SlideShare una empresa de Scribd logo
1 de 24
Design SolutionDesign Solution
: Prepared By :
(od
Pratik Barot
Energy Storage Devices
Objective of Lecture
Describe the construction of a capacitor and how
charge is stored.
Introduce several types of capacitors
Discuss the electrical properties of a capacitor
The relationship between charge, voltage, and
capacitance
 Charging and discharging of a capacitor
Relationship between voltage, current, and capacitance;
power; and energy
Equivalent capacitance when a set of capacitors are in
series and in parallel
Capacitors
Composed of two conductive plates separated by an
insulator (or dielectric).
Commonly illustrated as two parallel metal plates
separated by a distance, d.
C = ε A/d
where ε = εr εo
εr is the relative dielectric constant
εo is the vacuum permittivity
Effect of Dimensions
Capacitance increases with
increasing surface area of the plates,
decreasing spacing between plates, and
increasing the relative dielectric constant of the
insulator between the two plates.
Types of Capacitors
Fixed Capacitors
Nonpolarized
 May be connected into circuit with either terminal of
capacitor connected to the high voltage side of the circuit.
 Insulator: Paper, Mica, Ceramic, Polymer
Electrolytic
 The negative terminal must always be at a lower voltage than
the positive terminal
 Plates or Electrodes: Aluminum, Tantalum
Nonpolarized
Difficult to make nonpolarized capacitors that store a
large amount of charge or operate at high voltages.
Tolerance on capacitance values is very large
 +50%/-25% is not unusual
http://www.marvac.com/fun/ceramic_capacitor_codes.aspx
PSpice Symbol
Electrical Properties of a Capacitor
Acts like an open circuit at steady state when
connected to a d.c. voltage or current source.
Voltage on a capacitor must be continuous
There are no abrupt changes to the voltage, but there
may be discontinuities in the current.
An ideal capacitor does not dissipate energy, it takes
power when storing energy and returns it when
discharging.
Properties of a Real Capacitor
A real capacitor does dissipate energy due leakage of
charge through its insulator.
This is modeled by putting a resistor in
parallel with an ideal capacitor.
Energy Storage
Charge is stored on the plates of the capacitor.
Equation:
Q = CV
Units:
Farad = Coulomb/Voltage
Farad is abbreviated as F
Sign Conventions
• The sign convention used with a
capacitor is the same as for a power
dissipating device.
• When current flows into the positive side
of the voltage across the capacitor, it is
positive and the capacitor is dissipating
power.
• When the capacitor releases energy back
into the circuit, the sign of the current will
be negative.
Charging a Capacitor
At first, it is easy to store charge in the capacitor.
As more charge is stored on the plates of the
capacitor, it becomes increasingly difficult to place
additional charge on the plates.
Coulombic repulsion from the charge already on the
plates creates an opposing force to limit the addition of
more charge on the plates.
 Voltage across a capacitor increases rapidly as charge is
moved onto the plates when the initial amount of charge on
the capacitor is small.
 Voltage across the capacitor increases more slowly as it
becomes difficult to add extra charge to the plates.
Adding Charge to Capacitor
The ability to add charge to a capacitor depends on:
the amount of charge already on the plates of the
capacitor
and
the force (voltage) driving the charge towards the
plates (i.e., current)
Discharging a Capacitor
At first, it is easy to remove charge in the capacitor.
Coulombic repulsion from charge already on the plates
creates a force that pushes some of the charge out of the
capacitor once the force (voltage) that placed the charge in
the capacitor is removed (or decreased).
As more charge is removed from the plates of the
capacitor, it becomes increasingly difficult to get rid of the
small amount of charge remaining on the plates.
Coulombic repulsion decreases as charge spreads out on the
plates. As the amount of charge decreases, the force needed
to drive the charge off of the plates decreases.
 Voltage across a capacitor decreases rapidly as charge is removed
from the plates when the initial amount of charge on the capacitor
is small.
 Voltage across the capacitor decreases more slowly as it becomes
difficult to force the remaining charge out of the capacitor.
Current-Voltage Relationships
∫=
=
=
=
1
1
t
t
CC
C
C
C
C
o
dti
C
v
dt
dv
Ci
dt
dq
i
Cvq
Power and Energy
dt
dv
Cvp
vip
C
CC
CCC
=
=
C
q
w
Cvw
C
CC
2
2
1
2
2
=
=
Capacitors in Parallel
Ceq for Capacitors in Parallel
i
4321eq
4321
4433
2211
4321
C CCCC
dt
dv
Ci
dt
dv
C
dt
dv
C
dt
dv
C
dt
dv
Ci
dt
dv
Ci
dt
dv
Ci
dt
dv
Ci
dt
dv
Ci
iiiii
eqin
in
in
+++=
=
+++=
==
==
+++=
Capacitors in Series
Ceq for Capacitors in Series
i
( ) ( ) ( ) ( )[ ] 1
4321eq
t
t
t
t4
t
t3
t
t2
t
t1
t
t4
4
t
t3
3
t
t2
2
t
t1
1
4321
1111C
idt
1
idt
1
idt
1
idt
1
idt
1
idt
1
idt
1
idt
1
idt
1
1
o
1
o
1
o
1
o
1
o
1
o
1
o
1
o
1
o
−
+++=
=
+++=
==
==
+++=
∫
∫∫∫∫
∫∫
∫∫
CCCC
C
v
CCCC
v
C
v
C
v
C
v
C
v
vvvvv
eq
in
in
in
General Equations for Ceq
Parallel Combination Series Combination
If P capacitors are in parallel,
then
If S capacitors are in series,
then:
1
1
1
−
=






= ∑
S
s s
eq
C
C∑=
=
P
p
Peq CC
1
Summary
Capacitors are energy storage devices.
An ideal capacitor act like an open circuit at steady state when a
DC voltage or current has been applied.
The voltage across a capacitor must be a continuous function;
the current flowing through a capacitor can be discontinuous.
The equations for equivalent capacitance for
capacitors in parallel capacitors in series
1
1
1
−
=






= ∑
S
s s
eq
C
C∑=
=
P
p
Peq CC
1
∫==
1
1
t
t
CC
C
C
o
dti
C
v
dt
dv
Ci
Capacitors

Más contenido relacionado

La actualidad más candente

Definition of capacitance
Definition of capacitanceDefinition of capacitance
Definition of capacitanceAnaya Zafar
 
Functions and Application of Capacitor
Functions and Application of CapacitorFunctions and Application of Capacitor
Functions and Application of Capacitorbrassmile37
 
Mechanism of-a-capacitor
Mechanism of-a-capacitorMechanism of-a-capacitor
Mechanism of-a-capacitorMasud Parvaze
 
Chapter 24-capacitance
Chapter 24-capacitanceChapter 24-capacitance
Chapter 24-capacitanceAnaya Zafar
 
Series and parallel arrangement of capacitors
Series and parallel arrangement of capacitorsSeries and parallel arrangement of capacitors
Series and parallel arrangement of capacitorsphysicscatalyst
 
Parallel Plate capacitor
Parallel Plate capacitorParallel Plate capacitor
Parallel Plate capacitorphysicscatalyst
 
Chapter 25 capacitance phys 3002
Chapter 25 capacitance phys 3002 Chapter 25 capacitance phys 3002
Chapter 25 capacitance phys 3002 mssfadel
 
Capacitance and dielectrics
Capacitance and dielectrics Capacitance and dielectrics
Capacitance and dielectrics Anaya Zafar
 
Capacitor aka condenser
Capacitor aka condenserCapacitor aka condenser
Capacitor aka condenserMahek1308
 
Lecture22 capacitance
Lecture22 capacitanceLecture22 capacitance
Lecture22 capacitanceAlex Klein
 
CAPACITORS AND CAPACITANCE
CAPACITORS AND CAPACITANCECAPACITORS AND CAPACITANCE
CAPACITORS AND CAPACITANCESheeba vinilan
 
Capacitors, how they work
Capacitors, how they workCapacitors, how they work
Capacitors, how they workcallr
 

La actualidad más candente (20)

Definition of capacitance
Definition of capacitanceDefinition of capacitance
Definition of capacitance
 
Capacitors
CapacitorsCapacitors
Capacitors
 
Capacitors
CapacitorsCapacitors
Capacitors
 
Lesson 2 Capacitors
Lesson 2  CapacitorsLesson 2  Capacitors
Lesson 2 Capacitors
 
Functions and Application of Capacitor
Functions and Application of CapacitorFunctions and Application of Capacitor
Functions and Application of Capacitor
 
Mechanism of-a-capacitor
Mechanism of-a-capacitorMechanism of-a-capacitor
Mechanism of-a-capacitor
 
Chapter 24-capacitance
Chapter 24-capacitanceChapter 24-capacitance
Chapter 24-capacitance
 
Capacitors
CapacitorsCapacitors
Capacitors
 
10 capacitors
10 capacitors10 capacitors
10 capacitors
 
Series and parallel arrangement of capacitors
Series and parallel arrangement of capacitorsSeries and parallel arrangement of capacitors
Series and parallel arrangement of capacitors
 
Parallel Plate capacitor
Parallel Plate capacitorParallel Plate capacitor
Parallel Plate capacitor
 
Chapter 25 capacitance phys 3002
Chapter 25 capacitance phys 3002 Chapter 25 capacitance phys 3002
Chapter 25 capacitance phys 3002
 
Capacitance and dielectrics
Capacitance and dielectrics Capacitance and dielectrics
Capacitance and dielectrics
 
Capacitor aka condenser
Capacitor aka condenserCapacitor aka condenser
Capacitor aka condenser
 
Lecture22 capacitance
Lecture22 capacitanceLecture22 capacitance
Lecture22 capacitance
 
Capacitors
CapacitorsCapacitors
Capacitors
 
CAPACITANCE
CAPACITANCECAPACITANCE
CAPACITANCE
 
Capacitors
CapacitorsCapacitors
Capacitors
 
CAPACITORS AND CAPACITANCE
CAPACITORS AND CAPACITANCECAPACITORS AND CAPACITANCE
CAPACITORS AND CAPACITANCE
 
Capacitors, how they work
Capacitors, how they workCapacitors, how they work
Capacitors, how they work
 

Similar a Capacitors

Capacitors.ppt
Capacitors.pptCapacitors.ppt
Capacitors.pptAninDeb
 
Chapter 5 B L Theraja Cylindrical Capacitor.pptx
Chapter 5 B L Theraja Cylindrical Capacitor.pptxChapter 5 B L Theraja Cylindrical Capacitor.pptx
Chapter 5 B L Theraja Cylindrical Capacitor.pptxabhisheksrivas124
 
Chapter 37
Chapter 37Chapter 37
Chapter 37mcfalltj
 
General Physics- Electricity
General Physics- ElectricityGeneral Physics- Electricity
General Physics- ElectricitySaraLQ2
 
Physics capacitors w11-l23
Physics capacitors w11-l23Physics capacitors w11-l23
Physics capacitors w11-l23ssuserba742a1
 
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptChapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptAmitKumarLal5
 
Capacitors with Dielectrics.ppt
Capacitors with Dielectrics.pptCapacitors with Dielectrics.ppt
Capacitors with Dielectrics.pptVara Prasad
 
Capacitance and capacitor
Capacitance and capacitorCapacitance and capacitor
Capacitance and capacitorTouqeer Jumani
 
Power Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student ManualPower Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student Manualphase3-120A
 
Capacitors.ppt
Capacitors.pptCapacitors.ppt
Capacitors.pptKDSir3
 

Similar a Capacitors (20)

Capacitors.ppt
Capacitors.pptCapacitors.ppt
Capacitors.ppt
 
Capacitors
CapacitorsCapacitors
Capacitors
 
Basics of Capacitors
Basics of CapacitorsBasics of Capacitors
Basics of Capacitors
 
Chapter 5 B L Theraja Cylindrical Capacitor.pptx
Chapter 5 B L Theraja Cylindrical Capacitor.pptxChapter 5 B L Theraja Cylindrical Capacitor.pptx
Chapter 5 B L Theraja Cylindrical Capacitor.pptx
 
Capacitors
CapacitorsCapacitors
Capacitors
 
CAPACITORS.pptx
CAPACITORS.pptxCAPACITORS.pptx
CAPACITORS.pptx
 
Chapter 37
Chapter 37Chapter 37
Chapter 37
 
Capacitor
Capacitor Capacitor
Capacitor
 
General Physics- Electricity
General Physics- ElectricityGeneral Physics- Electricity
General Physics- Electricity
 
Physics capacitors w11-l23
Physics capacitors w11-l23Physics capacitors w11-l23
Physics capacitors w11-l23
 
Capacitors.ppt
Capacitors.pptCapacitors.ppt
Capacitors.ppt
 
FFFF.ppt
FFFF.pptFFFF.ppt
FFFF.ppt
 
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.pptChapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
Chapter_18_sec_1__Electric_Potential_and_Capacitance.ppt
 
Capacitors with Dielectrics.ppt
Capacitors with Dielectrics.pptCapacitors with Dielectrics.ppt
Capacitors with Dielectrics.ppt
 
Capacitance and capacitor
Capacitance and capacitorCapacitance and capacitor
Capacitance and capacitor
 
Power Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student ManualPower Circuits and Transforers-Unit 3 Labvolt Student Manual
Power Circuits and Transforers-Unit 3 Labvolt Student Manual
 
ggggg.ppt
ggggg.pptggggg.ppt
ggggg.ppt
 
cursoos.ppt
cursoos.pptcursoos.ppt
cursoos.ppt
 
Capacitors.ppt
Capacitors.pptCapacitors.ppt
Capacitors.ppt
 
Capacitors (2)
Capacitors (2)Capacitors (2)
Capacitors (2)
 

Último

Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptNoman khan
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organizationchnrketan
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.elesangwon
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 

Último (20)

Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).ppt
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
priority interrupt computer organization
priority interrupt computer organizationpriority interrupt computer organization
priority interrupt computer organization
 
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
2022 AWS DNA Hackathon 장애 대응 솔루션 jarvis.
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 
A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 

Capacitors

  • 1.
  • 2. Design SolutionDesign Solution : Prepared By : (od Pratik Barot
  • 4. Objective of Lecture Describe the construction of a capacitor and how charge is stored. Introduce several types of capacitors Discuss the electrical properties of a capacitor The relationship between charge, voltage, and capacitance  Charging and discharging of a capacitor Relationship between voltage, current, and capacitance; power; and energy Equivalent capacitance when a set of capacitors are in series and in parallel
  • 5. Capacitors Composed of two conductive plates separated by an insulator (or dielectric). Commonly illustrated as two parallel metal plates separated by a distance, d. C = ε A/d where ε = εr εo εr is the relative dielectric constant εo is the vacuum permittivity
  • 6. Effect of Dimensions Capacitance increases with increasing surface area of the plates, decreasing spacing between plates, and increasing the relative dielectric constant of the insulator between the two plates.
  • 7. Types of Capacitors Fixed Capacitors Nonpolarized  May be connected into circuit with either terminal of capacitor connected to the high voltage side of the circuit.  Insulator: Paper, Mica, Ceramic, Polymer Electrolytic  The negative terminal must always be at a lower voltage than the positive terminal  Plates or Electrodes: Aluminum, Tantalum
  • 8. Nonpolarized Difficult to make nonpolarized capacitors that store a large amount of charge or operate at high voltages. Tolerance on capacitance values is very large  +50%/-25% is not unusual http://www.marvac.com/fun/ceramic_capacitor_codes.aspx PSpice Symbol
  • 9. Electrical Properties of a Capacitor Acts like an open circuit at steady state when connected to a d.c. voltage or current source. Voltage on a capacitor must be continuous There are no abrupt changes to the voltage, but there may be discontinuities in the current. An ideal capacitor does not dissipate energy, it takes power when storing energy and returns it when discharging.
  • 10. Properties of a Real Capacitor A real capacitor does dissipate energy due leakage of charge through its insulator. This is modeled by putting a resistor in parallel with an ideal capacitor.
  • 11. Energy Storage Charge is stored on the plates of the capacitor. Equation: Q = CV Units: Farad = Coulomb/Voltage Farad is abbreviated as F
  • 12. Sign Conventions • The sign convention used with a capacitor is the same as for a power dissipating device. • When current flows into the positive side of the voltage across the capacitor, it is positive and the capacitor is dissipating power. • When the capacitor releases energy back into the circuit, the sign of the current will be negative.
  • 13. Charging a Capacitor At first, it is easy to store charge in the capacitor. As more charge is stored on the plates of the capacitor, it becomes increasingly difficult to place additional charge on the plates. Coulombic repulsion from the charge already on the plates creates an opposing force to limit the addition of more charge on the plates.  Voltage across a capacitor increases rapidly as charge is moved onto the plates when the initial amount of charge on the capacitor is small.  Voltage across the capacitor increases more slowly as it becomes difficult to add extra charge to the plates.
  • 14. Adding Charge to Capacitor The ability to add charge to a capacitor depends on: the amount of charge already on the plates of the capacitor and the force (voltage) driving the charge towards the plates (i.e., current)
  • 15. Discharging a Capacitor At first, it is easy to remove charge in the capacitor. Coulombic repulsion from charge already on the plates creates a force that pushes some of the charge out of the capacitor once the force (voltage) that placed the charge in the capacitor is removed (or decreased). As more charge is removed from the plates of the capacitor, it becomes increasingly difficult to get rid of the small amount of charge remaining on the plates. Coulombic repulsion decreases as charge spreads out on the plates. As the amount of charge decreases, the force needed to drive the charge off of the plates decreases.  Voltage across a capacitor decreases rapidly as charge is removed from the plates when the initial amount of charge on the capacitor is small.  Voltage across the capacitor decreases more slowly as it becomes difficult to force the remaining charge out of the capacitor.
  • 19. Ceq for Capacitors in Parallel i 4321eq 4321 4433 2211 4321 C CCCC dt dv Ci dt dv C dt dv C dt dv C dt dv Ci dt dv Ci dt dv Ci dt dv Ci dt dv Ci iiiii eqin in in +++= = +++= == == +++=
  • 21. Ceq for Capacitors in Series i ( ) ( ) ( ) ( )[ ] 1 4321eq t t t t4 t t3 t t2 t t1 t t4 4 t t3 3 t t2 2 t t1 1 4321 1111C idt 1 idt 1 idt 1 idt 1 idt 1 idt 1 idt 1 idt 1 idt 1 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o 1 o − +++= = +++= == == +++= ∫ ∫∫∫∫ ∫∫ ∫∫ CCCC C v CCCC v C v C v C v C v vvvvv eq in in in
  • 22. General Equations for Ceq Parallel Combination Series Combination If P capacitors are in parallel, then If S capacitors are in series, then: 1 1 1 − =       = ∑ S s s eq C C∑= = P p Peq CC 1
  • 23. Summary Capacitors are energy storage devices. An ideal capacitor act like an open circuit at steady state when a DC voltage or current has been applied. The voltage across a capacitor must be a continuous function; the current flowing through a capacitor can be discontinuous. The equations for equivalent capacitance for capacitors in parallel capacitors in series 1 1 1 − =       = ∑ S s s eq C C∑= = P p Peq CC 1 ∫== 1 1 t t CC C C o dti C v dt dv Ci