Pre and post operative management of cataract

PRE AND POST OPERATIVE
MANAGEMENT OF CATARACT
Presenter: Kalpana Bhandari
M.Optom (1st sem)
TIO
Preoperative considerations
Indications for surgery
• Visual improvement: Operation is indicated when the
opacity develops to a degree sufficient to cause difficulty in
performing essential daily activities.
• Medical indications are those in which a cataract is
adversely affecting the health of the eye. Eg:
-Lens induced glaucoma
-Phacoanaphylactic endophthalmitis
-Retinal diseases like diabetic retinopathy or retinal
detachment.
• Cosmetic indication -to obtain black pupil.
Systemic preoperative assessment
Pre and post operative management of cataract
Pre and post operative management of cataract
Preoperative ocular assessment
• Visual acuity assessment.
• Iop measurment - raised IOP needs priority
management.
• Cover test: A heterotropia may indicate amblyopia,
which carries a guarded visual prognosis, or the
possibility of diplopia if the vision is improved. A squint,
usually a divergence, may develop in an eye with poor
vision due to cataract, and lens surgery alone may
straighten the eye.
• Pupillary responses. Because cataract never produces
an afferent pupillary defect, its presence implies substantial
additional pathology.
• Ocular adnexa. Dacryocystitis, blepharitis, chronic
conjunctivitis, lagophthalmos, ectropion, entropion and tear
film abnormalities may predispose to endophthalmitis and
in most cases optimization should be achieved prior to
intraocular surgery.
• Cornea: Eyes with decreased endothelial cell counts
(e.g.substantial cornea guttata) have increased
vulnerability to postoperative decompensation secondary
to operative trauma.
• Anterior chamber: A shallow anterior chamber can
render cataract surgery difficult. Recognition of a poorly
dilating pupil allows intensive preoperative mydriatic
drops, planned mechanical dilatation prior to
capsulorhexis and/or intracameral injection of mydriatic.
.
• Lens: Nuclear cataracts tend to be harder and may require
more power for phacoemulsification, while cortical and
subcapsular opacities tend to be softer.
• Black nuclear opacities are extremely dense and extracapsular
cataract extraction rather than phacoemulsification may be the
superior option.
• Pseudoexfoliation indicates a likelihood of weak zonules
(phakodonesis – lens wobble – may be present), a fragile
capsule and poor mydriasis.
• Fundus examination. Pathology such as age-related
macular degeneration may affect the visual outcome.
Ultrasonography may be required, principally to exclude
retinal detachment and staphyloma, in eyes with very dense
opacity that precludes fundus examination.
• Retinal function tests:
i. Light Perception
ii. Test for Marcus Gunn pupillary response
iii. Projection of rays - Test for function of peripheral retina
iv. Two light discrimination test - Macular function
v. Maddox rod test
vi. Colour perception-macular function and optic nerve
vii. Entoptic visualisation-retinal function
viii. Laser interferometry
ix. Objective tests for evaluating retina- ultrasonic evaluation,
ERG, EOG, VER and indirect ophthalmoscopy
• Sclera. If a prominent explant/encircling band has been
placed during prior retinal detachment surgery, the eye is
particularly large or the sclera thin (e.g. high myopia),
peri- and retrobulbar local anaesthesia may be avoided
and special care taken with sub-Tenon local anaesthetic
infiltration.
• Current refractive status: It is critical to obtain details of
the patient’s preoperative refractive error in order to guide
intraocular lens (IOL) implant selection.
• The keratometry readings (obtained during biometry)
should be noted in relation to the refraction, particularly if
it is planned to address astigmatism by means of targeted
wound placement, a toric IOL or a specific adjunctive
procedure.
Informed consent
• It is essential that the patient has arrived at a fully
informed decision to proceed with cataract surgery. As well
as discussing the benefits, risks should be conveyed at a
level appropriate to each patient’s level of understanding,
with an explanation of the more common and severe
potential problems.
Biometry
• Biometry facilitates calculation of the lens power ; in its
basic form this involves the measurement of two ocular
parameters, keratometry and axial (anteroposterior) length.
• Keratometry involves determination of the curvature of the
anterior corneal surface (steepest and flattest meridians),
expressed in dioptres or in millimetres of radius of
curvature. This is commonly carried out with the
interferometry apparatus used to determine axial length but
if this is unavailable or unsuitable manual keratometry (e.g.
Javal–Schiøtz keratometer) or corneal topography can be
performed.
• Optical coherence biometry is a noncontact method of
axial length measurement that utilizes two coaxial partially
coherent low-energy laser beams to produce an interference
pattern (partial coherence interferometry).
• Modern biometry devices also perform keratometry, anterior
chamber depth and corneal white-to white measurement,
and are able to calculate IOL power using a range of
formulae. Measurements have high reproducibility and
generally require less skill than ultrasonic biometry.
• A-scan ultrasonography is a
generally slightly less accurate method
of determining the axial dimension and
can be acquired either by direct
contact or more accurately but with
greater technical difficulty by using a
water bath over the eye (immersion
ultrasonography). The sound beam
must be aligned with the visual axis for
maximal precision; each reflecting
surface is represented by a spike on
an oscilloscope display monitor.
IOL power calculation formulae:
• Numerous formulae have been developed that utilize
keratometry and axial length to calculate the IOL power
required to achieve a given refractive outcome.
• Some formulae incorporate additional parameters such as
anterior chamber depth and lens thickness to try to optimize
accuracy.
• The SRK-T, Haigis, Hoffer Q and Holladay 1 and 2 are
commonly used.
• Specific formulae may be superior for very short (possibly
the Hoffer Q) or long eyes.
Previous refractive surgery:
• Any form of corneal refractive surgery is likely to make a
significant difference to the IOL power required, and
standard IOL calculations are unsuitable.
• Several different methods have been described to address
this situation.
• Most involve the calculation of the post-refractive
procedure ‘true’ corneal power using a special process
(refractive history method, contact lens method) and
insertion of this into a standard (e.g. Hoffer Q) or specific
(e.g. Masket) formula, but the Haigis-L regression formula
uses statistical data to facilitate calculation on post-
refractive surgery eyes using only standard inputs. It may
prudent to utilize more than one method of IOL calculation.
• Contact lenses. If the patient wears soft contact lenses, these
should not be worn for up to a week prior to biometry to
allow corneal stabilization; hard/gas permeable lenses may
need to be left out for 3 weeks.
• Personalized A-constant. If a consistent postoperative
refractive deviation is found in most of an individual
surgeon’s cases, it is assumed that some aspects of personal
surgical (or possibly biometric) technique consistently and
similarly influence outcome, and a personalized A-constant
can be programmed into biometry apparatus to take this
into account.
Corneal pachymetry
• Ultrasonic pachymeters can accurately & reliably measure
endothelial cell function.
• If thickness > 600 µm maybe consistent with corneal
edema & endothelium dysfunction that increase the
likelihood postoperative clinical corneal edema.
Specular microscopy: (endothelium cells)
• A normal cell count > 2400 cells/mm2
• If a cell count fewer than 1000 cells/mm2 is risk of
postoperative corneal decompensation.
Pre operative management in pediatric age groups
Pediatric IOL : size, design and power.
1. Size of IOL above the age of 2 years may be standard
12 to 12.75mm diameter for the bag implantation.
2. Design of IOL recommended is one- piece PMMA with
modified C- shaped haptics (preferably heparin coated)
Power of IOL in children between 2-8 years of age 10%
undercorrection from the calculated biometric power is
recommended to counter the myopic shift.
3. Below 2 years on undercorrection by 20% is
recommended.
Pre-op medications and preperations
1. Topical antibiotics - Tobramycin and Gentamicin QID for
3 days before surgery.
2. Preparation of the eye to be operated.
3. Consent.
4. Scrub bath and care of hair
5. Drugs to lower IOP- acetazolamide 500mg stat 2 hours
before surgery and glycerol 60ml mixed with equal amount
of water or lemon juice 1 hour before Surgery or, IV
mannitol 1gm/kg body weight half an hour before Surgery.
6. Drugs to sustain dilated pupil - antiprostaglandin eye
drops(indomethacin).
Anaesthesia
• The majority of cataract surgery is performed under local
anaesthesia (LA), sometimes in conjunction with
intravenous or oral sedation. Types of local anaesthetics
for cataract surgery are:
a)Subtenon’s
b)Peribulbar
c)Topical
• General anaesthesia is required in some circumstances,
such as children and many young adults, very anxious
patients, some patients with learning difficulties, epilepsy,
dementia and those with a head tremor.
• Sub-Tenon block involves insertion of a blunt-tipped
cannula through an incision in the conjunctiva and Tenon
capsule 5 mm from the limbus inferonasally and
passing it around the curve of the globe through the
sub-Tenon space.
• The anaesthetic is injected beyond the equator of the globe.
• Although anaesthesia is good and complications minimal,
akinesia is variable. Chemosis and subconjunctival
haemorrhage are common but penetration of the globe is
extremely rare.
• Peribulbar block is given through the skin or conjunctiva
with a 1-inch (25-mm) needle.
• It generallyprovides effective anaesthesia and akinesia.
• Penetration of the globe is a rare but severe complication,
and for this reason peribulbar is avoided, or approached
with great caution, in longer eyes (which also tend to have
a larger equatorial diameter).
• Topical anaesthesia involves drops or gel
(proxymetacaine 0.5%, tetracaine 1% drops, lidocaine 2%
gel), which can be augmented with intracameral
preservative-free lidocaine 0.2%–1%, combined
viscoelastic/lidocaine preparations are also commercially
available.
• Although analgesia is generally adequate, it tends
to be less effective than peribulbar or sub-Tenon blocks.
Post- operative management
• Patient is asked to lie quietly upon the back for 3/ 4 hours.
• For mild to moderate post-operative pain injection
diclofenac sodium may be given.
• Next morning bandage is removed & inspected for post-
op complication.
• Antibiotic-steroid eye drops are used two hourly 1 week,
QID 4 week then tapering, TID, BD and OD for each
week.
• Tear supplements are given for at least one month or
more depending upon the patients complain to prevent
post cataract surgery dry eyes.
Post -op examination
• Cornea: wounds sealed (Seidel test negative), clarity
• AC: formed, activity
• Pupil: round, regular and reacting
• PCIOL: centred and in the bag
• Consider : IOP checking
• Give clear instructions re postoperative drops
• Use of clear shield
• What to expect (discomfort, watering)
• What to worry about (increasing pain/ redness, worsening
vision)
• Where to get help (including telephone number)
Final review (2-4wks later)
Examination
• VA: unaided/aided
• Cornea: wounds sealed (Seidel test negative), clarity
• AC: depth and clarity
• Pupil: round, regular and reacting
• IOP
• Fundus : no cystoid macular oedema, flat retina
• If good result then either list for second eye (in bilateral
cases) or discharge for refraction as appropriate.
• If disappointing VA (unaided) perform refraction to look for
‘refractive error’ and dilated fundoscopy to check for the
subtle CMO (specially if VA (pinhole) < VA (unaided)) and
if in doubt, consider OCT.
Refractive surprises
• In patients where the refractive outcome is harder to
predict (high ametropia, previous corneal refractive
surgery), review patients early (1 week) with refraction to
permit the option of an early IOL exchange if a large
discrepancy noticed.
• After 6-8 weeks of operation corneoscleral sutures are
removed (when applied).
• Final spectacles are prescribed after about 8 weeks of
operation.
Management of refractive error in adults
• Refractive error is assessed at 8th week of cataract
surgery.
• Refractive correction is prescribed only if the error persist
even after three months of cataract surgery.
Postoperative refraction
• Emmetropia is typically the desired postoperative
refraction, though usually spectacles will be needed for
near vision since a conventional IOL cannot
accommodate.
• Many surgeons aim for a small degree of myopia (about -
0.25 D) to offset possible errors in biometry; postoperative
hypermetropia, which necessitates correction for clear
vision at all distances, is typically less well tolerated than
myopia.
Postoperative refraction
• Contralateral eye. Postoperative refractive planning must
take account of the contralateral eye. If this has a
significant refractive error but is unlikely to require
cataract surgery within a few years, the postoperative
target for the operated eye might be set for within less
than 2.0 D of its fellow, to avoid problems with binocular
fusion.
• In some cases, such as when there is an early lens
opacity in the fellow eye or when ametropia is extreme,
the patient can be offered lens surgery to the other eye to
facilitate targeting both at emmetropia.
• ‘Monovision’ is a concept in which the (usually)
nondominant eye is left with between 1 and 2 dioptres of
myopia to allow reading, whilst emmetropia is targeted in
the dominant eye. This is attractive to some patients,
generally those who have previously been using contact
lenses or spectacles to achieve monovision.
• Multifocal lens options use a variety of optical means to
attempt to achieve satisfactory near, distance and
intermediate vision. Many patients are very satisfied with
the results but a significant minority are unhappy,
complaining of phenomena such as glare.
• In evaluating reduced post-operative acuity, one should
know both the timing and severity of the visual complaint
in order to determine an etiology.
1) Early Visual Impairment
• Severe (20/200 or worse)
• Moderate (20/100 or better)
2) Delayed Visual Recovery
Early visual impairement
• Epithelial Irregularity
• Irregular or Marked Corneal Astigmatism
• Corneal Edema
• Dislocated / subluxated IOL
• Operative / Post-operative bleeding
• Retained Cortex or Nuclear fragments
• Hypotony
• Photoretinal Toxicity
• Extraocular Muscle paresis
These complications predominantly affect optical clarity,
macular function or refractive state.
Early visual impairement
• Vascular Occlusion
• Retinal Detachment
• Infectious Endophthalmitis
• Toxic Anterior Segment Syndrome
• Delayed Suprachoroidal Hemorrhage
• Optic Nerve Damage
• Globe Rupture or Perforation
• Intraocular aminoglycoside toxicity
These injuries often occur through vascular insult, direct
mechanical injury, or retinal toxicity.
Operative complications
Rupture of the posterior lens capsule:
• Capsular rupture may be accompanied by vitreous loss,
posterior migration of lens material and, rarely, expulsive
haemorrhage.
• Sequelae to vitreous loss, particularly if inappropriately managed,
include CMO, retinal detachment, endophthalmitis, updrawn
pupil, uveitis, vitreous touch, vitreous wick syndrome, glaucoma
and posterior dislocation of the IOL.
Posterior loss of lens fragments:
• Dislocation of fragments of lens material into the vitreous cavity
after zonular dehiscence or posterior capsule rupture
is rare but potentially serious as it may result in glaucoma,
chronic uveitis, retinal detachment or chronic CMO.
Posterior dislocation of IOL
• Dislocation of an IOL into the vitreous
cavity is rare;
loss can occur via a posterior capsular
dehiscence, or in an eye with fragile
zonular attachments (e.g.
pseudoexfoliation) the entire capsular
bag may dislocate.
• Complications include vitreous
haemorrhage, retinal detachment,
uveitis and chronic CMO.
• Treatment involves pars plana
vitrectomy with IOL removal,
repositioning or exchange depending on
the extent of capsular support.
Suprachoroidal haemorrhage
• A suprachoroidal haemorrhage involves a bleed into the
suprachoroidal space from a ruptured posterior ciliary artery. If
sufficiently severe it may result in extrusion of intraocular
contents (expulsive haemorrhage).
• Contributing factors include advanced age, glaucoma,
increased axial length, systemic cardiovascular disease,
vitreous loss and conversion from phacoemulsification to
ECCE.
Suprachoroidal haemorrhage contd…
• Immediate treatment involves filling of the AC with a cohesive
viscoelastic and sutured closure of the incision.
• Tamponade the bleeding vessel; balloon (e.g. Honan)
compression to a pressure of 50 mmHg, for up to 30 minutes.
• It may be helpful to keep the patient in a sitting rather than lying
position.
• Postoperatively, topical and systemic steroids should be used
aggressively to reduce intraocular inflammation, with standard
postoperative antibiotic treatment and IOP management as
indicated.
• Subsequent treatment, if spontaneous absorption fails to
occur, consists of drainage of large haemorrhages. This can be
performed 7–14 days later.
• Pars plana vitrectomy may be considered when the retina
appears adherent or detached,
Vascular occlusion
• CRVO ,CRAO ,Choroidal Infarction
may occur in surgery if complicated
by :
• retrobulbar hemorrhage
• nerve sheath injection
• elevated IOP
Acute postoperative endophthalmitis
Pathogenesis:
• Acute intraocular infection is invariably a severe event.
• Toxins produced by infecting bacteria and the host
inflammatory responses cause rapid and irreversible
photoreceptor damage.
Risk factors:
• Operative complications such as posterior capsule rupture,
prolonged procedure time, combined procedure (e.g. with
vitrectomy), clear corneal sutureless incision, temporal
incision, wound leak on the first day, delaying postoperative
topical antibiotics until the day after surgery, topical
anaesthesia, adnexal disease and diabetes.
Acute postoperative endophthalmitis
Pathogens. About 90% of isolates are Gram-positive and 10%
Gram-negative. Staphylococcus epidermidis is the most
common, and with early treatment carries a reasonable
prognosis.
The source of infection:
• Flora of the eyelids and conjunctiva are the most frequent
source, includingcontamination via incisions in the early
postoperative stages.
• Other potential sources include contaminated solutions and
instruments, environmental air, and the surgeon and other
operating room personnel.
Acute postoperative endophthalmitis
Prophylaxis:
• Instillation of 5% povidone-iodine into the conjunctival fornices
and leaving this undisturbed for at least 3 minutes prior to
surgery.
• Scrupulous preparation of the surgical site, with re-draping if
eyelash coverage is inadequate.
• Treatment of pre-existing infections such as blepharitis,
conjunctivitis, chronic dacryocystitis and infection in the
contralateral eye or socket.
• Antibiotic prophylaxis:
Intracameral cefuroxime (1 mg in 0.1 ml) injected into the AC at
the end of surgery.
Postoperative subconjunctival injection can achieve bactericidal
levels in the AC for at least 1–2 hours.
Preoperative topical fluoroquinolone antibiotics are frequently
given in regimens from 1 hour to 3 days before surgery.
Clinical features:
• Symptoms. Pain, redness and visual loss.
• Signs vary according to severity.
○ Eyelid swelling, chemosis, conjunctival injection and
discharge.
○ A relative afferent pupillary defect is common.
○ Corneal haze.
○ Fibrinous exudate and hypopyon.
○ Vitritis with an impaired view of the fundus.
○ Severe vitreous inflammation and debris with loss of the
red reflex.
Acute postoperative endophthalmitis
Differential diagnosis:
• Retained lens material in the AC or vitreous may
precipitate a severe uveitis, corneal oedema and raised IOP.
• Vitreous haemorrhage.
• Postoperative uveitis. If signs of inflammation are mild a trial of
topical steroid therapy and early review (6–24 hours) is
appropriate. If there is no substantial improvement, management
should be that of endophthalmitis.
• Toxic reaction.
• Complicated or prolonged surgery may result in corneal
oedema and uveitis.
Treatment:
• Intravitreal antibiotics: Antibiotics commonly used in combination are
ceftazidime, which will kill most Gram-negative organisms (including
Pseudomonas aeruginosa) and vancomycin to address Gram-positive
cocci (including methicillin-resistant Staphylococcus aureus).
First choice: Vancomycin 1 mg in 0.1 ml + ceftazidime 2.25 mg in 0.1
ml.
Second choice: Vancomycin 1 mg in 0.1 ml + Amikacin 0.4 mg in 0.1
ml.
Third choice: Vancomycin 1 mg in 0.1 ml + gentamycin 0.2 mg in 0.1
ml.
Note: Gentamycin is 4 times more retinotoxic (causes macular infarction)
than amikacin. Preferably the aminoglycosides should be avoided.
• Subconjunctival injections of antibiotics should be given daily for
5-7 days to maintain therapeutic intraocular concentration :
First choice : Vancomycin 25 mg in 0.5 ml plus Ceftazidime 100 mg
in 0.5 ml.
Second choice : Vancomycin 25 mg in 0.5 ml plus Cefuroxime 125
mg in 0.5 ml
• Topical concentrated antibiotics should be started immediately
and used frequently (every 30 minute to 1 hourly). To begin with a
combination of two drugs should be preferred.
o Vancomycin (50 mg/ml) or cefazoline (50mg/ml) + Amikacin (20
mg/ml) or tobramycin (15 mg%).
• Oral antibiotics. Fluoroquinolones penetrate the eye well
and moxifloxacin 400 mg daily for 10 days is recommended;
clarithromycin 500 mg twice daily may be helpful for culture-negative
infections.
• Steroid therapy:
Topical dexamethasone (0.1%) or predacetate (1%) used frequently.
Subconjunctival injection of dexamethasone 4mg (1ml) OD for 5-7
days.
Intravitreal injection of dexamethasone 0.4 mg (0.1ml).
Systemic steroids: Oral corticosteroids should preferably be started
after 24 hours of intensive antibiotic therapy. A daily therapy regime
with 60 mg prednisolone to be followed by 50, 40, 30, 20 and 10 mg
for 2 days each may be adopted.
• Supportive therapy
1. Cycloplegics. Preferably 1% atropine or alternatively 2%
homatropine eyedrops should be instilled TDS or QID.
2. Antiglaucoma drugs.In patients with raised intraocular
pressure drugs such a oral acetazolamide (250 mg TDS) and
timolol (0.5%BD) may be prescribed.
Vitrectomy operation should be performed if the patient does not
improve with the above intensive therapy for 48 to 72 hours or
when the patient presents with severe infection with visual acuity
reduced to light perception.
• Vitrectomy helps in removal of infecting organisms, toxins and
enzymes present in the infected vitreous mass.
Delayed-onset postoperative endophthalmitis
Pathogenesis:
• Delayed-onset endophthalmitis following cataract surgery
develops when an organism of low virulence such as P.
acnes, becomes trapped within the capsular bag
(saccular endophthalmitis).
• Organisms can become sequestered within
macrophages, protected from eradication but with
continued expression of bacterial antigen.
• Onset ranges from 4 weeks to years (mean 9 months)
postoperatively and typically follows uneventful cataract
surgery.
• It may rarely be precipitated by laser capsulotomy release
of the organism.
Delayed-onset postoperative endophthalmitis
• Diagnosis
• Symptoms. Painless mild progressive visual deterioration is
typical; floaters may be present.
• Signs
○ Low-grade anterior uveitis, sometimes with medium large
keratic precipitates; a degree of vitritis is common.
○ The inflammation initially responds well to topical steroids, but
recurs when treatment is stopped and may eventually become
steroid-resistant.
○ An enlarging capsular plaque composed of organisms
sequestrated in residual cortex within the peripheral capsular
bag is common; gonioscopy under mydriasis may identify an
equatorial plaque.
Delayed-onset postoperative endophthalmitis
• Initial management. Later-generation fluoroquinolones,
such as moxifloxacin, penetrate the eye well, and are
concentrated within macrophages. An empirical 10–14-day
course of moxifloxacin (alternatives include clarithromycin)
may be worthwhile prior to more invasive options.
• Investigation. Sampling of aqueous and vitreous should be
considered if oral antibiotics are ineffective.
• Anaerobic culture should be requested if P. acnes infection is
suspected, and isolates may take 10–14 days to grow. The
detection rate can be greatly improved with the use of PCR,
which should also screen for the common causes of viral
anterior uveitis.
• Treatment if persistent
○ Intravitreal antibiotics alone are usually unsuccessful in
resolving the infection.
○ Removal of the capsular bag, residual cortex and IOL,
requiring pars plana vitrectomy. Secondary IOL
implantation may be considered at a later date.
• Intravitreal antibiotics are combined: vancomycin (1–2 mg
in 0.1 ml) is the antibiotic of choice and can also be
irrigated into any capsular remnant.
• P. acnes is also sensitive to methicillin, cefazolin and
clindamycin.
Toxic Anterior Segment Syndrome(TASS)
• Develop in response to retained lens, toxic
intraocular reaction, mechanical irritation,
exacerbation of pre-existing uveitis.
• Most common clinical symptom is
significantly blurred vision.
• Corneal Edema is most common clinical
finding:
-Limbus to limbus
-Indicative of widespread
endothelial damage
Marked anterior segment inflammation
• Hypopyon
• Fibrin from surface of iris onto surface to IOL, to wound
and side ports .
• Can create significant iris damage
-Permanently dilate
-Transillumination
-Damage to TM leading to secondary glaucoma
Treatment:
• Immediate high dose topical corticosteroid.
• IOP monitoring Usually low at start but can rise rapidly.
• Specular Microscopy to Monitor for permanent endothelial
damage.
Pre and post operative management of cataract
Delayed visual impairement
By 6 weeks, intraocular inflammation and minor corneal edema
should be resolved, IOP should be normal, and the macula should be
distinct without edema. Delayed visual impairement occurs due to;
• Epithelial Irregularity
• Persistent Corneal Edema
• Irregular or high corneal astigmatism
• IOL subluxation, tilt, or capture
• Anterior Segment Inflammation
• Posterior Segment Inflammation
• Hypotony
• Posterior Vitreous Detachment
• Macular Edema
• Photoretinal Toxicity
• Under Diagnosed pre-existing conditions
• Incorrect IOL power
• Posterior capsular opacification (PCO)
Photoretinal toxicity
• Photoretinal injury from operating microscope.
• Patients complain of scotoma.
• If injury near fovea, VA will be compromised.
• Appears as subtle pale oval lesion, commonly located
inferior to fovea.
• Healing results in mottling of RPE – Prognosis is excellent
if outside fovea.
Rebound Inflammation
• Occurs in 5% of patients.
• More common in dark iridies.
• More common in patients with DM.
• Occurs when steroids are discontinued to early or tapered
too quickly.
• Always look for retained lens material with gonioscopy.
Treatment:
• Resume topical steroids.
• Consider cycloplegia.
• Consider tap and injection to rule out chronic
endophthalmititis.
Posterior capsular opacification
• Visually significant posterior lens capsular opacification
(PCO), also known as ‘after cataract’, is the most common
late complication of uncomplicated cataract surgery,
historically occurring eventually in up to 50% of patients.
• It is caused by the proliferation of lens epithelial cells that
have remained within the capsular bag following cataract
extraction.
• The incidence of PCO is reduced when the capsulorhexis
opening is in complete contact with the anterior surface of
the IOL.
Treatment
• Treatment involves the creation of an opening in the
posteriorcapsule, termed a capsulotomy, with the Nd:YAG
laser.
Indications:
• The presence of significant visual symptoms is the main
indication; less commonly, capsulotomy is
performed to improve an inadequate fundus view impairing
assessment and treatment of posterior segment pathology.
Complications
• Include pitting of the IOL , intraocular pressure elevation
(usually mild and transient) and extremely rarely CMO,
retinal detachment and IOL subluxation or dislocation.
Anterior capsular fibrosis and contraction
• Since the advent of continuous
curvilinear capsulorhexis, contraction
of the anterior capsular opening
(capsulophimosis) has become a
more common complication.
• It typically progresses over months,
and if severe, YAG laser anterior
capsulotomy may be required.
• Risk factors include pseudoexfoliation,
retinitis pigmentosa and a small
capsulorhexis.
Cystoid macular oedema
• Symptomatic CMO is relatively uncommon following
uncomplicated phacoemulsification and in most cases is
mild and transient.
• It occurs more often after complicated surgery and has a
peak incidence at 6–10 weeks, although the interval to
onset may be much longer.
Risk factors: Include epiretinal membrane, a history of
CMO in the other eye, operative complications such as
posterior capsular rupture, particularly with vitreous
incarceration into the incision site, anterior chamber IOL,
secondary IOL implantation, prior topical prostaglandin
treatment, diabetes and uveitis.
Cystoid macular oedema contd…
Treatment:
One or a combination of the following modalities may be used:
Anterior vitrectomy or YAG laser vitrotomy to vitreous incarceration
in the anterior segment if present.
Topical NSAIDs (e.g. ketorolac four times daily, bromfenac twice
daily, nepafenac) may be beneficial even in long-standing cases;
treatment for several months may be necessary.
 Steroids. Topically, by periocular or intravitreal
(triamcinolone acetate 0.05–0.1 ml of 40 mg/ml) injection.
Carbonic anhydrase inhibitors given systemically or topically.
Intravitreal anti-VEGF agents.
Pars plana vitrectomy may be useful for CMO refractory to medical
therapy, even in eyes without apparent vitreous disturbance.
Dysphotopsia
• Up to 1 in 10 patients complain of annoying visual
phenomena following uncomplicated cataract surgery.
• Symptoms. A dark shadow in the temporal periphery
(negative dysphotopsia – often the most troublesome),
scintillations, haloes, peripheral or central flaring or flashes
(positive dysphotopsia) and possibly monocular diplopia.
Treatment:
• Encouraging the patient that the symptoms usually improve
over time, both because of anatomical changes
(e.g. capsulorhexis edge thickening) and because the
brain is able to ignore unwanted images.
• IOL exchange (round-edged) may be considered.
Corneal decompensation
• Corneal oedema is very common postoperatively but is
usually mild and transient.
• Eyes with pre-existing corneal endothelial pathology,
particularly low cell counts, are at increased risk.
• Causes of more marked oedema include dense nuclei
requiring high phacoemulsification energy, complicated or
prolonged surgery, pseudoexfoliation, intraoperative
endothelial trauma and elevated postoperative IOP.
• Use of a dispersive viscoelastic, and possibly a scleral
tunnel incision, may help to protect the corneal endothelium
during surgery in higher-risk eyes.
Ptosis
• Mild ptosis, probably secondary to a variety of
mechanisms, is common after cataract surgery, but
usually improves; observation for at least a year
postoperatively is recommended in most cases.
Malposition of the IOL
• Although uncommon, malposition
may be associated with both optical
and structural problems.
• Significant malposition may require
repositioning or replacement,
occasionally with an iris or sclerally
fixated lens.
Retinal detachment
• Rhegmatogenous retinal detachment (RRD) is uncommon.
• Preoperative risk factors include lattice degeneration and
retinal breaks – both are generally treated prophylactically
prior to cataract surgery (and probably laser capsulotomy)-
and high myopia.
• The key intraoperative risk is vitreous loss.
• Pars planavitrectomy is usually the surgical modality
employed for pseudophakic RRD.
Thank you
1 de 72

Recomendados

Eye bankingEye banking
Eye bankingBinny Tyagi
62.2K vistas71 diapositivas
Eye bankEye bank
Eye bankOPTOM FASLU MUHAMMED
90.4K vistas59 diapositivas
Retinal detachment newRetinal detachment new
Retinal detachment newyogesh tiwari
97.6K vistas47 diapositivas
Management of CataractManagement of Cataract
Management of CataractKevin Ambadan
49.7K vistas36 diapositivas

Más contenido relacionado

La actualidad más candente

6 cataract6 cataract
6 cataractJAYDIP NINAMA
32K vistas39 diapositivas
Enucleation and eviscerationEnucleation and evisceration
Enucleation and eviscerationKushal kumar
16K vistas19 diapositivas
Refractive errorRefractive error
Refractive errorOM VERMA
134.5K vistas23 diapositivas
EYE DONATIONEYE DONATION
EYE DONATIONMokshada Nayak
44.2K vistas39 diapositivas
Corneal transplantationCorneal transplantation
Corneal transplantationRasika Walpitagamage
6.1K vistas64 diapositivas
Cataract Cataract
Cataract SUDESHNA BANERJEE
18.2K vistas27 diapositivas

La actualidad más candente(20)

6 cataract6 cataract
6 cataract
JAYDIP NINAMA32K vistas
Enucleation and eviscerationEnucleation and evisceration
Enucleation and evisceration
Kushal kumar16K vistas
Refractive errorRefractive error
Refractive error
OM VERMA134.5K vistas
EYE DONATIONEYE DONATION
EYE DONATION
Mokshada Nayak44.2K vistas
Corneal transplantationCorneal transplantation
Corneal transplantation
Rasika Walpitagamage6.1K vistas
Cataract Cataract
Cataract
SUDESHNA BANERJEE18.2K vistas
Ocular emergency-Ocular emergency-
Ocular emergency-
OM VERMA6.8K vistas
Surgery GlaucomaSurgery Glaucoma
Surgery Glaucoma
guest62449727.7K vistas
Management of cataractManagement of cataract
Management of cataract
Rawalpindi Medical College26.9K vistas
Pre operative analysis for cataract surgeryPre operative analysis for cataract surgery
Pre operative analysis for cataract surgery
Dr Rakhi Dcruz12.7K vistas
KeratoplastyKeratoplasty
Keratoplasty
Karan Bhatia30.3K vistas
Tonometry pptTonometry ppt
Tonometry ppt
C L GUPTA EYE INSTITUTE MORADABAD UTTER PRADESH 50.3K vistas
Laser trabeculoplastyLaser trabeculoplasty
Laser trabeculoplasty
Sankhadeep Roy5.5K vistas
Retinal detachmentRetinal detachment
Retinal detachment
Manikandan T60.4K vistas
11. ocular emergencies and their prevention11. ocular emergencies and their prevention
11. ocular emergencies and their prevention
SOUMYA SUBRAMANI23.6K vistas
Fundoscopy ppt 2012Fundoscopy ppt 2012
Fundoscopy ppt 2012
Reina Ramesh19.7K vistas
Catract Catract
Catract
OM VERMA62.1K vistas
GlaucomaGlaucoma
Glaucoma
ANILKUMAR BR57.5K vistas
Lacrimal sac syringingLacrimal sac syringing
Lacrimal sac syringing
Chittranjan Kumar25.1K vistas

Similar a Pre and post operative management of cataract

CATARACT.pptxCATARACT.pptx
CATARACT.pptxManishaKammarMistry
8 vistas26 diapositivas
Cataract surgeryCataract surgery
Cataract surgeryvisioneyecare
316 vistas4 diapositivas
CataractCataract
CataractPallavi Lokhande
1.8K vistas50 diapositivas

Similar a Pre and post operative management of cataract(20)

CATARACT.pptxCATARACT.pptx
CATARACT.pptx
ManishaKammarMistry8 vistas
Cataract surgeryCataract surgery
Cataract surgery
visioneyecare316 vistas
Preoperative evaluation for LASIK & PRKPreoperative evaluation for LASIK & PRK
Preoperative evaluation for LASIK & PRK
Basrah Teaching Hspital12.2K vistas
CataractCataract
Cataract
Pallavi Lokhande1.8K vistas
Cataract surgery for  keratoconus patientsCataract surgery for  keratoconus patients
Cataract surgery for keratoconus patients
Haitham Al Mahrouqi199 vistas
EDOF IOLEDOF IOL
EDOF IOL
Jawaharlal Nehru Medical College, Wardha.1.3K vistas
Alcon hayderabad premium slide showAlcon hayderabad premium slide show
Alcon hayderabad premium slide show
Central Park Medical College and WAPDA Teaching Hospital Lahore1.6K vistas
BIOMETERYBIOMETERY
BIOMETERY
PGOPTHALEDUCATION50 vistas
Pre op corneal laserPre op corneal laser
Pre op corneal laser
Sumegha Tomar110 vistas
Penetrating Keratoplasty Penetrating Keratoplasty
Penetrating Keratoplasty
Jigyasa Sahu751 vistas
AphakiaAphakia
Aphakia
ankita mahapatra8.6K vistas
Management of cataract Management of cataract
Management of cataract
Mohammed Shafeeqe1.2K vistas
approach to padiatric cataract 2.pptxapproach to padiatric cataract 2.pptx
approach to padiatric cataract 2.pptx
Harshika Malik13 vistas
Cataract and its managementCataract and its management
Cataract and its management
Shweta Sharma3.4K vistas
Eye Disorders.pptxEye Disorders.pptx
Eye Disorders.pptx
mousaderhem113 vistas

Pre and post operative management of cataract

  • 1. PRE AND POST OPERATIVE MANAGEMENT OF CATARACT Presenter: Kalpana Bhandari M.Optom (1st sem) TIO
  • 2. Preoperative considerations Indications for surgery • Visual improvement: Operation is indicated when the opacity develops to a degree sufficient to cause difficulty in performing essential daily activities. • Medical indications are those in which a cataract is adversely affecting the health of the eye. Eg: -Lens induced glaucoma -Phacoanaphylactic endophthalmitis -Retinal diseases like diabetic retinopathy or retinal detachment. • Cosmetic indication -to obtain black pupil.
  • 6. Preoperative ocular assessment • Visual acuity assessment. • Iop measurment - raised IOP needs priority management. • Cover test: A heterotropia may indicate amblyopia, which carries a guarded visual prognosis, or the possibility of diplopia if the vision is improved. A squint, usually a divergence, may develop in an eye with poor vision due to cataract, and lens surgery alone may straighten the eye.
  • 7. • Pupillary responses. Because cataract never produces an afferent pupillary defect, its presence implies substantial additional pathology. • Ocular adnexa. Dacryocystitis, blepharitis, chronic conjunctivitis, lagophthalmos, ectropion, entropion and tear film abnormalities may predispose to endophthalmitis and in most cases optimization should be achieved prior to intraocular surgery.
  • 8. • Cornea: Eyes with decreased endothelial cell counts (e.g.substantial cornea guttata) have increased vulnerability to postoperative decompensation secondary to operative trauma. • Anterior chamber: A shallow anterior chamber can render cataract surgery difficult. Recognition of a poorly dilating pupil allows intensive preoperative mydriatic drops, planned mechanical dilatation prior to capsulorhexis and/or intracameral injection of mydriatic. .
  • 9. • Lens: Nuclear cataracts tend to be harder and may require more power for phacoemulsification, while cortical and subcapsular opacities tend to be softer. • Black nuclear opacities are extremely dense and extracapsular cataract extraction rather than phacoemulsification may be the superior option. • Pseudoexfoliation indicates a likelihood of weak zonules (phakodonesis – lens wobble – may be present), a fragile capsule and poor mydriasis.
  • 10. • Fundus examination. Pathology such as age-related macular degeneration may affect the visual outcome. Ultrasonography may be required, principally to exclude retinal detachment and staphyloma, in eyes with very dense opacity that precludes fundus examination. • Retinal function tests: i. Light Perception ii. Test for Marcus Gunn pupillary response iii. Projection of rays - Test for function of peripheral retina iv. Two light discrimination test - Macular function v. Maddox rod test vi. Colour perception-macular function and optic nerve vii. Entoptic visualisation-retinal function viii. Laser interferometry ix. Objective tests for evaluating retina- ultrasonic evaluation, ERG, EOG, VER and indirect ophthalmoscopy
  • 11. • Sclera. If a prominent explant/encircling band has been placed during prior retinal detachment surgery, the eye is particularly large or the sclera thin (e.g. high myopia), peri- and retrobulbar local anaesthesia may be avoided and special care taken with sub-Tenon local anaesthetic infiltration. • Current refractive status: It is critical to obtain details of the patient’s preoperative refractive error in order to guide intraocular lens (IOL) implant selection. • The keratometry readings (obtained during biometry) should be noted in relation to the refraction, particularly if it is planned to address astigmatism by means of targeted wound placement, a toric IOL or a specific adjunctive procedure.
  • 12. Informed consent • It is essential that the patient has arrived at a fully informed decision to proceed with cataract surgery. As well as discussing the benefits, risks should be conveyed at a level appropriate to each patient’s level of understanding, with an explanation of the more common and severe potential problems.
  • 13. Biometry • Biometry facilitates calculation of the lens power ; in its basic form this involves the measurement of two ocular parameters, keratometry and axial (anteroposterior) length. • Keratometry involves determination of the curvature of the anterior corneal surface (steepest and flattest meridians), expressed in dioptres or in millimetres of radius of curvature. This is commonly carried out with the interferometry apparatus used to determine axial length but if this is unavailable or unsuitable manual keratometry (e.g. Javal–Schiøtz keratometer) or corneal topography can be performed.
  • 14. • Optical coherence biometry is a noncontact method of axial length measurement that utilizes two coaxial partially coherent low-energy laser beams to produce an interference pattern (partial coherence interferometry). • Modern biometry devices also perform keratometry, anterior chamber depth and corneal white-to white measurement, and are able to calculate IOL power using a range of formulae. Measurements have high reproducibility and generally require less skill than ultrasonic biometry.
  • 15. • A-scan ultrasonography is a generally slightly less accurate method of determining the axial dimension and can be acquired either by direct contact or more accurately but with greater technical difficulty by using a water bath over the eye (immersion ultrasonography). The sound beam must be aligned with the visual axis for maximal precision; each reflecting surface is represented by a spike on an oscilloscope display monitor.
  • 16. IOL power calculation formulae: • Numerous formulae have been developed that utilize keratometry and axial length to calculate the IOL power required to achieve a given refractive outcome. • Some formulae incorporate additional parameters such as anterior chamber depth and lens thickness to try to optimize accuracy. • The SRK-T, Haigis, Hoffer Q and Holladay 1 and 2 are commonly used. • Specific formulae may be superior for very short (possibly the Hoffer Q) or long eyes.
  • 17. Previous refractive surgery: • Any form of corneal refractive surgery is likely to make a significant difference to the IOL power required, and standard IOL calculations are unsuitable. • Several different methods have been described to address this situation. • Most involve the calculation of the post-refractive procedure ‘true’ corneal power using a special process (refractive history method, contact lens method) and insertion of this into a standard (e.g. Hoffer Q) or specific (e.g. Masket) formula, but the Haigis-L regression formula uses statistical data to facilitate calculation on post- refractive surgery eyes using only standard inputs. It may prudent to utilize more than one method of IOL calculation.
  • 18. • Contact lenses. If the patient wears soft contact lenses, these should not be worn for up to a week prior to biometry to allow corneal stabilization; hard/gas permeable lenses may need to be left out for 3 weeks. • Personalized A-constant. If a consistent postoperative refractive deviation is found in most of an individual surgeon’s cases, it is assumed that some aspects of personal surgical (or possibly biometric) technique consistently and similarly influence outcome, and a personalized A-constant can be programmed into biometry apparatus to take this into account.
  • 19. Corneal pachymetry • Ultrasonic pachymeters can accurately & reliably measure endothelial cell function. • If thickness > 600 µm maybe consistent with corneal edema & endothelium dysfunction that increase the likelihood postoperative clinical corneal edema. Specular microscopy: (endothelium cells) • A normal cell count > 2400 cells/mm2 • If a cell count fewer than 1000 cells/mm2 is risk of postoperative corneal decompensation.
  • 20. Pre operative management in pediatric age groups Pediatric IOL : size, design and power. 1. Size of IOL above the age of 2 years may be standard 12 to 12.75mm diameter for the bag implantation. 2. Design of IOL recommended is one- piece PMMA with modified C- shaped haptics (preferably heparin coated) Power of IOL in children between 2-8 years of age 10% undercorrection from the calculated biometric power is recommended to counter the myopic shift. 3. Below 2 years on undercorrection by 20% is recommended.
  • 21. Pre-op medications and preperations 1. Topical antibiotics - Tobramycin and Gentamicin QID for 3 days before surgery. 2. Preparation of the eye to be operated. 3. Consent. 4. Scrub bath and care of hair 5. Drugs to lower IOP- acetazolamide 500mg stat 2 hours before surgery and glycerol 60ml mixed with equal amount of water or lemon juice 1 hour before Surgery or, IV mannitol 1gm/kg body weight half an hour before Surgery. 6. Drugs to sustain dilated pupil - antiprostaglandin eye drops(indomethacin).
  • 22. Anaesthesia • The majority of cataract surgery is performed under local anaesthesia (LA), sometimes in conjunction with intravenous or oral sedation. Types of local anaesthetics for cataract surgery are: a)Subtenon’s b)Peribulbar c)Topical • General anaesthesia is required in some circumstances, such as children and many young adults, very anxious patients, some patients with learning difficulties, epilepsy, dementia and those with a head tremor.
  • 23. • Sub-Tenon block involves insertion of a blunt-tipped cannula through an incision in the conjunctiva and Tenon capsule 5 mm from the limbus inferonasally and passing it around the curve of the globe through the sub-Tenon space. • The anaesthetic is injected beyond the equator of the globe. • Although anaesthesia is good and complications minimal, akinesia is variable. Chemosis and subconjunctival haemorrhage are common but penetration of the globe is extremely rare.
  • 24. • Peribulbar block is given through the skin or conjunctiva with a 1-inch (25-mm) needle. • It generallyprovides effective anaesthesia and akinesia. • Penetration of the globe is a rare but severe complication, and for this reason peribulbar is avoided, or approached with great caution, in longer eyes (which also tend to have a larger equatorial diameter).
  • 25. • Topical anaesthesia involves drops or gel (proxymetacaine 0.5%, tetracaine 1% drops, lidocaine 2% gel), which can be augmented with intracameral preservative-free lidocaine 0.2%–1%, combined viscoelastic/lidocaine preparations are also commercially available. • Although analgesia is generally adequate, it tends to be less effective than peribulbar or sub-Tenon blocks.
  • 26. Post- operative management • Patient is asked to lie quietly upon the back for 3/ 4 hours. • For mild to moderate post-operative pain injection diclofenac sodium may be given. • Next morning bandage is removed & inspected for post- op complication. • Antibiotic-steroid eye drops are used two hourly 1 week, QID 4 week then tapering, TID, BD and OD for each week. • Tear supplements are given for at least one month or more depending upon the patients complain to prevent post cataract surgery dry eyes.
  • 27. Post -op examination • Cornea: wounds sealed (Seidel test negative), clarity • AC: formed, activity • Pupil: round, regular and reacting • PCIOL: centred and in the bag • Consider : IOP checking • Give clear instructions re postoperative drops • Use of clear shield • What to expect (discomfort, watering) • What to worry about (increasing pain/ redness, worsening vision) • Where to get help (including telephone number)
  • 28. Final review (2-4wks later) Examination • VA: unaided/aided • Cornea: wounds sealed (Seidel test negative), clarity • AC: depth and clarity • Pupil: round, regular and reacting • IOP • Fundus : no cystoid macular oedema, flat retina • If good result then either list for second eye (in bilateral cases) or discharge for refraction as appropriate.
  • 29. • If disappointing VA (unaided) perform refraction to look for ‘refractive error’ and dilated fundoscopy to check for the subtle CMO (specially if VA (pinhole) < VA (unaided)) and if in doubt, consider OCT.
  • 30. Refractive surprises • In patients where the refractive outcome is harder to predict (high ametropia, previous corneal refractive surgery), review patients early (1 week) with refraction to permit the option of an early IOL exchange if a large discrepancy noticed. • After 6-8 weeks of operation corneoscleral sutures are removed (when applied). • Final spectacles are prescribed after about 8 weeks of operation.
  • 31. Management of refractive error in adults • Refractive error is assessed at 8th week of cataract surgery. • Refractive correction is prescribed only if the error persist even after three months of cataract surgery.
  • 32. Postoperative refraction • Emmetropia is typically the desired postoperative refraction, though usually spectacles will be needed for near vision since a conventional IOL cannot accommodate. • Many surgeons aim for a small degree of myopia (about - 0.25 D) to offset possible errors in biometry; postoperative hypermetropia, which necessitates correction for clear vision at all distances, is typically less well tolerated than myopia.
  • 33. Postoperative refraction • Contralateral eye. Postoperative refractive planning must take account of the contralateral eye. If this has a significant refractive error but is unlikely to require cataract surgery within a few years, the postoperative target for the operated eye might be set for within less than 2.0 D of its fellow, to avoid problems with binocular fusion. • In some cases, such as when there is an early lens opacity in the fellow eye or when ametropia is extreme, the patient can be offered lens surgery to the other eye to facilitate targeting both at emmetropia.
  • 34. • ‘Monovision’ is a concept in which the (usually) nondominant eye is left with between 1 and 2 dioptres of myopia to allow reading, whilst emmetropia is targeted in the dominant eye. This is attractive to some patients, generally those who have previously been using contact lenses or spectacles to achieve monovision. • Multifocal lens options use a variety of optical means to attempt to achieve satisfactory near, distance and intermediate vision. Many patients are very satisfied with the results but a significant minority are unhappy, complaining of phenomena such as glare.
  • 35. • In evaluating reduced post-operative acuity, one should know both the timing and severity of the visual complaint in order to determine an etiology. 1) Early Visual Impairment • Severe (20/200 or worse) • Moderate (20/100 or better) 2) Delayed Visual Recovery
  • 36. Early visual impairement • Epithelial Irregularity • Irregular or Marked Corneal Astigmatism • Corneal Edema • Dislocated / subluxated IOL • Operative / Post-operative bleeding • Retained Cortex or Nuclear fragments • Hypotony • Photoretinal Toxicity • Extraocular Muscle paresis These complications predominantly affect optical clarity, macular function or refractive state.
  • 37. Early visual impairement • Vascular Occlusion • Retinal Detachment • Infectious Endophthalmitis • Toxic Anterior Segment Syndrome • Delayed Suprachoroidal Hemorrhage • Optic Nerve Damage • Globe Rupture or Perforation • Intraocular aminoglycoside toxicity These injuries often occur through vascular insult, direct mechanical injury, or retinal toxicity.
  • 38. Operative complications Rupture of the posterior lens capsule: • Capsular rupture may be accompanied by vitreous loss, posterior migration of lens material and, rarely, expulsive haemorrhage. • Sequelae to vitreous loss, particularly if inappropriately managed, include CMO, retinal detachment, endophthalmitis, updrawn pupil, uveitis, vitreous touch, vitreous wick syndrome, glaucoma and posterior dislocation of the IOL. Posterior loss of lens fragments: • Dislocation of fragments of lens material into the vitreous cavity after zonular dehiscence or posterior capsule rupture is rare but potentially serious as it may result in glaucoma, chronic uveitis, retinal detachment or chronic CMO.
  • 39. Posterior dislocation of IOL • Dislocation of an IOL into the vitreous cavity is rare; loss can occur via a posterior capsular dehiscence, or in an eye with fragile zonular attachments (e.g. pseudoexfoliation) the entire capsular bag may dislocate. • Complications include vitreous haemorrhage, retinal detachment, uveitis and chronic CMO. • Treatment involves pars plana vitrectomy with IOL removal, repositioning or exchange depending on the extent of capsular support.
  • 40. Suprachoroidal haemorrhage • A suprachoroidal haemorrhage involves a bleed into the suprachoroidal space from a ruptured posterior ciliary artery. If sufficiently severe it may result in extrusion of intraocular contents (expulsive haemorrhage). • Contributing factors include advanced age, glaucoma, increased axial length, systemic cardiovascular disease, vitreous loss and conversion from phacoemulsification to ECCE.
  • 41. Suprachoroidal haemorrhage contd… • Immediate treatment involves filling of the AC with a cohesive viscoelastic and sutured closure of the incision. • Tamponade the bleeding vessel; balloon (e.g. Honan) compression to a pressure of 50 mmHg, for up to 30 minutes. • It may be helpful to keep the patient in a sitting rather than lying position. • Postoperatively, topical and systemic steroids should be used aggressively to reduce intraocular inflammation, with standard postoperative antibiotic treatment and IOP management as indicated. • Subsequent treatment, if spontaneous absorption fails to occur, consists of drainage of large haemorrhages. This can be performed 7–14 days later. • Pars plana vitrectomy may be considered when the retina appears adherent or detached,
  • 42. Vascular occlusion • CRVO ,CRAO ,Choroidal Infarction may occur in surgery if complicated by : • retrobulbar hemorrhage • nerve sheath injection • elevated IOP
  • 43. Acute postoperative endophthalmitis Pathogenesis: • Acute intraocular infection is invariably a severe event. • Toxins produced by infecting bacteria and the host inflammatory responses cause rapid and irreversible photoreceptor damage. Risk factors: • Operative complications such as posterior capsule rupture, prolonged procedure time, combined procedure (e.g. with vitrectomy), clear corneal sutureless incision, temporal incision, wound leak on the first day, delaying postoperative topical antibiotics until the day after surgery, topical anaesthesia, adnexal disease and diabetes.
  • 44. Acute postoperative endophthalmitis Pathogens. About 90% of isolates are Gram-positive and 10% Gram-negative. Staphylococcus epidermidis is the most common, and with early treatment carries a reasonable prognosis. The source of infection: • Flora of the eyelids and conjunctiva are the most frequent source, includingcontamination via incisions in the early postoperative stages. • Other potential sources include contaminated solutions and instruments, environmental air, and the surgeon and other operating room personnel.
  • 45. Acute postoperative endophthalmitis Prophylaxis: • Instillation of 5% povidone-iodine into the conjunctival fornices and leaving this undisturbed for at least 3 minutes prior to surgery. • Scrupulous preparation of the surgical site, with re-draping if eyelash coverage is inadequate. • Treatment of pre-existing infections such as blepharitis, conjunctivitis, chronic dacryocystitis and infection in the contralateral eye or socket. • Antibiotic prophylaxis: Intracameral cefuroxime (1 mg in 0.1 ml) injected into the AC at the end of surgery. Postoperative subconjunctival injection can achieve bactericidal levels in the AC for at least 1–2 hours. Preoperative topical fluoroquinolone antibiotics are frequently given in regimens from 1 hour to 3 days before surgery.
  • 46. Clinical features: • Symptoms. Pain, redness and visual loss. • Signs vary according to severity. ○ Eyelid swelling, chemosis, conjunctival injection and discharge. ○ A relative afferent pupillary defect is common. ○ Corneal haze. ○ Fibrinous exudate and hypopyon. ○ Vitritis with an impaired view of the fundus. ○ Severe vitreous inflammation and debris with loss of the red reflex.
  • 47. Acute postoperative endophthalmitis Differential diagnosis: • Retained lens material in the AC or vitreous may precipitate a severe uveitis, corneal oedema and raised IOP. • Vitreous haemorrhage. • Postoperative uveitis. If signs of inflammation are mild a trial of topical steroid therapy and early review (6–24 hours) is appropriate. If there is no substantial improvement, management should be that of endophthalmitis. • Toxic reaction. • Complicated or prolonged surgery may result in corneal oedema and uveitis.
  • 48. Treatment: • Intravitreal antibiotics: Antibiotics commonly used in combination are ceftazidime, which will kill most Gram-negative organisms (including Pseudomonas aeruginosa) and vancomycin to address Gram-positive cocci (including methicillin-resistant Staphylococcus aureus). First choice: Vancomycin 1 mg in 0.1 ml + ceftazidime 2.25 mg in 0.1 ml. Second choice: Vancomycin 1 mg in 0.1 ml + Amikacin 0.4 mg in 0.1 ml. Third choice: Vancomycin 1 mg in 0.1 ml + gentamycin 0.2 mg in 0.1 ml. Note: Gentamycin is 4 times more retinotoxic (causes macular infarction) than amikacin. Preferably the aminoglycosides should be avoided.
  • 49. • Subconjunctival injections of antibiotics should be given daily for 5-7 days to maintain therapeutic intraocular concentration : First choice : Vancomycin 25 mg in 0.5 ml plus Ceftazidime 100 mg in 0.5 ml. Second choice : Vancomycin 25 mg in 0.5 ml plus Cefuroxime 125 mg in 0.5 ml • Topical concentrated antibiotics should be started immediately and used frequently (every 30 minute to 1 hourly). To begin with a combination of two drugs should be preferred. o Vancomycin (50 mg/ml) or cefazoline (50mg/ml) + Amikacin (20 mg/ml) or tobramycin (15 mg%).
  • 50. • Oral antibiotics. Fluoroquinolones penetrate the eye well and moxifloxacin 400 mg daily for 10 days is recommended; clarithromycin 500 mg twice daily may be helpful for culture-negative infections. • Steroid therapy: Topical dexamethasone (0.1%) or predacetate (1%) used frequently. Subconjunctival injection of dexamethasone 4mg (1ml) OD for 5-7 days. Intravitreal injection of dexamethasone 0.4 mg (0.1ml). Systemic steroids: Oral corticosteroids should preferably be started after 24 hours of intensive antibiotic therapy. A daily therapy regime with 60 mg prednisolone to be followed by 50, 40, 30, 20 and 10 mg for 2 days each may be adopted.
  • 51. • Supportive therapy 1. Cycloplegics. Preferably 1% atropine or alternatively 2% homatropine eyedrops should be instilled TDS or QID. 2. Antiglaucoma drugs.In patients with raised intraocular pressure drugs such a oral acetazolamide (250 mg TDS) and timolol (0.5%BD) may be prescribed. Vitrectomy operation should be performed if the patient does not improve with the above intensive therapy for 48 to 72 hours or when the patient presents with severe infection with visual acuity reduced to light perception. • Vitrectomy helps in removal of infecting organisms, toxins and enzymes present in the infected vitreous mass.
  • 52. Delayed-onset postoperative endophthalmitis Pathogenesis: • Delayed-onset endophthalmitis following cataract surgery develops when an organism of low virulence such as P. acnes, becomes trapped within the capsular bag (saccular endophthalmitis). • Organisms can become sequestered within macrophages, protected from eradication but with continued expression of bacterial antigen. • Onset ranges from 4 weeks to years (mean 9 months) postoperatively and typically follows uneventful cataract surgery. • It may rarely be precipitated by laser capsulotomy release of the organism.
  • 53. Delayed-onset postoperative endophthalmitis • Diagnosis • Symptoms. Painless mild progressive visual deterioration is typical; floaters may be present. • Signs ○ Low-grade anterior uveitis, sometimes with medium large keratic precipitates; a degree of vitritis is common. ○ The inflammation initially responds well to topical steroids, but recurs when treatment is stopped and may eventually become steroid-resistant. ○ An enlarging capsular plaque composed of organisms sequestrated in residual cortex within the peripheral capsular bag is common; gonioscopy under mydriasis may identify an equatorial plaque.
  • 54. Delayed-onset postoperative endophthalmitis • Initial management. Later-generation fluoroquinolones, such as moxifloxacin, penetrate the eye well, and are concentrated within macrophages. An empirical 10–14-day course of moxifloxacin (alternatives include clarithromycin) may be worthwhile prior to more invasive options. • Investigation. Sampling of aqueous and vitreous should be considered if oral antibiotics are ineffective. • Anaerobic culture should be requested if P. acnes infection is suspected, and isolates may take 10–14 days to grow. The detection rate can be greatly improved with the use of PCR, which should also screen for the common causes of viral anterior uveitis.
  • 55. • Treatment if persistent ○ Intravitreal antibiotics alone are usually unsuccessful in resolving the infection. ○ Removal of the capsular bag, residual cortex and IOL, requiring pars plana vitrectomy. Secondary IOL implantation may be considered at a later date. • Intravitreal antibiotics are combined: vancomycin (1–2 mg in 0.1 ml) is the antibiotic of choice and can also be irrigated into any capsular remnant. • P. acnes is also sensitive to methicillin, cefazolin and clindamycin.
  • 56. Toxic Anterior Segment Syndrome(TASS) • Develop in response to retained lens, toxic intraocular reaction, mechanical irritation, exacerbation of pre-existing uveitis. • Most common clinical symptom is significantly blurred vision. • Corneal Edema is most common clinical finding: -Limbus to limbus -Indicative of widespread endothelial damage
  • 57. Marked anterior segment inflammation • Hypopyon • Fibrin from surface of iris onto surface to IOL, to wound and side ports . • Can create significant iris damage -Permanently dilate -Transillumination -Damage to TM leading to secondary glaucoma Treatment: • Immediate high dose topical corticosteroid. • IOP monitoring Usually low at start but can rise rapidly. • Specular Microscopy to Monitor for permanent endothelial damage.
  • 59. Delayed visual impairement By 6 weeks, intraocular inflammation and minor corneal edema should be resolved, IOP should be normal, and the macula should be distinct without edema. Delayed visual impairement occurs due to; • Epithelial Irregularity • Persistent Corneal Edema • Irregular or high corneal astigmatism • IOL subluxation, tilt, or capture • Anterior Segment Inflammation • Posterior Segment Inflammation • Hypotony • Posterior Vitreous Detachment • Macular Edema • Photoretinal Toxicity • Under Diagnosed pre-existing conditions • Incorrect IOL power • Posterior capsular opacification (PCO)
  • 60. Photoretinal toxicity • Photoretinal injury from operating microscope. • Patients complain of scotoma. • If injury near fovea, VA will be compromised. • Appears as subtle pale oval lesion, commonly located inferior to fovea. • Healing results in mottling of RPE – Prognosis is excellent if outside fovea.
  • 61. Rebound Inflammation • Occurs in 5% of patients. • More common in dark iridies. • More common in patients with DM. • Occurs when steroids are discontinued to early or tapered too quickly. • Always look for retained lens material with gonioscopy. Treatment: • Resume topical steroids. • Consider cycloplegia. • Consider tap and injection to rule out chronic endophthalmititis.
  • 62. Posterior capsular opacification • Visually significant posterior lens capsular opacification (PCO), also known as ‘after cataract’, is the most common late complication of uncomplicated cataract surgery, historically occurring eventually in up to 50% of patients. • It is caused by the proliferation of lens epithelial cells that have remained within the capsular bag following cataract extraction. • The incidence of PCO is reduced when the capsulorhexis opening is in complete contact with the anterior surface of the IOL.
  • 63. Treatment • Treatment involves the creation of an opening in the posteriorcapsule, termed a capsulotomy, with the Nd:YAG laser. Indications: • The presence of significant visual symptoms is the main indication; less commonly, capsulotomy is performed to improve an inadequate fundus view impairing assessment and treatment of posterior segment pathology. Complications • Include pitting of the IOL , intraocular pressure elevation (usually mild and transient) and extremely rarely CMO, retinal detachment and IOL subluxation or dislocation.
  • 64. Anterior capsular fibrosis and contraction • Since the advent of continuous curvilinear capsulorhexis, contraction of the anterior capsular opening (capsulophimosis) has become a more common complication. • It typically progresses over months, and if severe, YAG laser anterior capsulotomy may be required. • Risk factors include pseudoexfoliation, retinitis pigmentosa and a small capsulorhexis.
  • 65. Cystoid macular oedema • Symptomatic CMO is relatively uncommon following uncomplicated phacoemulsification and in most cases is mild and transient. • It occurs more often after complicated surgery and has a peak incidence at 6–10 weeks, although the interval to onset may be much longer. Risk factors: Include epiretinal membrane, a history of CMO in the other eye, operative complications such as posterior capsular rupture, particularly with vitreous incarceration into the incision site, anterior chamber IOL, secondary IOL implantation, prior topical prostaglandin treatment, diabetes and uveitis.
  • 66. Cystoid macular oedema contd… Treatment: One or a combination of the following modalities may be used: Anterior vitrectomy or YAG laser vitrotomy to vitreous incarceration in the anterior segment if present. Topical NSAIDs (e.g. ketorolac four times daily, bromfenac twice daily, nepafenac) may be beneficial even in long-standing cases; treatment for several months may be necessary.  Steroids. Topically, by periocular or intravitreal (triamcinolone acetate 0.05–0.1 ml of 40 mg/ml) injection. Carbonic anhydrase inhibitors given systemically or topically. Intravitreal anti-VEGF agents. Pars plana vitrectomy may be useful for CMO refractory to medical therapy, even in eyes without apparent vitreous disturbance.
  • 67. Dysphotopsia • Up to 1 in 10 patients complain of annoying visual phenomena following uncomplicated cataract surgery. • Symptoms. A dark shadow in the temporal periphery (negative dysphotopsia – often the most troublesome), scintillations, haloes, peripheral or central flaring or flashes (positive dysphotopsia) and possibly monocular diplopia. Treatment: • Encouraging the patient that the symptoms usually improve over time, both because of anatomical changes (e.g. capsulorhexis edge thickening) and because the brain is able to ignore unwanted images. • IOL exchange (round-edged) may be considered.
  • 68. Corneal decompensation • Corneal oedema is very common postoperatively but is usually mild and transient. • Eyes with pre-existing corneal endothelial pathology, particularly low cell counts, are at increased risk. • Causes of more marked oedema include dense nuclei requiring high phacoemulsification energy, complicated or prolonged surgery, pseudoexfoliation, intraoperative endothelial trauma and elevated postoperative IOP. • Use of a dispersive viscoelastic, and possibly a scleral tunnel incision, may help to protect the corneal endothelium during surgery in higher-risk eyes.
  • 69. Ptosis • Mild ptosis, probably secondary to a variety of mechanisms, is common after cataract surgery, but usually improves; observation for at least a year postoperatively is recommended in most cases.
  • 70. Malposition of the IOL • Although uncommon, malposition may be associated with both optical and structural problems. • Significant malposition may require repositioning or replacement, occasionally with an iris or sclerally fixated lens.
  • 71. Retinal detachment • Rhegmatogenous retinal detachment (RRD) is uncommon. • Preoperative risk factors include lattice degeneration and retinal breaks – both are generally treated prophylactically prior to cataract surgery (and probably laser capsulotomy)- and high myopia. • The key intraoperative risk is vitreous loss. • Pars planavitrectomy is usually the surgical modality employed for pseudophakic RRD.