SlideShare a Scribd company logo
1 of 17
Download to read offline
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
Trouble-Shooting Flooding
of Paper Dryers
Technical White Paper Series
Gregory L. Wedel
President
Kadant Johnson Inc.
Ken Hill
President, Systems Division
Kadant Johnson Inc.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
CONTENTS
A paper dryer is heated by condensing steam inside the dryer cylinder. The condensate must be
removed from the dryer at the same rate at which it is being formed or the dryer will “flood”.
That is, condensate will accumulate inside the dryer. An excessive amount of condensate in the
dryer will increase the power required to drive the dryer and reduce the rate of heat transfer
from the dryer. This paper covers some of the main causes for dryer flooding.
EXECUTIVE SUMMARY
2
Introduction
Condensate Behavior
Flooding Description
Drying Drainage
Troubleshooting Dryer Flooding
Mechanical Problems
Steam System Problems
Conclusions
References
3
3
5
6
10
10
13
16
16
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
Paper dryers can experience periodic problems with flooding. A
“flooded” dryer is one that has an excessive amount of condensate in it.
The condensate may be either in a non-rimming condition (in which
case the drive load can be high) or in a rimming condition (in which
case the heat transfer rate will be low).
In normal operation, the rate at which condensate is being evacuated
from a dryer matches the rate at which condensate is forming in the
dryer. “Flooding” occurs when condensate is being evacuated from the
dryer at a rate that is less than the rate at which steam is condensing in
the dryer. A dryer begins to recover from a flooded condition when the
evacuation rate exceeds the condensing rate.
A brief outline of some of the causes of dryer flooding is given in the
sections below. These sections should help in trouble-shooting prob-
lems with flooded dryers.
INTRODUCTION
3
CONDENSATE BEHAVIOR
In a conventional paper dryer, pressurized steam is supplied to the
dryer through a rotary joint. The steam transfers its heat to the inside
surface of the dryer shell and the shell in turn transfers the heat to the
paper that is passing over its outer surface. The steam condenses as it
loses its heat to the dryer shell and the condensed steam (called
“condensate”) is removed from the dryer by a syphon. A typical paper
dryer is shown in cross-section in the figure below.
Rotary
Joint
Condensate
Steam
Syphon
shoe
Syphon
Rotary
Joint
Condensate
Steam
Syphon
shoe
Syphon
Dryer Shell
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
The condensate that remains in a dryer cylinder may be in any one of
three states of behavior. These states depend primarily on the rota-
tional speed of the dryer cylinder and the amount of condensate in the
dryer. At slow speeds, typically less than 300 fpm (about 100 mpm), the
condensate will form a puddle at the bottom of the dryer cylinder. In
this state, the power required to rotate the dryer is relatively low. As
the dryer rotational speed increases, the puddle moves in the direction
of rotation and widens in the direction of rotation. The drive power
remains low, as long as the puddle remains near the bottom of the
dryer. This state is called the “puddling” or “ponding” state.
As the dryer speed increases, the trailing edge of the condensate pud-
dle starts to extend over the horizontal centerline of the dryer cylinder
and the condensate falls (“cascades”) back to the bottom of the dryer.
The height to which the condensate rises before it cascades increases
with the dryer speed, as does the amount of the condensate that is cas-
cading. The combination of the increasing elevation and increasing con-
densate volume causes a quadratic increase in the power required to
rotate the dryer as speed increases. This second condensate state is
called “cascading”.
The third state occurs as speed is increased further and the condensate
forms a rimming layer all around the inside surface of the dryer shell.
The drive power in this state is much lower than in the cascading state.
These three states of condensate behavior are shown in the figure be-
low.
Dryers can flood with the condensate in any one of these three states.
Once the condensate is in the rimming state, it will tend to stay in the
rimming state unless the amount of condensate increases or the dryer
speed decreases. If the dryer speed is decreased, the rimming conden-
sate layer will eventually collapse and the condensate will return to a
cascading state and eventually back to a puddling state. There is a dis-
tinct hysteresis effect: The dryer speed at which the condensate layer
collapses is less than the speed at which the rimming layer was first
established.
4
RimmingPonding Cascading
Condensate Behavior in a Dryer
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 5
As noted above, a “flooded” dryer is one that has an excessive amount
of condensate in it. “Excessive” is a relative term and it can sometimes
be difficult to know whether or not a dryer is in the process of flood-
ing, or is in the process of recovering from a flooded condition.
Generally, a flooded dryer is identified by one or more of the following
symptoms:
 The dryer drive loads are much higher than normal for the current operat-
ing speed.
 The dryer framework is swaying in the cross-machine direction (dryers
may sometimes sway in the machine-direction as well, but dryer framing
is normally much stiffer in the machine-direction).
 Operating dryer steam pressures have increased or the dryer section is
unable to maintain the target sheet moisture content (the drying rate has
decreased).
 Condensate is leaking out of the steam seal in the rotary steam joint or
manhole cover opening.
 The flow rate of condensate (observed in the sight flow glass) has de-
creased or stopped.
 A felt-driven dryer is rotating at a speed that is lower than the rest of the
dryers (the dryer is slipping in the dryer fabric).
 The dryer surface temperature (measured with a contacting pyrometer) is
lower than normal for the machine operating at that dryer steam pressure
and dryer speed.
 The dryer head temperature (measured with an infrared gun) is lower
than normal for the machine operating at that dryer steam pressure and
dryer speed.
The following definitions may be helpful when reviewing indications
of dryer flooding:
Flooded: An excessive amount of condensate is al-
ready in the dryer.
Flooding: The amount of condensate in the dryer is
increasing above normal.
Recovering: The rate at which the condensate is being
evacuated from the dryer is greater than
the rate at which condensate is forming
inside a flooded dryer.
Recovered: The amount of condensate inside the dryer
has returned to normal.
FLOODING DESCRIPTION
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
DRYER DRAINAGE
Condensate is evacuated (“drained”) from a dryer cylinder through a
syphon pipe. The syphon pipe extends from the inside surface of the
dryer shell, out through the hollow dryer journal, and into the rotary
steam joint. A syphon “shoe” (or “hopper” or “syphon tip”) is typically
attached to the end of the syphon pipe that is adjacent to the inside sur-
face of the dryer shell.
The type of syphon and its design can have a very significant effect on
the removal of condensate from the dryers and can be a critical factor
in the performance of high-speed dryers, especially their tendency to-
ward flooding.
There are two primary types of dryer syphons: Rotating syphons and
stationary syphons. A rotating syphon is simply one that rotates with
the dryer shell. A rotating syphon shoe is held in direct contact with
the inside surface of the dryer shell, sometimes with bolts and some-
times with a spring force. Modern rotating syphon shoes have close-
fitting clearance to the dryer shell (typically 0.06 – 0.10”) and large pe-
rimeters (15-20”) in order to minimize the amount of rimming conden-
sate that remains in the dryers. Rotating syphons are designed to pro-
duce thin condensate layers so that the heat transfer rate and heat
transfer uniformity are kept at acceptable levels. Kadant Johnson pio-
neered the development of rotating syphon shoes specifically for high-
speed dryers. These syphon shoes have a unique contour so they can
also effectively evacuate non-rimming condensate. A typical rotating
syphon is shown in the figure below. This rotating syphon is spring-
loaded against the dryer shell so that no bolt holes are required in the
dryer shell to hold the syphon in place.
6
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
With both rotating and stationary syphons, the condensate inside the
dryer must be lifted up the syphon pipe in order to evacuate it from the
dryer. Differential steam pressure is used to lift the condensate up the
radial syphon pipe. With a rotating syphon, there is a centrifugal force
that tends to hold the condensate against the dryer shell. At high dryer
speeds, this centrifugal force can be quite large (55 times the force of
gravity when a 5’ diameter dryer is running at 4,000 fpm). The corre-
sponding differential pressure required to lift the condensate against
this centrifugal force can also be quite large. If the syphon must lift a
solid column of condensate to the center of the dryer under these oper-
ating conditions, the differential pressure would theoretically have to
be 28 psi!
In practice, the operating differential pressures are generally less than
this theoretical value because uncondensed steam (“blow through”
steam) is evacuate along with the condensate and this blow through
steam greatly reduces the effective density of the mixture and thereby
greatly reduces the required differential pressure.
If, however, the tip of the rotating syphon becomes submerged in con-
densate, then only condensate will flow into the syphon pipe and the
differential pressure will have to be high enough to lift the heavy con-
densate.
If the differential pressure is high, but not quite high enough to lift the
condensate all the way to the center of the dryer, then the condensate
will not flow out of the dryer. This is like sucking water out of a glass
with a straw, but not having enough vacuum to lift the water all the
way to your mouth. The phenomenon is shown schematically in the
figure below.
7
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
Note that in the above figure, the syphon shoe is entirely submerged in
condensate, so only condensate enters the syphon pipe. The differential
pressure lifts this condensate up the syphon pipe, against the centrifu-
gal force, but only to a height that corresponds to the differential pres-
sure. In this figure, the differential pressure was not high enough to
evacuate the condensate and the dryer would eventually flood.
The minimum differential pressure required to lift a solid column of
condensate up a rotating syphon pipe to the dryer axis depends primar-
ily on the dryer speed and, to a much lesser degree on the steam pres-
sure (condensate density) and dryer diameter. This minimum “flood
recovery” differential pressure is shown as function of dryer speed in
the following graph:
8
Dryer Flood Recovery
0
5
10
15
20
25
30
35
40
45
50
0 1000 2000 3000 4000 5000
Dryer Speed, fpm
DifferentialSteamPressure,psi
The minimum differential pressure required to evacuate a flooded
dryer (one with the rotating syphon tip submerged in condensate) can
be reduced by adding a small “aspirator” hole in the tip of the syphon
shoe, just far enough above the condensate layer so that blow through
steam can enter the syphon pipe through the aspirator hole and reduce
the density of the fluid in the radial pipe. The amount of reduction de-
pends on the size of the aspirator hole, the speed of the dryer, and the
operating steam pressure. For dryers operating at high speed, an aspi-
rator hole that is 0.25” diameter and located in the syphon shoe about
2” above the dryer shell could reduce the minimum differential pres-
sures for flood recovery by about 25% below the values shown in the
graph above.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding
At high speeds, however, even a 25% reduction in flood recover differ-
ential pressure still leaves a high differential pressure. During normal
operation, when the condensate is being properly evacuated, these high
operating differential pressures can result in excessive amounts of blow
though steam passing through the dryer. It can be very difficult to de-
sign a steam system with sufficient flexibility to handle large blow
through flow rates. This is why stationary syphons became more com-
mon again, when dryer speeds were going over 3000-3500 fpm.
The second type of dryer syphon is the stationary syphon. The most
common type of stationary syphon for high-speed machines is the canti-
levered stationary syphon shown in the figure below. Modern cantile-
ver stationary syphons have been designed with very rigid supports so
that the stationary syphon can withstand the impact forces of the rim-
ming condensate without vibration and failures.
9
Unlike rotating syphons, a stationary syphon does not have to lift the
condensate against centrifugal force. In fact, if the stationary syphon
shoe has a “scoop” contour, it is able to use the momentum of the rim-
ming condensate to force the condensate out of the dryer. If the dryer
speed is high enough, the condensate may be evacuated from the dryer
even if the differential pressure is zero.
The syphon pipe size and operating differential steam pressure can be
independently selected when running with a stationary syphon. This
allows the equipment supplier to greatly reduce the amount of blow
through steam and greatly simplifies the design and stability of the
steam and condensate system. The stationary syphons also greatly re-
duce the susceptibility of paper dryers to flooding.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 10
Although dryers with stationary syphons are much less prone to flood-
ing, flooding can still occur in dryers with stationary syphons, as out-
lined in the trouble-shooting sections below.
TROUBLESHOOTING DRYER FLOODING
Most problems with dryer flooding are related to either the steam sup-
ply and condensate drainage control systems or with mechanical / in-
stallation problems. These problems are outlined separately in the sec-
tions below.
MECHANICAL PROBLEMS
1. Syphon shoe design. Some older design syphon shoes did not have
a “scoop” contour. These syphon shoes can be more susceptible to
dryer flooding and often require higher operating differential pres-
sures. Many rotating syphon shoes that do not have a scoop feature
will have very poor slow-speed (non-rimming) performance. Many
stationary syphon shoes that do not have a scoop feature will have
very poor high-speed (rimming) performance.
2. Stationary syphon shoe installed backwards. Scoop-style stationary
syphons must face opposite the running direction of the dryer. If
they are installed incorrectly, they will be very inefficient in remov-
ing condensate and will require high differential steam pressures.
3. Eroded syphon shoe. Syphon shoes can erode over time. If the tip
of the shoe is eroded away, the shoe becomes ineffective in remov-
ing condensate and dryer flooding results. Gray iron syphon shoes
are particularly prone to erosion.
4. Loss of syphon shoe clearance. If the opening under the tip of a ro-
tating syphon is closed off, the dryer will not drain. The clearance
can be closed off if the shoe becomes embedded in the shell or if the
rotary syphon spacers were not installed.
5. Internal joint leakage. Some styles of dual-flow steam joints can
have leakage inside the joint – between the steam supply chamber
and the condensate discharge chamber. This can cause dryer flood-
ing, even though there is a sufficient differential pressure across the
joint and the amount of blow through is high. This problem can
only occur in dual-flow rotary joints, and is much more likely if the
dryers have rotating syphons than stationary syphons.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 11
6. Broken syphons. If either the horizontal or vertical syphon
pipes break off inside the dryer, the syphon will not drain the
condensate. Syphon breakage can be caused by corrosion, loose
balance weights, shifting dryer bars, and physical contact be-
tween the shell and a stationary syphon.
7. Undersized syphon pipes. The internal syphon piping (vertical
and horizontal pipes and shoe) may be too small for the current
operating conditions (dryer speed, condensing load, and pres-
sure). If so, higher operating differential pressures will be re-
quired, perhaps resulting in inadequate steam system control.
8. Syphon elbow erosion. If the internal dryer syphon elbow is
eroded, blow through steam will by-pass the syphon shoe and
the dryer will not drain. Cast iron and ductile iron elbows are
particularly susceptible to erosion. It may be difficult to detect
the erosion during dryer internal inspections. A ball peen ham-
mer can be used to “sound out” the elbows during internal in-
spection, to identify areas where internal erosion has thinned
the wall of the casting.
9. Orifice plate is plugged. Mechanical debris (gaskets, washers,
cap screws) that covers a portion of an orifice plate in the con-
densate drain line will increase the flow resistance and prevent
proper condensate drainage from that dryer. It the dryer is
equipped with a sight glass, the flooded dryer may be identi-
fied by the low flow of condensate.
10. Condensate isolation valve is closed, is not fully open, or does
not have a full-bore flow area. Condensate isolation valves
should be full-bore valves and must be kept fully open, particu-
larly in dryers with stationary syphons. Normally, the valve
position can be indicated by the position of the valve stem or
handle, but this is not always the case. The handle or stem may
be broken off.
11. Steam supply isolation valve is closed, is not fully open, or does
not have a full-bore flow area. Steam supply isolation valves
should also be kept fully open, particularly on machines with
stationary syphons that are operating with low differential
pressures. If the pressure differential is low and the pressure
drop across the steam isolation valve is higher on one dryer
than the others, then the differential pressure across the dryer
cylinder will be disproportionately low and the dryer will not
drain properly. If the supply valve flow resistance is too high,
the dryer pressure will be less than the condensate header pres-
sure and condensate / steam will flow back into the dryer
through the drop leg, as shown in the figure below.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 12
100 psi
Isolation valve partially closed
92 psi
90 psi
12. Undersized supply and drain pipes. If the drop-legs from the
steam supply header and from the dryer cylinders are too
small, the differential pressure across the dryer may be inade-
quate to drain the dryers, even though the differential between
the headers is at a reasonable level.
13. Undersized headers. If the steam supply headers and particu-
larly the condensate headers are too small, there will be a large
pressure loss along the length of the header. It is not unusual
to find a 2 to 3 psi pressure drop in undersized condensate
headers. In this case, the dryers at one end of the header will
see a different differential pressure than the dryers at the oppo-
site end of the header. Properly sized headers would have less
than a 0.5 psi pressure drop.
14. Undersized steam separators. Undersized steam separators
can also lead to dryer flooding. Condensate carryover from an
undersized separator will add to the condensate load in the
dryer. This can be significant, particularly if the tanks are sig-
nificantly undersized. Properly sized tanks are designed for a
98% quality of blow through steam leaving the tank.
15. Modified piping. The addition of piping tees and elbows to an
existing steam system can cause an increase in flow resistance
and improper dryer drainage. The changes may not seem to be
significant, but changes should be carefully checked.
16. Piping obstructions. Occasionally, debris is left in the dryer pip-
ing (pipe plugs, cans, rags, etc). This can greatly reduce the
flow capacity and cause dryer flooding.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 13
17. Deposits in Piping. On rare occasions, a black oxide can build
up inside paper dryers. These deposits are the result of im-
proper or inadequate treatment of the boiler feed water. The
black oxide has been known to plate out on the inside surfaces
of the dryer syphon pipes, restricting the flow and increasing
the differential pressure.
18. Improperly valved-off dryers. If a dryer is to be valved off to
take it out of service, positive shut-off must be maintained for
both the steam and condensate lines. This can be done by dis-
connecting the flex hoses to the joint, putting blank plates be-
tween pipe flanges, or having two isolation valves with an
open vent line between them, for both the steam and the con-
densate lines. The latter is referred to as a “double block and
bleed” configuration.
19. Plugged process connection lines. Plugged process connection
lines will result in inaccurate differential indication. This is a
common cause of poor dryer drainage. The process connection
lines should to be large diameter (Kadant Johnson recommends
2" stainless steel lines). The process connection lines should be
vertical with no more than a 45° slope and the lines should be
insulated to prevent the formation of condensate in the lines.
STEAM SYSTEM PROBLEMS
1. Low differential pressure. Many steam system problems are
related to running the differential pressure too low. This may
be the result of setting the DP too low or from controlling to an
inaccurate DP signal.
If the normal dryer operating differential pressure is set and
controlled to a value that is too low to handle the current oper-
ating speed, steam pressure, and condensing load, then the
dryer will tend to load up with condensate.
If the set point for the differential pressure is correct, but the
differential pressure reading is incorrect, then the operating
differential pressure may still be too low. Errors in differential
pressure measurement may be caused by either transmitters
that are improperly calibrated or by the connecting pressure
lines (“impulse lines”) not being properly routed. The latter is
covered later in this review.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 14
Note: TAPPI Water Removal Committee has published a Tech-
nical Information Paper on recommended operating differential
pressures. TIP 0404-31.
The best way to trouble-shoot steam system problems is to di-
rectly measure the differential across the dryer (not just be-
tween the headers). This requires pressure taps on both the
steam supply side and the condensate drainage side of the
joint. (Care must be taken to do this work safely).
2. Temporary loss of differential pressure. This problem is most
common on high-speed machines operating with rotating sy-
phons. If there is a loss in differential pressure (even a tempo-
rary loss), the condensate will cover the clearance between the
syphon and the shell. If the differential pressure is restored, but
is not above the flood-recovery differential pressure, then the
condensate will not be removed from the dryer.
Note: The addition of an aspirator hole in the rotating syphon
will significantly improve the flood-recovery performance of
the syphon.
Note: It is not uncommon to have a temporary loss in dryer
differential pressure during a brief stop or during a sheet break,
particularly with older steam and condensate systems.
3. Excessive desuperheater water flow. Water is sprayed into the
steam supply piping to reduce the temperature of the steam to
a value closer to the saturation steam temperature. If the instru-
mentation, controls, or water control valves are not properly
functioning, an excessive amount of water can be dumped into
the steam header. This will greatly increase the amount of wa-
ter that has to be evacuated from one or more of the dryers in
that section.
4. Improper orifice plate size. If the condensate orifice plate is too
small, the pressure drop will be higher than expected and the
dryer will not drain at the normal operating differential pres-
sure.
5. Incorrect differential pressure indication. This is one of the
most common problems. If the indicated differential pressure is
higher than the actual differential pressure, the dryers may
flood even though the differential pressure appears to be ade-
quate. There are a number of causes of incorrect DP readings:
 Transmitter is not functioning
 Transmitter is not properly calibrated
 Water legs on each side of the transmitter are not equal
 Water leg on one side of the transmitter has air in the line.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 15
 Seal pot is located below one of the headers with poor connection
lines.
 Differential pressure is calculated from two pressure readings
(double calibration errors and larger range for errors).
 Pressure and DP readings are “calibrated” against inaccurate
gauges.
Kadant Johnson has developed guidelines for installing, cali-
brating, and maintaining differential pressure transmitters.
These are available upon request. A typical example of these
guidelines is included at the end of this paper.
6. Improper DP valve operation. An inoperative DP valve can
cause dryers to flood. If the controls indicate 50% opening, for
example, and the DP valve goes to 20% or if it closes when it is
supposed to be opening (reversed operation), the dryers will
flood.
7. Choked thermocompressor. If the dryer thermocompressor is
improperly sized or out of its intended design range, it may be
running in “choked flow” condition, where an increase in valve
position will result in reduced blow through suction flow rate.
If a thermocompressors goes into a choked condition, it is gen-
erally because it is oversized. Choking occurs when the nozzle
is too large and discharges too much high-pressure steam into
the throat of the diffuser thus filling the cross-sectional area
and blocking (or choking) the flow of the suction steam. Chok-
ing can also occur when the discharge pressure is much less
than the original thermocompressor design discharge pressure.
8. Improperly sized thermocompressor. If the thermocompressor
is undersized, it will not be able to generate sufficient differen-
tial pressure and recirculate the blow though steam.
© Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 16
CONCLUSIONS
There are a number of potential causes of dryer flooding, but most of
them can be eliminated by proper hardware selection, system design,
and maintenance. The above outline provides a basic guide for trouble-
shooting dryers that appear to be flooded (high drive loads, swaying
dryer frames, and low drying capacity). If the cause cannot be immedi-
ately identified, Kadant Johnson can provide an audit of the dryer sec-
tion to determine the cause. Simulation trials can also be conducted at
the Kadant Johnson Research Center in Three Rivers, Michigan if fur-
ther help is required to identify the conditions under which the dryer
floods and the operating parameters required to prevent flooding from
occurring.
REFERENCES
1. “Recommended operating differential pressures”, TAPPI Technical
Information Paper, TIP 0404-31.
2. Wedel, Gregory L., Timm, Gerald L, and Skelton, Mikeal, “Drive
Power and Torque in Paper Machine Dryers, 2nd Edition”, Kadant
Johnson Inc., 2008.
3. Wedel, Gregory L., Timm, Gerald L, Skelton, Mikeal, and Munn,
James T, “Drive Power and Torque in Paper Machine Dryers”, Ka-
dant Johnson Inc., 2001.
4. Concannon, M.D., “Condensate Effects on Torque and Horsepower
in Paper Dryers,” Tappi 63(9): 69-72 (1980).
5. White, R.E. and Higgins, T.W., “Effect of the Fluid Properties on
Condensate Behavior,” Tappi 41 (2): 71-76 (1958).
6. Calkins, D.L., “A Comparison of Rotary & Stationary Siphon Per-
formance in Paper Dryers,” Johnson Corporation 1973.
7. Derrick, R. P., "Drive Power Requirements for Pulp and Paper Ma-
chine Dryer Sections", 1978 Engineering Conference Proceedings,
Book II, Tappi Press, Atlanta, p. 381.
8. Wedel, G. L. and Timm, G. L., “Drive Power and Torque in Paper-
machine Dryers”, TAPPI Technology Summit 2002, Tappi Press,
Atlanta.
Kadant Johnson is a global leader in the design, manufacture, and
service of dryer drainage systems, rotary joints, syphon systems,
and related equipment for the dryer section of the paper machine. For
more information about Kadant Johnson products and services, email
info@kadant.com or visit www.kadant.com.
 Steam and Condensate Systems
 Dryer Section Surveys
 Dryer Management System® control software
 Stationary Syphons
 Rotating Syphons
 Rotary Joints
 Turbulator® Bars
 Thermocompressors
 Desuperheaters
 Direct Injection Water Heaters
 Vortec™ Vacuum Generators
 Sight Flow Indicators
 Flexible Metal Hoses
 Installations Services

More Related Content

What's hot

Dryer Surface Temperature Response Characteristics
Dryer Surface Temperature Response CharacteristicsDryer Surface Temperature Response Characteristics
Dryer Surface Temperature Response CharacteristicsKadant Inc.
 
Carbide Doctor Blades on Ceramic Press Rolls
Carbide Doctor Blades on Ceramic Press RollsCarbide Doctor Blades on Ceramic Press Rolls
Carbide Doctor Blades on Ceramic Press RollsKadant Inc.
 
Vibration Characteristics in Cantilever Stationary Syphons
Vibration Characteristics in Cantilever Stationary SyphonsVibration Characteristics in Cantilever Stationary Syphons
Vibration Characteristics in Cantilever Stationary SyphonsKadant Inc.
 
Modern papermaking feb 2018 pdf
Modern papermaking feb 2018 pdfModern papermaking feb 2018 pdf
Modern papermaking feb 2018 pdfPekka Komulainen
 
Crescentformer general process. tissue machine Voith
Crescentformer general process. tissue machine VoithCrescentformer general process. tissue machine Voith
Crescentformer general process. tissue machine VoithNelson Izaguirre
 
Valmet general presentation
Valmet general presentationValmet general presentation
Valmet general presentationvalmet_global
 
Final version training
Final version trainingFinal version training
Final version trainingSappiHouston
 
Creping. Tissue machine creping
Creping. Tissue machine crepingCreping. Tissue machine creping
Creping. Tissue machine crepingNelson Izaguirre
 
Rethinking barometric legs
Rethinking barometric legsRethinking barometric legs
Rethinking barometric legsDevesh Singhal
 
Benefits of online porosity measurement feb 2018
Benefits of online porosity measurement  feb 2018Benefits of online porosity measurement  feb 2018
Benefits of online porosity measurement feb 2018Pekka Komulainen
 
Suggestive Improvements in Yankee Internal Design
Suggestive Improvements in Yankee Internal DesignSuggestive Improvements in Yankee Internal Design
Suggestive Improvements in Yankee Internal DesignDevesh Singhal
 
optimization of wire vacuum
optimization of wire vacuumoptimization of wire vacuum
optimization of wire vacuumDevesh Singhal
 
Effects of Friction in Papermaking
Effects of Friction in PapermakingEffects of Friction in Papermaking
Effects of Friction in PapermakingPekka Komulainen
 
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper Dryers
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper DryersBasics of Self-Supported Rotary Joint Installation on Steam-Heated Paper Dryers
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper DryersKadant Inc.
 
3b Paper Machine Steam Systems Part2
3b Paper Machine Steam Systems Part23b Paper Machine Steam Systems Part2
3b Paper Machine Steam Systems Part2Nhan Vo Trong
 
Stratified Forming as a Tool for Resource Efficient Papermaking
Stratified Forming as a Tool for Resource Efficient PapermakingStratified Forming as a Tool for Resource Efficient Papermaking
Stratified Forming as a Tool for Resource Efficient PapermakingRISE Bioeconomy
 
Paper and Pulp Machinery Industry in China
Paper and Pulp Machinery Industry in ChinaPaper and Pulp Machinery Industry in China
Paper and Pulp Machinery Industry in ChinaBusiness Finland
 

What's hot (20)

Dryer Surface Temperature Response Characteristics
Dryer Surface Temperature Response CharacteristicsDryer Surface Temperature Response Characteristics
Dryer Surface Temperature Response Characteristics
 
Carbide Doctor Blades on Ceramic Press Rolls
Carbide Doctor Blades on Ceramic Press RollsCarbide Doctor Blades on Ceramic Press Rolls
Carbide Doctor Blades on Ceramic Press Rolls
 
Vibration Characteristics in Cantilever Stationary Syphons
Vibration Characteristics in Cantilever Stationary SyphonsVibration Characteristics in Cantilever Stationary Syphons
Vibration Characteristics in Cantilever Stationary Syphons
 
Modern papermaking feb 2018 pdf
Modern papermaking feb 2018 pdfModern papermaking feb 2018 pdf
Modern papermaking feb 2018 pdf
 
Crescentformer general process. tissue machine Voith
Crescentformer general process. tissue machine VoithCrescentformer general process. tissue machine Voith
Crescentformer general process. tissue machine Voith
 
Paper Machine
Paper MachinePaper Machine
Paper Machine
 
Valmet general presentation
Valmet general presentationValmet general presentation
Valmet general presentation
 
Final version training
Final version trainingFinal version training
Final version training
 
Creping. Tissue machine creping
Creping. Tissue machine crepingCreping. Tissue machine creping
Creping. Tissue machine creping
 
Rethinking barometric legs
Rethinking barometric legsRethinking barometric legs
Rethinking barometric legs
 
Bel champ 15 july 2020
Bel champ 15 july 2020Bel champ 15 july 2020
Bel champ 15 july 2020
 
Benefits of online porosity measurement feb 2018
Benefits of online porosity measurement  feb 2018Benefits of online porosity measurement  feb 2018
Benefits of online porosity measurement feb 2018
 
Suggestive Improvements in Yankee Internal Design
Suggestive Improvements in Yankee Internal DesignSuggestive Improvements in Yankee Internal Design
Suggestive Improvements in Yankee Internal Design
 
optimization of wire vacuum
optimization of wire vacuumoptimization of wire vacuum
optimization of wire vacuum
 
Effects of Friction in Papermaking
Effects of Friction in PapermakingEffects of Friction in Papermaking
Effects of Friction in Papermaking
 
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper Dryers
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper DryersBasics of Self-Supported Rotary Joint Installation on Steam-Heated Paper Dryers
Basics of Self-Supported Rotary Joint Installation on Steam-Heated Paper Dryers
 
Paper manufacture
Paper manufacturePaper manufacture
Paper manufacture
 
3b Paper Machine Steam Systems Part2
3b Paper Machine Steam Systems Part23b Paper Machine Steam Systems Part2
3b Paper Machine Steam Systems Part2
 
Stratified Forming as a Tool for Resource Efficient Papermaking
Stratified Forming as a Tool for Resource Efficient PapermakingStratified Forming as a Tool for Resource Efficient Papermaking
Stratified Forming as a Tool for Resource Efficient Papermaking
 
Paper and Pulp Machinery Industry in China
Paper and Pulp Machinery Industry in ChinaPaper and Pulp Machinery Industry in China
Paper and Pulp Machinery Industry in China
 

Viewers also liked

Drive Power and Torque in Paper Machine Dryers
Drive Power and Torque in Paper Machine DryersDrive Power and Torque in Paper Machine Dryers
Drive Power and Torque in Paper Machine DryersKadant Inc.
 
ANAT-FISIO sistema nervioso
ANAT-FISIO sistema nerviosoANAT-FISIO sistema nervioso
ANAT-FISIO sistema nerviosoclaudiogonzalezg
 
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...M.M. RAFIK
 
Drying training Equipment Operation and control
Drying training Equipment Operation and control Drying training Equipment Operation and control
Drying training Equipment Operation and control Nelson Izaguirre
 
Pulp and Paper industry
Pulp and Paper industryPulp and Paper industry
Pulp and Paper industryArun Sarasan
 
Sistema Nervioso Arco Reflejo
Sistema Nervioso Arco ReflejoSistema Nervioso Arco Reflejo
Sistema Nervioso Arco ReflejoRocio Fernández
 
Receptores del cuerpo humano 4to a
Receptores del cuerpo humano 4to aReceptores del cuerpo humano 4to a
Receptores del cuerpo humano 4to aPromoRoja
 
Estimulos y respuestas
Estimulos y respuestas Estimulos y respuestas
Estimulos y respuestas Orlando Lopez
 
Presentación power point "Los 5 sentidos"
Presentación power point "Los 5 sentidos"Presentación power point "Los 5 sentidos"
Presentación power point "Los 5 sentidos"Inmas
 
Receptores sensoriales
Receptores sensorialesReceptores sensoriales
Receptores sensorialesBioluzmi
 

Viewers also liked (12)

Drive Power and Torque in Paper Machine Dryers
Drive Power and Torque in Paper Machine DryersDrive Power and Torque in Paper Machine Dryers
Drive Power and Torque in Paper Machine Dryers
 
ANAT-FISIO sistema nervioso
ANAT-FISIO sistema nerviosoANAT-FISIO sistema nervioso
ANAT-FISIO sistema nervioso
 
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...
PPT on fully Mathematical Derivation of Viscous Flow as part of FLUID MECHANI...
 
Biologia - Sistema Nervioso
Biologia - Sistema NerviosoBiologia - Sistema Nervioso
Biologia - Sistema Nervioso
 
Drying training Equipment Operation and control
Drying training Equipment Operation and control Drying training Equipment Operation and control
Drying training Equipment Operation and control
 
Pulp and Paper industry
Pulp and Paper industryPulp and Paper industry
Pulp and Paper industry
 
Sistema Nervioso Arco Reflejo
Sistema Nervioso Arco ReflejoSistema Nervioso Arco Reflejo
Sistema Nervioso Arco Reflejo
 
Receptores del cuerpo humano 4to a
Receptores del cuerpo humano 4to aReceptores del cuerpo humano 4to a
Receptores del cuerpo humano 4to a
 
Estimulos y respuestas
Estimulos y respuestas Estimulos y respuestas
Estimulos y respuestas
 
Los receptores sensoriales
Los receptores sensorialesLos receptores sensoriales
Los receptores sensoriales
 
Presentación power point "Los 5 sentidos"
Presentación power point "Los 5 sentidos"Presentación power point "Los 5 sentidos"
Presentación power point "Los 5 sentidos"
 
Receptores sensoriales
Receptores sensorialesReceptores sensoriales
Receptores sensoriales
 

Similar to Troubleshooting Flooding of Paper Dryers

Paper Drying Energy Tips
Paper Drying Energy TipsPaper Drying Energy Tips
Paper Drying Energy TipsKadant Inc.
 
Rotary and liquid rim compressor
Rotary and liquid rim compressorRotary and liquid rim compressor
Rotary and liquid rim compressorSourav Bagchi
 
Topic-11-Papermaking-Introduction-text.pdf
Topic-11-Papermaking-Introduction-text.pdfTopic-11-Papermaking-Introduction-text.pdf
Topic-11-Papermaking-Introduction-text.pdfMehri Imani
 
Dairy Process Engineering
Dairy Process EngineeringDairy Process Engineering
Dairy Process EngineeringBishalBarman1
 
Robo vaccuum (additional 1)
Robo vaccuum (additional 1)Robo vaccuum (additional 1)
Robo vaccuum (additional 1)Hammad ur Rehman
 
Dust collection
Dust collectionDust collection
Dust collectionmkpq pasha
 
2937016013 whitepaper EN LR.pdf
2937016013 whitepaper EN LR.pdf2937016013 whitepaper EN LR.pdf
2937016013 whitepaper EN LR.pdfssuser8658c3
 
Understanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment StallUnderstanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment StallMead O'Brien, Inc.
 
Basic Component of HVAC(compressor)
Basic Component of HVAC(compressor)Basic Component of HVAC(compressor)
Basic Component of HVAC(compressor)banukoup
 
Sizing in fabric manufacturing
Sizing in fabric manufacturingSizing in fabric manufacturing
Sizing in fabric manufacturingAman Pandey
 
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptx
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptxCompressed air dryer desiccant - Activated Alumina Desiccants Beads.pptx
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptxSorbead India
 
spray dried
spray driedspray dried
spray driedsecub
 
Paper Making Spray Nozzle Application - CYCO
Paper Making Spray Nozzle Application - CYCOPaper Making Spray Nozzle Application - CYCO
Paper Making Spray Nozzle Application - CYCOCYCOLau
 

Similar to Troubleshooting Flooding of Paper Dryers (20)

Paper Drying Energy Tips
Paper Drying Energy TipsPaper Drying Energy Tips
Paper Drying Energy Tips
 
Rotary and liquid rim compressor
Rotary and liquid rim compressorRotary and liquid rim compressor
Rotary and liquid rim compressor
 
Air compressor operation care
Air compressor operation careAir compressor operation care
Air compressor operation care
 
Pipeline Strainers - A Tutorial
Pipeline Strainers - A TutorialPipeline Strainers - A Tutorial
Pipeline Strainers - A Tutorial
 
Topic-11-Papermaking-Introduction-text.pdf
Topic-11-Papermaking-Introduction-text.pdfTopic-11-Papermaking-Introduction-text.pdf
Topic-11-Papermaking-Introduction-text.pdf
 
Dairy Process Engineering
Dairy Process EngineeringDairy Process Engineering
Dairy Process Engineering
 
Robo vaccuum (additional 1)
Robo vaccuum (additional 1)Robo vaccuum (additional 1)
Robo vaccuum (additional 1)
 
Spray drying pdf In food industry.
Spray drying pdf In food industry. Spray drying pdf In food industry.
Spray drying pdf In food industry.
 
Fluidized Bed Dryer
Fluidized Bed DryerFluidized Bed Dryer
Fluidized Bed Dryer
 
Basic Vacuum Aspects
Basic Vacuum AspectsBasic Vacuum Aspects
Basic Vacuum Aspects
 
Dust collection
Dust collectionDust collection
Dust collection
 
2937016013 whitepaper EN LR.pdf
2937016013 whitepaper EN LR.pdf2937016013 whitepaper EN LR.pdf
2937016013 whitepaper EN LR.pdf
 
Understanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment StallUnderstanding & Solving Heat Transfer Equipment Stall
Understanding & Solving Heat Transfer Equipment Stall
 
Dust suppresion system
Dust suppresion systemDust suppresion system
Dust suppresion system
 
Basic Component of HVAC(compressor)
Basic Component of HVAC(compressor)Basic Component of HVAC(compressor)
Basic Component of HVAC(compressor)
 
Sizing in fabric manufacturing
Sizing in fabric manufacturingSizing in fabric manufacturing
Sizing in fabric manufacturing
 
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptx
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptxCompressed air dryer desiccant - Activated Alumina Desiccants Beads.pptx
Compressed air dryer desiccant - Activated Alumina Desiccants Beads.pptx
 
spray dried
spray driedspray dried
spray dried
 
Condensate
Condensate Condensate
Condensate
 
Paper Making Spray Nozzle Application - CYCO
Paper Making Spray Nozzle Application - CYCOPaper Making Spray Nozzle Application - CYCO
Paper Making Spray Nozzle Application - CYCO
 

More from Kadant Inc.

Be Original: The Path to LC Paper's OnePly Tissue
Be Original: The Path to LC Paper's OnePly TissueBe Original: The Path to LC Paper's OnePly Tissue
Be Original: The Path to LC Paper's OnePly TissueKadant Inc.
 
James Cropper Specialty papers unique experience producing luxury boards with...
James Cropper Specialty papers unique experience producing luxury boards with...James Cropper Specialty papers unique experience producing luxury boards with...
James Cropper Specialty papers unique experience producing luxury boards with...Kadant Inc.
 
Recovering Thermal Energy with Water Jet Heaters
Recovering Thermal Energy with Water Jet HeatersRecovering Thermal Energy with Water Jet Heaters
Recovering Thermal Energy with Water Jet HeatersKadant Inc.
 
Understanding Paper Dryer Rotary Joint Reliability
Understanding Paper Dryer Rotary Joint ReliabilityUnderstanding Paper Dryer Rotary Joint Reliability
Understanding Paper Dryer Rotary Joint ReliabilityKadant Inc.
 
Paper Dryer Doctoring
Paper Dryer DoctoringPaper Dryer Doctoring
Paper Dryer DoctoringKadant Inc.
 
Paper Machine Whitewater Reuse
Paper Machine Whitewater ReusePaper Machine Whitewater Reuse
Paper Machine Whitewater ReuseKadant Inc.
 
Effectiveness of Paper Dryer Journal Insulating Sleeves
Effectiveness of Paper Dryer Journal Insulating SleevesEffectiveness of Paper Dryer Journal Insulating Sleeves
Effectiveness of Paper Dryer Journal Insulating SleevesKadant Inc.
 
Improved Dryer Control
Improved Dryer ControlImproved Dryer Control
Improved Dryer ControlKadant Inc.
 

More from Kadant Inc. (8)

Be Original: The Path to LC Paper's OnePly Tissue
Be Original: The Path to LC Paper's OnePly TissueBe Original: The Path to LC Paper's OnePly Tissue
Be Original: The Path to LC Paper's OnePly Tissue
 
James Cropper Specialty papers unique experience producing luxury boards with...
James Cropper Specialty papers unique experience producing luxury boards with...James Cropper Specialty papers unique experience producing luxury boards with...
James Cropper Specialty papers unique experience producing luxury boards with...
 
Recovering Thermal Energy with Water Jet Heaters
Recovering Thermal Energy with Water Jet HeatersRecovering Thermal Energy with Water Jet Heaters
Recovering Thermal Energy with Water Jet Heaters
 
Understanding Paper Dryer Rotary Joint Reliability
Understanding Paper Dryer Rotary Joint ReliabilityUnderstanding Paper Dryer Rotary Joint Reliability
Understanding Paper Dryer Rotary Joint Reliability
 
Paper Dryer Doctoring
Paper Dryer DoctoringPaper Dryer Doctoring
Paper Dryer Doctoring
 
Paper Machine Whitewater Reuse
Paper Machine Whitewater ReusePaper Machine Whitewater Reuse
Paper Machine Whitewater Reuse
 
Effectiveness of Paper Dryer Journal Insulating Sleeves
Effectiveness of Paper Dryer Journal Insulating SleevesEffectiveness of Paper Dryer Journal Insulating Sleeves
Effectiveness of Paper Dryer Journal Insulating Sleeves
 
Improved Dryer Control
Improved Dryer ControlImproved Dryer Control
Improved Dryer Control
 

Recently uploaded

Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesBoston Institute of Analytics
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 

Recently uploaded (20)

Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 

Troubleshooting Flooding of Paper Dryers

  • 1. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding Trouble-Shooting Flooding of Paper Dryers Technical White Paper Series Gregory L. Wedel President Kadant Johnson Inc. Ken Hill President, Systems Division Kadant Johnson Inc.
  • 2. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding CONTENTS A paper dryer is heated by condensing steam inside the dryer cylinder. The condensate must be removed from the dryer at the same rate at which it is being formed or the dryer will “flood”. That is, condensate will accumulate inside the dryer. An excessive amount of condensate in the dryer will increase the power required to drive the dryer and reduce the rate of heat transfer from the dryer. This paper covers some of the main causes for dryer flooding. EXECUTIVE SUMMARY 2 Introduction Condensate Behavior Flooding Description Drying Drainage Troubleshooting Dryer Flooding Mechanical Problems Steam System Problems Conclusions References 3 3 5 6 10 10 13 16 16
  • 3. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding Paper dryers can experience periodic problems with flooding. A “flooded” dryer is one that has an excessive amount of condensate in it. The condensate may be either in a non-rimming condition (in which case the drive load can be high) or in a rimming condition (in which case the heat transfer rate will be low). In normal operation, the rate at which condensate is being evacuated from a dryer matches the rate at which condensate is forming in the dryer. “Flooding” occurs when condensate is being evacuated from the dryer at a rate that is less than the rate at which steam is condensing in the dryer. A dryer begins to recover from a flooded condition when the evacuation rate exceeds the condensing rate. A brief outline of some of the causes of dryer flooding is given in the sections below. These sections should help in trouble-shooting prob- lems with flooded dryers. INTRODUCTION 3 CONDENSATE BEHAVIOR In a conventional paper dryer, pressurized steam is supplied to the dryer through a rotary joint. The steam transfers its heat to the inside surface of the dryer shell and the shell in turn transfers the heat to the paper that is passing over its outer surface. The steam condenses as it loses its heat to the dryer shell and the condensed steam (called “condensate”) is removed from the dryer by a syphon. A typical paper dryer is shown in cross-section in the figure below. Rotary Joint Condensate Steam Syphon shoe Syphon Rotary Joint Condensate Steam Syphon shoe Syphon Dryer Shell
  • 4. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding The condensate that remains in a dryer cylinder may be in any one of three states of behavior. These states depend primarily on the rota- tional speed of the dryer cylinder and the amount of condensate in the dryer. At slow speeds, typically less than 300 fpm (about 100 mpm), the condensate will form a puddle at the bottom of the dryer cylinder. In this state, the power required to rotate the dryer is relatively low. As the dryer rotational speed increases, the puddle moves in the direction of rotation and widens in the direction of rotation. The drive power remains low, as long as the puddle remains near the bottom of the dryer. This state is called the “puddling” or “ponding” state. As the dryer speed increases, the trailing edge of the condensate pud- dle starts to extend over the horizontal centerline of the dryer cylinder and the condensate falls (“cascades”) back to the bottom of the dryer. The height to which the condensate rises before it cascades increases with the dryer speed, as does the amount of the condensate that is cas- cading. The combination of the increasing elevation and increasing con- densate volume causes a quadratic increase in the power required to rotate the dryer as speed increases. This second condensate state is called “cascading”. The third state occurs as speed is increased further and the condensate forms a rimming layer all around the inside surface of the dryer shell. The drive power in this state is much lower than in the cascading state. These three states of condensate behavior are shown in the figure be- low. Dryers can flood with the condensate in any one of these three states. Once the condensate is in the rimming state, it will tend to stay in the rimming state unless the amount of condensate increases or the dryer speed decreases. If the dryer speed is decreased, the rimming conden- sate layer will eventually collapse and the condensate will return to a cascading state and eventually back to a puddling state. There is a dis- tinct hysteresis effect: The dryer speed at which the condensate layer collapses is less than the speed at which the rimming layer was first established. 4 RimmingPonding Cascading Condensate Behavior in a Dryer
  • 5. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 5 As noted above, a “flooded” dryer is one that has an excessive amount of condensate in it. “Excessive” is a relative term and it can sometimes be difficult to know whether or not a dryer is in the process of flood- ing, or is in the process of recovering from a flooded condition. Generally, a flooded dryer is identified by one or more of the following symptoms:  The dryer drive loads are much higher than normal for the current operat- ing speed.  The dryer framework is swaying in the cross-machine direction (dryers may sometimes sway in the machine-direction as well, but dryer framing is normally much stiffer in the machine-direction).  Operating dryer steam pressures have increased or the dryer section is unable to maintain the target sheet moisture content (the drying rate has decreased).  Condensate is leaking out of the steam seal in the rotary steam joint or manhole cover opening.  The flow rate of condensate (observed in the sight flow glass) has de- creased or stopped.  A felt-driven dryer is rotating at a speed that is lower than the rest of the dryers (the dryer is slipping in the dryer fabric).  The dryer surface temperature (measured with a contacting pyrometer) is lower than normal for the machine operating at that dryer steam pressure and dryer speed.  The dryer head temperature (measured with an infrared gun) is lower than normal for the machine operating at that dryer steam pressure and dryer speed. The following definitions may be helpful when reviewing indications of dryer flooding: Flooded: An excessive amount of condensate is al- ready in the dryer. Flooding: The amount of condensate in the dryer is increasing above normal. Recovering: The rate at which the condensate is being evacuated from the dryer is greater than the rate at which condensate is forming inside a flooded dryer. Recovered: The amount of condensate inside the dryer has returned to normal. FLOODING DESCRIPTION
  • 6. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding DRYER DRAINAGE Condensate is evacuated (“drained”) from a dryer cylinder through a syphon pipe. The syphon pipe extends from the inside surface of the dryer shell, out through the hollow dryer journal, and into the rotary steam joint. A syphon “shoe” (or “hopper” or “syphon tip”) is typically attached to the end of the syphon pipe that is adjacent to the inside sur- face of the dryer shell. The type of syphon and its design can have a very significant effect on the removal of condensate from the dryers and can be a critical factor in the performance of high-speed dryers, especially their tendency to- ward flooding. There are two primary types of dryer syphons: Rotating syphons and stationary syphons. A rotating syphon is simply one that rotates with the dryer shell. A rotating syphon shoe is held in direct contact with the inside surface of the dryer shell, sometimes with bolts and some- times with a spring force. Modern rotating syphon shoes have close- fitting clearance to the dryer shell (typically 0.06 – 0.10”) and large pe- rimeters (15-20”) in order to minimize the amount of rimming conden- sate that remains in the dryers. Rotating syphons are designed to pro- duce thin condensate layers so that the heat transfer rate and heat transfer uniformity are kept at acceptable levels. Kadant Johnson pio- neered the development of rotating syphon shoes specifically for high- speed dryers. These syphon shoes have a unique contour so they can also effectively evacuate non-rimming condensate. A typical rotating syphon is shown in the figure below. This rotating syphon is spring- loaded against the dryer shell so that no bolt holes are required in the dryer shell to hold the syphon in place. 6
  • 7. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding With both rotating and stationary syphons, the condensate inside the dryer must be lifted up the syphon pipe in order to evacuate it from the dryer. Differential steam pressure is used to lift the condensate up the radial syphon pipe. With a rotating syphon, there is a centrifugal force that tends to hold the condensate against the dryer shell. At high dryer speeds, this centrifugal force can be quite large (55 times the force of gravity when a 5’ diameter dryer is running at 4,000 fpm). The corre- sponding differential pressure required to lift the condensate against this centrifugal force can also be quite large. If the syphon must lift a solid column of condensate to the center of the dryer under these oper- ating conditions, the differential pressure would theoretically have to be 28 psi! In practice, the operating differential pressures are generally less than this theoretical value because uncondensed steam (“blow through” steam) is evacuate along with the condensate and this blow through steam greatly reduces the effective density of the mixture and thereby greatly reduces the required differential pressure. If, however, the tip of the rotating syphon becomes submerged in con- densate, then only condensate will flow into the syphon pipe and the differential pressure will have to be high enough to lift the heavy con- densate. If the differential pressure is high, but not quite high enough to lift the condensate all the way to the center of the dryer, then the condensate will not flow out of the dryer. This is like sucking water out of a glass with a straw, but not having enough vacuum to lift the water all the way to your mouth. The phenomenon is shown schematically in the figure below. 7
  • 8. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding Note that in the above figure, the syphon shoe is entirely submerged in condensate, so only condensate enters the syphon pipe. The differential pressure lifts this condensate up the syphon pipe, against the centrifu- gal force, but only to a height that corresponds to the differential pres- sure. In this figure, the differential pressure was not high enough to evacuate the condensate and the dryer would eventually flood. The minimum differential pressure required to lift a solid column of condensate up a rotating syphon pipe to the dryer axis depends primar- ily on the dryer speed and, to a much lesser degree on the steam pres- sure (condensate density) and dryer diameter. This minimum “flood recovery” differential pressure is shown as function of dryer speed in the following graph: 8 Dryer Flood Recovery 0 5 10 15 20 25 30 35 40 45 50 0 1000 2000 3000 4000 5000 Dryer Speed, fpm DifferentialSteamPressure,psi The minimum differential pressure required to evacuate a flooded dryer (one with the rotating syphon tip submerged in condensate) can be reduced by adding a small “aspirator” hole in the tip of the syphon shoe, just far enough above the condensate layer so that blow through steam can enter the syphon pipe through the aspirator hole and reduce the density of the fluid in the radial pipe. The amount of reduction de- pends on the size of the aspirator hole, the speed of the dryer, and the operating steam pressure. For dryers operating at high speed, an aspi- rator hole that is 0.25” diameter and located in the syphon shoe about 2” above the dryer shell could reduce the minimum differential pres- sures for flood recovery by about 25% below the values shown in the graph above.
  • 9. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding At high speeds, however, even a 25% reduction in flood recover differ- ential pressure still leaves a high differential pressure. During normal operation, when the condensate is being properly evacuated, these high operating differential pressures can result in excessive amounts of blow though steam passing through the dryer. It can be very difficult to de- sign a steam system with sufficient flexibility to handle large blow through flow rates. This is why stationary syphons became more com- mon again, when dryer speeds were going over 3000-3500 fpm. The second type of dryer syphon is the stationary syphon. The most common type of stationary syphon for high-speed machines is the canti- levered stationary syphon shown in the figure below. Modern cantile- ver stationary syphons have been designed with very rigid supports so that the stationary syphon can withstand the impact forces of the rim- ming condensate without vibration and failures. 9 Unlike rotating syphons, a stationary syphon does not have to lift the condensate against centrifugal force. In fact, if the stationary syphon shoe has a “scoop” contour, it is able to use the momentum of the rim- ming condensate to force the condensate out of the dryer. If the dryer speed is high enough, the condensate may be evacuated from the dryer even if the differential pressure is zero. The syphon pipe size and operating differential steam pressure can be independently selected when running with a stationary syphon. This allows the equipment supplier to greatly reduce the amount of blow through steam and greatly simplifies the design and stability of the steam and condensate system. The stationary syphons also greatly re- duce the susceptibility of paper dryers to flooding.
  • 10. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 10 Although dryers with stationary syphons are much less prone to flood- ing, flooding can still occur in dryers with stationary syphons, as out- lined in the trouble-shooting sections below. TROUBLESHOOTING DRYER FLOODING Most problems with dryer flooding are related to either the steam sup- ply and condensate drainage control systems or with mechanical / in- stallation problems. These problems are outlined separately in the sec- tions below. MECHANICAL PROBLEMS 1. Syphon shoe design. Some older design syphon shoes did not have a “scoop” contour. These syphon shoes can be more susceptible to dryer flooding and often require higher operating differential pres- sures. Many rotating syphon shoes that do not have a scoop feature will have very poor slow-speed (non-rimming) performance. Many stationary syphon shoes that do not have a scoop feature will have very poor high-speed (rimming) performance. 2. Stationary syphon shoe installed backwards. Scoop-style stationary syphons must face opposite the running direction of the dryer. If they are installed incorrectly, they will be very inefficient in remov- ing condensate and will require high differential steam pressures. 3. Eroded syphon shoe. Syphon shoes can erode over time. If the tip of the shoe is eroded away, the shoe becomes ineffective in remov- ing condensate and dryer flooding results. Gray iron syphon shoes are particularly prone to erosion. 4. Loss of syphon shoe clearance. If the opening under the tip of a ro- tating syphon is closed off, the dryer will not drain. The clearance can be closed off if the shoe becomes embedded in the shell or if the rotary syphon spacers were not installed. 5. Internal joint leakage. Some styles of dual-flow steam joints can have leakage inside the joint – between the steam supply chamber and the condensate discharge chamber. This can cause dryer flood- ing, even though there is a sufficient differential pressure across the joint and the amount of blow through is high. This problem can only occur in dual-flow rotary joints, and is much more likely if the dryers have rotating syphons than stationary syphons.
  • 11. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 11 6. Broken syphons. If either the horizontal or vertical syphon pipes break off inside the dryer, the syphon will not drain the condensate. Syphon breakage can be caused by corrosion, loose balance weights, shifting dryer bars, and physical contact be- tween the shell and a stationary syphon. 7. Undersized syphon pipes. The internal syphon piping (vertical and horizontal pipes and shoe) may be too small for the current operating conditions (dryer speed, condensing load, and pres- sure). If so, higher operating differential pressures will be re- quired, perhaps resulting in inadequate steam system control. 8. Syphon elbow erosion. If the internal dryer syphon elbow is eroded, blow through steam will by-pass the syphon shoe and the dryer will not drain. Cast iron and ductile iron elbows are particularly susceptible to erosion. It may be difficult to detect the erosion during dryer internal inspections. A ball peen ham- mer can be used to “sound out” the elbows during internal in- spection, to identify areas where internal erosion has thinned the wall of the casting. 9. Orifice plate is plugged. Mechanical debris (gaskets, washers, cap screws) that covers a portion of an orifice plate in the con- densate drain line will increase the flow resistance and prevent proper condensate drainage from that dryer. It the dryer is equipped with a sight glass, the flooded dryer may be identi- fied by the low flow of condensate. 10. Condensate isolation valve is closed, is not fully open, or does not have a full-bore flow area. Condensate isolation valves should be full-bore valves and must be kept fully open, particu- larly in dryers with stationary syphons. Normally, the valve position can be indicated by the position of the valve stem or handle, but this is not always the case. The handle or stem may be broken off. 11. Steam supply isolation valve is closed, is not fully open, or does not have a full-bore flow area. Steam supply isolation valves should also be kept fully open, particularly on machines with stationary syphons that are operating with low differential pressures. If the pressure differential is low and the pressure drop across the steam isolation valve is higher on one dryer than the others, then the differential pressure across the dryer cylinder will be disproportionately low and the dryer will not drain properly. If the supply valve flow resistance is too high, the dryer pressure will be less than the condensate header pres- sure and condensate / steam will flow back into the dryer through the drop leg, as shown in the figure below.
  • 12. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 12 100 psi Isolation valve partially closed 92 psi 90 psi 12. Undersized supply and drain pipes. If the drop-legs from the steam supply header and from the dryer cylinders are too small, the differential pressure across the dryer may be inade- quate to drain the dryers, even though the differential between the headers is at a reasonable level. 13. Undersized headers. If the steam supply headers and particu- larly the condensate headers are too small, there will be a large pressure loss along the length of the header. It is not unusual to find a 2 to 3 psi pressure drop in undersized condensate headers. In this case, the dryers at one end of the header will see a different differential pressure than the dryers at the oppo- site end of the header. Properly sized headers would have less than a 0.5 psi pressure drop. 14. Undersized steam separators. Undersized steam separators can also lead to dryer flooding. Condensate carryover from an undersized separator will add to the condensate load in the dryer. This can be significant, particularly if the tanks are sig- nificantly undersized. Properly sized tanks are designed for a 98% quality of blow through steam leaving the tank. 15. Modified piping. The addition of piping tees and elbows to an existing steam system can cause an increase in flow resistance and improper dryer drainage. The changes may not seem to be significant, but changes should be carefully checked. 16. Piping obstructions. Occasionally, debris is left in the dryer pip- ing (pipe plugs, cans, rags, etc). This can greatly reduce the flow capacity and cause dryer flooding.
  • 13. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 13 17. Deposits in Piping. On rare occasions, a black oxide can build up inside paper dryers. These deposits are the result of im- proper or inadequate treatment of the boiler feed water. The black oxide has been known to plate out on the inside surfaces of the dryer syphon pipes, restricting the flow and increasing the differential pressure. 18. Improperly valved-off dryers. If a dryer is to be valved off to take it out of service, positive shut-off must be maintained for both the steam and condensate lines. This can be done by dis- connecting the flex hoses to the joint, putting blank plates be- tween pipe flanges, or having two isolation valves with an open vent line between them, for both the steam and the con- densate lines. The latter is referred to as a “double block and bleed” configuration. 19. Plugged process connection lines. Plugged process connection lines will result in inaccurate differential indication. This is a common cause of poor dryer drainage. The process connection lines should to be large diameter (Kadant Johnson recommends 2" stainless steel lines). The process connection lines should be vertical with no more than a 45° slope and the lines should be insulated to prevent the formation of condensate in the lines. STEAM SYSTEM PROBLEMS 1. Low differential pressure. Many steam system problems are related to running the differential pressure too low. This may be the result of setting the DP too low or from controlling to an inaccurate DP signal. If the normal dryer operating differential pressure is set and controlled to a value that is too low to handle the current oper- ating speed, steam pressure, and condensing load, then the dryer will tend to load up with condensate. If the set point for the differential pressure is correct, but the differential pressure reading is incorrect, then the operating differential pressure may still be too low. Errors in differential pressure measurement may be caused by either transmitters that are improperly calibrated or by the connecting pressure lines (“impulse lines”) not being properly routed. The latter is covered later in this review.
  • 14. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 14 Note: TAPPI Water Removal Committee has published a Tech- nical Information Paper on recommended operating differential pressures. TIP 0404-31. The best way to trouble-shoot steam system problems is to di- rectly measure the differential across the dryer (not just be- tween the headers). This requires pressure taps on both the steam supply side and the condensate drainage side of the joint. (Care must be taken to do this work safely). 2. Temporary loss of differential pressure. This problem is most common on high-speed machines operating with rotating sy- phons. If there is a loss in differential pressure (even a tempo- rary loss), the condensate will cover the clearance between the syphon and the shell. If the differential pressure is restored, but is not above the flood-recovery differential pressure, then the condensate will not be removed from the dryer. Note: The addition of an aspirator hole in the rotating syphon will significantly improve the flood-recovery performance of the syphon. Note: It is not uncommon to have a temporary loss in dryer differential pressure during a brief stop or during a sheet break, particularly with older steam and condensate systems. 3. Excessive desuperheater water flow. Water is sprayed into the steam supply piping to reduce the temperature of the steam to a value closer to the saturation steam temperature. If the instru- mentation, controls, or water control valves are not properly functioning, an excessive amount of water can be dumped into the steam header. This will greatly increase the amount of wa- ter that has to be evacuated from one or more of the dryers in that section. 4. Improper orifice plate size. If the condensate orifice plate is too small, the pressure drop will be higher than expected and the dryer will not drain at the normal operating differential pres- sure. 5. Incorrect differential pressure indication. This is one of the most common problems. If the indicated differential pressure is higher than the actual differential pressure, the dryers may flood even though the differential pressure appears to be ade- quate. There are a number of causes of incorrect DP readings:  Transmitter is not functioning  Transmitter is not properly calibrated  Water legs on each side of the transmitter are not equal  Water leg on one side of the transmitter has air in the line.
  • 15. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 15  Seal pot is located below one of the headers with poor connection lines.  Differential pressure is calculated from two pressure readings (double calibration errors and larger range for errors).  Pressure and DP readings are “calibrated” against inaccurate gauges. Kadant Johnson has developed guidelines for installing, cali- brating, and maintaining differential pressure transmitters. These are available upon request. A typical example of these guidelines is included at the end of this paper. 6. Improper DP valve operation. An inoperative DP valve can cause dryers to flood. If the controls indicate 50% opening, for example, and the DP valve goes to 20% or if it closes when it is supposed to be opening (reversed operation), the dryers will flood. 7. Choked thermocompressor. If the dryer thermocompressor is improperly sized or out of its intended design range, it may be running in “choked flow” condition, where an increase in valve position will result in reduced blow through suction flow rate. If a thermocompressors goes into a choked condition, it is gen- erally because it is oversized. Choking occurs when the nozzle is too large and discharges too much high-pressure steam into the throat of the diffuser thus filling the cross-sectional area and blocking (or choking) the flow of the suction steam. Chok- ing can also occur when the discharge pressure is much less than the original thermocompressor design discharge pressure. 8. Improperly sized thermocompressor. If the thermocompressor is undersized, it will not be able to generate sufficient differen- tial pressure and recirculate the blow though steam.
  • 16. © Kadant Johnson Inc. 2010. Troubleshooting Paper Dryer Flooding 16 CONCLUSIONS There are a number of potential causes of dryer flooding, but most of them can be eliminated by proper hardware selection, system design, and maintenance. The above outline provides a basic guide for trouble- shooting dryers that appear to be flooded (high drive loads, swaying dryer frames, and low drying capacity). If the cause cannot be immedi- ately identified, Kadant Johnson can provide an audit of the dryer sec- tion to determine the cause. Simulation trials can also be conducted at the Kadant Johnson Research Center in Three Rivers, Michigan if fur- ther help is required to identify the conditions under which the dryer floods and the operating parameters required to prevent flooding from occurring. REFERENCES 1. “Recommended operating differential pressures”, TAPPI Technical Information Paper, TIP 0404-31. 2. Wedel, Gregory L., Timm, Gerald L, and Skelton, Mikeal, “Drive Power and Torque in Paper Machine Dryers, 2nd Edition”, Kadant Johnson Inc., 2008. 3. Wedel, Gregory L., Timm, Gerald L, Skelton, Mikeal, and Munn, James T, “Drive Power and Torque in Paper Machine Dryers”, Ka- dant Johnson Inc., 2001. 4. Concannon, M.D., “Condensate Effects on Torque and Horsepower in Paper Dryers,” Tappi 63(9): 69-72 (1980). 5. White, R.E. and Higgins, T.W., “Effect of the Fluid Properties on Condensate Behavior,” Tappi 41 (2): 71-76 (1958). 6. Calkins, D.L., “A Comparison of Rotary & Stationary Siphon Per- formance in Paper Dryers,” Johnson Corporation 1973. 7. Derrick, R. P., "Drive Power Requirements for Pulp and Paper Ma- chine Dryer Sections", 1978 Engineering Conference Proceedings, Book II, Tappi Press, Atlanta, p. 381. 8. Wedel, G. L. and Timm, G. L., “Drive Power and Torque in Paper- machine Dryers”, TAPPI Technology Summit 2002, Tappi Press, Atlanta.
  • 17. Kadant Johnson is a global leader in the design, manufacture, and service of dryer drainage systems, rotary joints, syphon systems, and related equipment for the dryer section of the paper machine. For more information about Kadant Johnson products and services, email info@kadant.com or visit www.kadant.com.  Steam and Condensate Systems  Dryer Section Surveys  Dryer Management System® control software  Stationary Syphons  Rotating Syphons  Rotary Joints  Turbulator® Bars  Thermocompressors  Desuperheaters  Direct Injection Water Heaters  Vortec™ Vacuum Generators  Sight Flow Indicators  Flexible Metal Hoses  Installations Services