature, pressure, etc. can be approximated by a discrete model composed of a set of piecewise continuous functions defined over a finite number of subdomains. Exact Analytical Solution x T Approximate Piecewise Linear Solution x T One-Dimensional Temperature Distribution
  • 7. Discretization Concepts x T Exact Temperature Distribution, T(x) Finite Element Discretization Linear Interpolation Model (Four Elements) Quadratic Interpolation Model (Two Elements) T1 T2 T2 T3 T3 T4 T4 T5 T1 T2 T3 T4 T5 Piecewise Linear Approximation T x T1 T2 T3 T3 T4 T5 T T1 T2 T3 T4 T5 Piecewise Quadratic Approximation x Temperature Continuous but with Discontinuous Temperature Gradients Temperature and Temperature Gradients Continuous
  • 8. Common Types of Elements One-Dimensional Elements Line Rods, Beams, Trusses, Frames Two-Dimensional Elements Triangular, Quadrilateral Plates, Shells, 2-D Continua Three-Dimensional Elements Tetrahedral, Rectangular Prism (Brick) 3-D Continua
  • 10. Basic Steps in the Finite Element Method Time Independent Problems - Domain Discretization - Select Element Type (Shape and Approximation) - Derive Element Equations (Variational and Energy Methods) - Assemble Element Equations to Form Global System [K]{U} = {F} [K] = Stiffness or Property Matrix {U} = Nodal Displacement Vector {F} = Nodal Force Vector - Incorporate Boundary and Initial Conditions - Solve Assembled System of Equations for Unknown Nodal Displacements and Secondary Unknowns of Stress and Strain Values
  • 11. Common Sources of Error in FEA • Domain Approximation • Element Interpolation/Approximation • Numerical Integration Errors (Including Spatial and Time Integration) • Computer Errors (Round-Off, Etc., )
  • 12. Measures of Accuracy in FEA Accuracy Error = |(Exact Solution)-(FEM Solution)| Convergence Limit of Error as: Number of Elements (h-convergence) or Approximation Order (p-convergence) Increases Ideally, Error  0 as Number of Elements or Approximation Order  
  • 13. Two-Dimensional Discretization Refinement (Discretization with 228 Elements) (Discretization with 912 Elements) (Triangular Element) (Node)   
  • 14. One Dimensional Examples Static Case 1 2 u1 u2 Bar Element Uniaxial Deformation of Bars Using Strength of Materials Theory Beam Element Deflection of Elastic Beams Using Euler-Bernouli Theory 1 2 w1 w2 q2 q1 dx du a u q cu au dx d , : ion Specificat Condtions Boundary 0 ) ( : Equation al Differenti     ) ( , , , : ion Specificat Condtions Boundary ) ( ) ( : Equation al Differenti 2 2 2 2 2 2 2 2 dx w d b dx d dx w d b dx dw w x f dx w d b dx d  
  • 15. Two Dimensional Examples u1 u2 1 2 3 u3 v1 v2 v3 1 2 3 f1 f2 f3 Triangular Element Scalar-Valued, Two-Dimensional Field Problems Triangular Element Vector/Tensor-Valued, Two- Dimensional Field Problems y x n y n x dn d y x f y x  f    f   f f   f    f  , : ion Specificat Condtions Boundary ) , ( : Equation ial Different Example 2 2 2 2 y x y y x x y x n y v C x u C n x v y u C T n x v y u C n y v C x u C T F y v x u y E v F y v x u x E u                                                                                                     22 12 66 66 12 11 2 2 Conditons Boundary 0 ) 1 ( 2 0 ) 1 ( 2 ents Displacem of Terms in Equations Field Elasticity
  • 16. Development of Finite Element Equation • The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem • For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from Either Strength of Materials or Theory of Elasticity • FEM Equations are Commonly Developed Using Direct, Variational- Virtual Work or Weighted Residual Methods Variational-Virtual Work Method Based on the concept of virtual displacements, leads to relations between internal and external virtual work and to minimization of system potential energy for equilibrium Weighted Residual Method Starting with the governing differential equation, special mathematical operations develop the “weak form” that can be incorporated into a FEM equation. This method is particularly suited for problems that have no variational statement. For stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational methods. Direct Method Based on physical reasoning and limited to simple cases, this method is worth studying because it enhances physical understanding of the process
  • 17. Simple Element Equation Example Direct Stiffness Derivation 1 2 k u1 u2 F1 F2 } { } ]{ [ rm Matrix Fo in or 2 Node at m Equilibriu 1 Node at m Equilibriu 2 1 2 1 2 1 2 2 1 1 F u K F F u u k k k k ku ku F ku ku F                              Stiffness Matrix Nodal Force Vector
  • 18. Common Approximation Schemes One-Dimensional Examples Linear Quadratic Cubic Polynomial Approximation Most often polynomials are used to construct approximation functions for each element. Depending on the order of approximation, different numbers of element parameters are needed to construct the appropriate function. Special Approximation For some cases (e.g. infinite elements, crack or other singular elements) the approximation function is chosen to have special properties as determined from theoretical considerations
  • 19. One-Dimensional Bar Element            udV f u P u P edV j j i i } ]{ [ : Law Strain - Stress } ]{ [ } { ] [ ) ( : Strain } { ] [ ) ( : ion Approximat d B d B d N d N E Ee dx d u x dx d dx du e u x u k k k k k k                         L T T j i T L T T fdx A P P dx E A 0 0 ] [ } { } { } { ] [ ] [ } { N δd δd d B B δd     L T L T fdx A dx E A 0 0 ] [ } { } { ] [ ] [ N P d B B Vector ent Displacem Nodal } { Vector Loading ] [ } { Matrix Stiffness ] [ ] [ ] [ 0 0                      j i L T j i L T u u fdx A P P dx E A K d N F B B } { } ]{ [ F d K 
  • 20. One-Dimensional Bar Element A = Cross-sectional Area E = Elastic Modulus f(x) = Distributed Loading dV u F dS u T dV e i V i S i n i ij V ij t          Virtual Strain Energy = Virtual Work Done by Surface and Body Forces For One-Dimensional Case           udV f u P u P edV j j i i  (i) (j) Axial Deformation of an Elastic Bar Typical Bar Element dx du AE P i i   dx du AE P j j   i u j u L x (Two Degrees of Freedom)
  • 21. Linear Approximation Scheme   Vector ent Displacem Nodal } { Matrix Function ion Approximat ] [ } ]{ [ 1 ) ( ) ( 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1                                                        d N d N nt Displaceme Elastic e Approximat u u L x L x u u u u x u x u L x u L x x L u u u u L a a u a u x a a u x (local coordinate system) (1) (2) i u j u L x (1) (2) u(x) x (1) (2) 1(x) 2(x) 1 k(x) – Lagrange Interpolation Functions
  • 22. Element Equation Linear Approximation Scheme, Constant Properties Vector ent Displacem Nodal } { 1 1 2 ] [ } { 1 1 1 1 1 1 1 1 ] [ ] [ ] [ ] [ ] [ 2 1 2 1 0 2 1 0 2 1 0 0                                                                                    u u L Af P P dx L x L x Af P P fdx A P P L AE L L L L L AE dx AE dx E A K o L o L T L T L T d N F B B B B                               1 1 2 1 1 1 1 } { } ]{ [ 2 1 2 1 L Af P P u u L AE o F d K
  • 23. Quadratic Approximation Scheme   } ]{ [ ) ( ) ( ) ( 4 2 3 2 1 3 2 1 3 3 2 2 1 1 2 3 2 1 3 2 3 2 1 2 1 1 2 3 2 1 d N nt Displaceme Elastic e Approximat                                 u u u u u x u x u x u L a L a a u L a L a a u a u x a x a a u x (1) (3) 1 u 3 u (2) 2 u L u(x) x (1) (3) (2) x (1) (3) (2) 1 1(x) 3(x) 2(x)                                    3 2 1 3 2 1 7 8 1 8 16 8 1 8 7 3 F F F u u u L AE Equation Element
  • 24. Lagrange Interpolation Functions Using Natural or Normalized Coordinates 1 1      (1) (2) ) 1 ( 2 1 ) 1 ( 2 1 2 1         ) 1 ( 2 1 ) 1 )( 1 ( ) 1 ( 2 1 3 2 1                  ) 1 )( 3 1 )( 3 1 ( 16 9 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 3 1 )( 1 ( 16 9 4 3 2 1                                    (1) (2) (3)  (1) (2) (3) (4)         j i j i j i , 0 , 1 ) (
  • 25. Simple Example P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2                                  0 0 0 0 0 1 1 0 1 1 1 Element Equation Global ) 1 ( 2 ) 1 ( 1 3 2 1 1 1 1 P P U U U L E A                                  ) 2 ( 2 ) 2 ( 1 3 2 1 2 2 2 0 1 1 0 1 1 0 0 0 0 2 Element Equation Global P P U U U L E A                                                         3 2 1 ) 2 ( 2 ) 2 ( 1 ) 1 ( 2 ) 1 ( 1 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Equation System Global Assembled P P P P P P P U U U L E A L E A L E A L E A L E A L E A L E A L E A 0 Loading ed Distribut Zero Take  f
  • 26. Simple Example Continued P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2 0 0 Conditions Boundary ) 2 ( 1 ) 1 ( 2 ) 2 ( 2 1     P P P P U                                             P P U U L E A L E A L E A L E A L E A L E A L E A L E A 0 0 0 0 Equation System Global Reduced ) 1 ( 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1                             P U U L E A L E A L E A L E A L E A 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 L E A , , Properties m For Unifor                      P U U L AE 0 1 1 1 2 3 2 P P AE PL U AE PL U      ) 1 ( 1 3 2 , 2 , Solving
  • 27. One-Dimensional Beam Element Deflection of an Elastic Beam 2 2 4 2 3 1 1 2 1 1 2 2 2 4 2 2 2 3 1 2 2 2 1 2 2 1 , , , , , dx dw u w u dx dw u w u dx w d EI Q dx w d EI dx d Q dx w d EI Q dx w d EI dx d Q   q     q                                         I = Section Moment of Inertia E = Elastic Modulus f(x) = Distributed Loading  (1) (2) Typical Beam Element 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V x Virtual Strain Energy = Virtual Work Done by Surface and Body Forces              wdV f w Q u Q u Q u Q edV 4 4 3 3 2 2 1 1        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T (Four Degrees of Freedom)
  • 28. Beam Approximation Functions To approximate deflection and slope at each node requires approximation of the form 3 4 2 3 2 1 ) ( x c x c x c c x w     Evaluating deflection and slope at each node allows the determination of ci thus leading to Functions ion Approximat Cubic Hermite the are where , ) ( ) ( ) ( ) ( ) ( 4 4 3 3 2 2 1 1 i u x u x u x u x x w f f  f  f  f 
  • 29. Beam Element Equation        L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T                4 3 2 1 } { u u u u d ] [ ] [ ] [ 4 3 2 1 dx d dx d dx d dx d dx d f f f f   N B                      2 2 2 2 3 0 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 ] [ ] [ ] [ L L L L L L L L L L L L L EI dx EI L B B K T                                                                L L fL Q Q Q Q u u u u L L L L L L L L L L L L L EI 6 6 12 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 4 3 2 1 4 3 2 1 2 2 2 2 3                               f f f f    L L fL dx f dx f L L T 6 6 12 ] [ 0 4 3 2 1 0 N
  • 30. FEA Beam Problem f a b Uniform EI                                                                                                 0 0 0 0 6 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 2 ) 1 ( 4 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 Q Q Q Q a a fa U U U U U U a a a a a a a a a a a a a a a a EI 1 Element                                                                        ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 2 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 Q Q Q Q U U U U U U b b b b b b b b b b b b b b b b EI 2 Element (1) (3) (2) 1 2
  • 31. FEA Beam Problem                                                                                                                    ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 3 2 2 3 2 2 3 3 2 2 3 2 3 0 0 6 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 0 0 / 1 / 3 / 2 0 0 / 3 / 6 / 3 / 6 2 Q Q Q Q Q Q Q Q a a fa U U U U U U a a a a a b a a a b a b a a a a a a a a EI System Assembled Global 0 , 0 , 0 ) 2 ( 4 ) 2 ( 3 ) 1 ( 1 2 ) 1 ( 1 1    q    Q Q U w U Conditions Boundary 0 , 0 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3     Q Q Q Q Conditions Matching                                                                       0 0 0 0 0 0 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 2 4 3 2 1 2 3 2 3 3 2 2 3 3 a fa U U U U a a a a a b a a a b a b a EI System Reduced Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4 Nodal Forces Q1 and Q2 Can Then Be Determined (1) (3) (2) 1 2
  • 32. Special Features of Beam FEA Analytical Solution Gives Cubic Deflection Curve Analytical Solution Gives Quartic Deflection Curve FEA Using Hermit Cubic Interpolation Will Yield Results That Match Exactly With Cubic Analytical Solutions
  • 33. Truss Element Generalization of Bar Element With Arbitrary Orientation x y k=AE/L q  q  cos , sin c s
  • 34. Frame Element Generalization of Bar and Beam Element with Arbitrary Orientation  (1) (2) 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V 2 P 1 P 1 u 2 u                                      q q                                       4 3 2 2 1 1 2 2 2 1 1 1 2 2 2 3 2 3 2 2 2 3 2 3 4 6 0 2 6 0 6 12 0 6 12 0 0 0 0 0 2 6 0 4 6 0 6 12 0 6 12 0 0 0 0 0 Q Q P Q Q P w u w u L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
  • 35. Some Standard FEA References Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995. Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993 Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990. Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987. Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002. Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, 1989. Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979. Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001. Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986. Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994. Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993. Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992. Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003. Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992. Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986. Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993. Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993. Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.