Successfully reported this slideshow.
Cuaderno de Actividades: Física I
7) Movimiento Armónico
Simple
Lic. Percy Víctor Cañote Fajardo 180
Cuaderno de Actividades: Física I
7) Movimiento Armónico
Aquel movimiento que es posible describir con función armónica.
M...
Cuaderno de Actividades: Física I
¿Cómo debería ser x (t) ≡?
→ ( ) { }x t A sen wt δ≡ +
Donde,
w: Frecuencia de oscilación...
Cuaderno de Actividades: Física I
La fuerza que caracteriza al MAS es una RESTAURADORA que depende de
la posición, esto es...
Cuaderno de Actividades: Física I
7.2) Casos especiales de MAS
i) Sistema m-k
1)
1)
Lic. Percy Víctor Cañote Fajardo
PE
m
...
Cuaderno de Actividades: Física I
3)
Siempre el MAS se observará de la PE (caso 1) y de las PE’ (2,3) con
w2
= k/m. Se pue...
Cuaderno de Actividades: Física I
Las Ec
del MAS, tal como se han escrito, deben tener su cero en PE’ (2,3).
ii) Sistema l...
Cuaderno de Actividades: Física I
Ahora, si la descripción ha de darse en los s, usando s ≡ lθ,
→ ( ) { }ms t s sen wt δ≡ ...
Cuaderno de Actividades: Física I
⇒ 0
dmg
I
θ θ
 
+ = 
 
&& , 2 dmg
w
I
=
→θ (t) ≡ θm sen {wt + δ}
2
2
dmg I
w T T
I...
Cuaderno de Actividades: Física I
Debido a la torsión en la varilla vertical (según el eje del disco) se producirá un
torq...
Cuaderno de Actividades: Física I
ii) Energía Potencial (Elástica), Ep,el
2
,
1
2
p elE kx≡ ; x : posición ≡ deformación ,...
Cuaderno de Actividades: Física I
ii) Ep
¿?
Lic. Percy Víctor Cañote Fajardo
21
2
kA Ek
-A 0 +A x
Ep
0 T t
Ep
x
0
191
Cuaderno de Actividades: Física I
¿?
Observaciones:
En los casos de sistemas m – k donde se tenga una contribución gravita...
Cuaderno de Actividades: Física I
≡ f (v)
Ahora, para describir el sistema planteamos la 2° ley,
{ {R
resorte medio
F kx b...
Cuaderno de Actividades: Física I
1) Caso de interés: wb < wr
( ) { }2
cos
b
t
m
x t Ae wt φ
−
≡ + Movimiento amortiguado ...
Cuaderno de Actividades: Física I
2) Caso cuando wb ≡ wr, Movimiento críticamente amortiguado,
3) Cuando wb > wr, se produ...
Cuaderno de Actividades: Física I
S6P5) Un oscilador armónico simple amortiguado tiene λ = 0,11 kg/s, k = 180
N/m y m = 0,...
Cuaderno de Actividades: Física I
c) ( ) { }2
cos
b
t
m
x t Ae wt φ
−
≡ +
x(0) = 0,5
( ) { }
0,11
2 0,31
0,5 cos 581 0,03
...
Cuaderno de Actividades: Física I
S6P35) Un bloque de 2 kg se sujeta a un resorte de constante k = 200 N/m. En
t = 0 el re...
Cuaderno de Actividades: Física I
{ }
2 2
2
0,5
1
3 3
0,5 4
3
44
A v
A Aw
v
v mv x−
   
+ = ÷  ÷
   
 
= −→ = ...
Cuaderno de Actividades: Física I
Nos proporcionan directamente la 2w ≡ , las condiciones iniciales son,
0: (0) 0 (0) 1,5t...
Cuaderno de Actividades: Física I
( ) { }
( ) { }
0,75 2
1,5 cos 2
x t sen t
v t t
δ
δ
≡ +
≡ +
Para t=0 y vecindades,
( ) ...
Cuaderno de Actividades: Física I
En :PE mg kd′ ≡
Desde 0: 'x d x≡ +
{ }'RF mg kx mg k d x≡ − ≡ − +
0 ' ' 'kx kx kx mx mxm...
Cuaderno de Actividades: Física I
S6P32)
Una placa P hace un movimiento armónico simple
horizontal sobre una superficie si...
Cuaderno de Actividades: Física I
2 RES S SF mg k mg
M M
µ µ
ω
− −
→ ≡ ≡ MAX
MAX
A
A ←
2
k =ω( M+m )
( )2 2
sM M m mgω ω µ...
Cuaderno de Actividades: Física I
0
2
0
3
2
3
kk
M
w
M
θ θ→ + ≡ =⇒&&
S6P33) Un cilindro de peso W y radio r está suspendid...
Cuaderno de Actividades: Física I
α) De la dinamica rotacional,
:O Okxr Tr Iτ α− ≡ −
Por la “rodadura”: x rθ≡
2
2
2
...1
m...
Cuaderno de Actividades: Física I
( ) ( ) ( ) 2
0'
3
: 2
2
kx r W r mrτ θ
 
− ≡ − 
 
&& 1)
De la rodadura: x rθ≡ 2)
...
Próxima SlideShare
Cargando en…5
×

Cap 7 mas 180-204

1.423 visualizaciones

Publicado el

  • Sé el primero en comentar

Cap 7 mas 180-204

  1. 1. Cuaderno de Actividades: Física I 7) Movimiento Armónico Simple Lic. Percy Víctor Cañote Fajardo 180
  2. 2. Cuaderno de Actividades: Física I 7) Movimiento Armónico Aquel movimiento que es posible describir con función armónica. Movimiento ← Armónico: sen, cos Movimiento periódico complejo → admite soluciones armónicas. Teorema de Founier: Usando serie de senos o cosenos para descripción de movimiento periódicos complejos. 7.1) Descripción del movimiento armónico simple, MAS. i) Descripción Cinemática del MAS τ:,, avr  Fenomenología del MAS Movimiento oscilatorio y periódico en torno a la PE (x ≡0), la oscilación esta confinada para –A ≤ x ≤ A, Lic. Percy Víctor Cañote Fajardo µ=0 PE  x≡-A 0 x≡+A x 181
  3. 3. Cuaderno de Actividades: Física I ¿Cómo debería ser x (t) ≡? → ( ) { }x t A sen wt δ≡ + Donde, w: Frecuencia de oscilación natural del sistema. w = w{k,m} A, δ: Dependen de las condiciones iniciales del sistema. c.i.:{x (0) ∧ v (0)} Para la velocidad, { }cos dx v A t dt ω ω δ≡ ≡ + → ( ) { }cosv t Aw wt δ≡ + Para la aceleración, { }2dv a Aw sen wt dt δ= ≡ − + → ( ) { }2 a t Aw sen wt δ≡− + Estas ecuaciones también se pueden obtener mediante uso del movimiento circular uniforme (MCU). La proyección del MCU en el eje de las ys o en el de las xs, estaría reportando un comportamiento cinemático idéntico al MAS. ii) Descripción Dinámica del MAS Lic. Percy Víctor Cañote Fajardo 182
  4. 4. Cuaderno de Actividades: Física I La fuerza que caracteriza al MAS es una RESTAURADORA que depende de la posición, esto es, ( )F x cx=− , c: depende del sistema Si se analiza cualquier sistema y la fuerza que lo gobierna es de esta forma → MAS. F = FR = Fs → FRes = FR → 2da ley, FR ≡ ma a ≡ √ → v ≡ √ → x ≡ √ FR ≡ F = -k x ≡ m x m x +kx ≡ 0 x + k x m ≡ 0 x + w2 x ≡ 0, 2 w m k = → ( ) { }x t A sen wt δ≡ + k w m ¬ = W: frecuencia angular → 2 1 ( ) ( ) 2T periodo frecuencialineal w T π ν ω πν→ →= = = A,δ: c.i. X: Posición → Elongación A: Amplitud δ: Desfasaje Lic. Percy Víctor Cañote Fajardo F(x) • x -A 0 x A 183
  5. 5. Cuaderno de Actividades: Física I 7.2) Casos especiales de MAS i) Sistema m-k 1) 1) Lic. Percy Víctor Cañote Fajardo PE m k µ =0 184
  6. 6. Cuaderno de Actividades: Física I 3) Siempre el MAS se observará de la PE (caso 1) y de las PE’ (2,3) con w2 = k/m. Se puede vincular información entre sistemas coordenados de Os en PE ∧ PE’, donde la conexión será d, la cual se obtiene del equilibrio de m. Lic. Percy Víctor Cañote Fajardo PE 2) k d m PE’ PE PE’ k o m d o’ α 185
  7. 7. Cuaderno de Actividades: Física I Las Ec del MAS, tal como se han escrito, deben tener su cero en PE’ (2,3). ii) Sistema l–g wt ≡ w senθ → FRes ≡ wt ≡ -mg senθ θ: pequeño→ senθ ∼θ → F ≡ -mgθ, FRes ≡ - cx FR,t ≡ mat mg− mθ = lθ 2 0 g l g w l θ θ+ ≡ ¬ = → θ(t) ≡ θm sen{wt + δ} ; θm ≡ Aθ, g w l ≡ k m         . δ : desfasaje Lic. Percy Víctor Cañote Fajardo O O g t g θ l wt θ PE w  n PE θ: describe la posición 186
  8. 8. Cuaderno de Actividades: Física I Ahora, si la descripción ha de darse en los s, usando s ≡ lθ, → ( ) { }ms t s sen wt δ≡ + ; m s ms A lθ≡ = , g w l ≡ iii) Péndulo Físico Es un CR pendular, w r produce un τ restaurador que debe llevar al CR a la PE, τ ≡ - r w senθ, w ≡ mg θ: pequeño → τ = - r w θ ← Senθ ∼ θ rw Iθ θ⇒ − ≡ &&← O: punto fijo, r=d (distancia CM-O), Lic. Percy Víctor Cañote Fajardo CR 0 PE 0 r r C θ PE w r 187
  9. 9. Cuaderno de Actividades: Física I ⇒ 0 dmg I θ θ   + =    && , 2 dmg w I = →θ (t) ≡ θm sen {wt + δ} 2 2 dmg I w T T I w dmg π π≡ → = → = iv) Péndulo de Torsión Lic. Percy Víctor Cañote Fajardo A 0 0 P θ P PE PE 188
  10. 10. Cuaderno de Actividades: Física I Debido a la torsión en la varilla vertical (según el eje del disco) se producirá un torque restaurador proporcional a θ (para pequeños θs) de tal forma que: τrestaurador ≡ τ ≡ - kθ ↑ k: constante de torsión (de la varilla) Analogía: k ≡ k (resorte) {FRes = - kx} Res kτ τ θ≡ ≡ − ,Reext s Iτ τ α= ≡ ← O: punto fijo. Res k Iτ τ θ θ≡ ≡ − ≡ && → 0 k I θ θ+ ≡&& ; var , 0:disco illaI I punto fijoξ =≡ →θ(t) ≡ θm sen{wt + δ} ← k w I = , 2 I T k π= 7.3) Energía en el MAS i) Energía Cinética, Ek 21 : 2 km E mv= Si x(t) ≡ A sen {wt + δ} v(t) ≡ x& (t) ≡ Aw cos{wt + δ} { }2 2 21 cos 2 kE mA w wt δ= + Lic. Percy Víctor Cañote Fajardo 189
  11. 11. Cuaderno de Actividades: Física I ii) Energía Potencial (Elástica), Ep,el 2 , 1 2 p elE kx≡ ; x : posición ≡ deformación , 0 ≡ PE { }2 2 , 1 2 p elE kA sen wt δ≡ + iii) Energía Mecánica, EM EM ≡ Ek + Ep ≡ cte ∀ sistemas MAS, { } { }2 2 2 2 21 1 cos 2 2 ME mA w wt kA sen wtδ δ≡ + + + ←mw2 = k 21 2 mE kA≡ ← En particular sistema m–k Gráficos: i) Ek Lic. Percy Víctor Cañote Fajardo Ek 21 2 kA 0 T t 190
  12. 12. Cuaderno de Actividades: Física I ii) Ep ¿? Lic. Percy Víctor Cañote Fajardo 21 2 kA Ek -A 0 +A x Ep 0 T t Ep x 0 191
  13. 13. Cuaderno de Actividades: Física I ¿? Observaciones: En los casos de sistemas m – k donde se tenga una contribución gravitacional, la EM deberá considerarse, EM ≡ Ek + Ep,el +Ep,g ← PE EM ≡ Ek + Ep,el ← PE’ 7.4) Oscilaciones amortiguadas Se considerara medios de amortiguación modelables mediante la velocidad, esto es la, fuerza opositora al movimiento, (f), proporcional a la velocidad. Esto se corresponde con muchos sistemas físicos conocidos que involucran fluidos como aire, agua, aceites, etc. f: fuerza de fricción f ≡ a + bv + cv2 + … Lic. Percy Víctor Cañote Fajardo 0 x 192
  14. 14. Cuaderno de Actividades: Física I ≡ f (v) Ahora, para describir el sistema planteamos la 2° ley, { {R resorte medio F kx bv mx≡ − − ≡ && 0 k b x x x m m + + ≡→ && & ← MAA Comparaciones: { }2 0x w x+ ≡&& ← MAS m – k : k w m = l – g : w l δ = PF : mgd w I = PT : k w I = Lic. Percy Víctor Cañote Fajardo 193
  15. 15. Cuaderno de Actividades: Física I 1) Caso de interés: wb < wr ( ) { }2 cos b t m x t Ae wt φ − ≡ + Movimiento amortiguado oscilatorio (MAA) A ≡ A(0) ≡ amplitud inicial 2 2 k b w m m   ≡ −     : Frecuencia de oscilación La ecuación se interpreta como una parte oscilatoria y una modulación de la oscilación dada por el factor exponencial. r k w m ≡ → w del resorte, 2 b b w m ≡ → “w” del medio Lic. Percy Víctor Cañote Fajardo X A 2 b t m e − 0 t 194
  16. 16. Cuaderno de Actividades: Física I 2) Caso cuando wb ≡ wr, Movimiento críticamente amortiguado, 3) Cuando wb > wr, se produce un Movimiento sobreamortiguado, Lic. Percy Víctor Cañote Fajardo x t x t 195
  17. 17. Cuaderno de Actividades: Física I S6P5) Un oscilador armónico simple amortiguado tiene λ = 0,11 kg/s, k = 180 N/m y m = 0,310 kg, a) ¿Es un movimiento sobreamortiguado o de amortiguamiento débil? b) Determinar el valor λ para el movimiento amortiguado débil. c) Escriba la ecuación de movimiento. Si para t = 0, tiene una amplitud de 0,5 m. SOLUCION: λ = 0, 11 kg/s (=b) MAA k = 180 N/m m= 0, 31 kg Oscilador armónico amortiguado Wb < w0 ≡ wk Oscilador críticamente amortiguado Wb ≡ w0 Oscilador sobreamortiguado Wb > w0 ( ) ( )2 cos b t m x t Ae tω φ − → = + en donde 2 2 k b m m ω   = − ÷   a) 2 b b w m → = 0,11 2 2 0,31 b b w w m λ λ≡ → = ≡ = × 0,11 2 2 0,31 b b w w m λ λ≡ → = ≡ = × ∼0,18; 0 180 0 24 1 , ,3 1k k w w m → = = = = → wb < w0 ≡ wk :MAA b) 0 ; ? 2 b b k w w b m m → = → ≡ ≡ 2 2 180 0,31b kmλ→ ≡ ≡ ≡ × ∼2 55,8 ∼15 Lic. Percy Víctor Cañote Fajardo 196
  18. 18. Cuaderno de Actividades: Física I c) ( ) { }2 cos b t m x t Ae wt φ − ≡ + x(0) = 0,5 ( ) { } 0,11 2 0,31 0,5 cos 581 0,03 t x t e t − × ≡ − Lic. Percy Víctor Cañote Fajardo X A 2 b t m e − 0 t 197
  19. 19. Cuaderno de Actividades: Física I S6P35) Un bloque de 2 kg se sujeta a un resorte de constante k = 200 N/m. En t = 0 el resorte se extiende 0,05 m y se suelta. Halle: a) El desplazamiento en función del tiempo. b) La velocidad cuando x = +A/2. c) La aceleración cuando x = + A/2. d) ¿Cuál es la fuerza sobre el bloque cuando t = π/15 s? SOLUCIÓN: 200 200 10 2 2 k w k m m =  = = = =  ( ) ( ) 0 0,05 . . 0 0 x m c i v = +  = a) x(t) = A sen (wt + φ)→ x(0) = A sen (w(0) + φ)=Asen(φ)=+0,05 v(t) = Aw cos (wt + φ)→ v(0) = Aw cos (w(0) + φ)= Aw cos (φ)= 0 De la última Ec φ = π/2 {la v (-) para t ∼ 0} → A=0,05 → x(t) = 0,05 sen (10t + π/2) → v(t) = 0,5 cos (10t + π/2) Observen la consistencia de tomar φ(=δ)= π/2: satisface las ci y lo que ocurre en el problema “cerca” de 0, tanto para x como para v. ¿Que ocurre si tomamos φ(=δ)= 3π/2? b) Recordando la relación v-x 2 2 1 x v A Aw     + = ÷  ÷     Lic. Percy Víctor Cañote Fajardo 198
  20. 20. Cuaderno de Actividades: Física I { } 2 2 2 0,5 1 3 3 0,5 4 3 44 A v A Aw v v mv x−     + = ÷  ÷       = −→ = → = ± → → ÷   c) Recordando la relación a-x 2 a w x= − { }2 0,05 10 2 2,5aa m x   = − → → −   = −÷ d) FR= FRES ≡ -kx= -k A sen (wt + φ)= -(200)(0,05) sen (10t + π/2)=? 15 t π = ← 2 2 5 T w w π π π = = = → F (+)! veamos FR (t=π/15) = -10 sen (10{π/15} + π/2) ∼ (-10) (-0, 5) = +5 S6P52) Una partícula que cuelga de un resorte oscila con una frecuencia angular de 2,00 rad/s. El resorte esta suspendido del techo de la caja de un elevador y cuelga sin moverse (respecto de la caja del elevador) conforme la caja desciende a una velocidad constante de 1,50 m/s. La caja se detiene repentinamente, a) ¿Con que amplitud oscila la partícula?, b) ¿Cual es la ecuación de movimiento para la partícula? (Elija la dirección hacia arriba como positiva). SOLUCIÓN: Lic. Percy Víctor Cañote Fajardo 199
  21. 21. Cuaderno de Actividades: Física I Nos proporcionan directamente la 2w ≡ , las condiciones iniciales son, 0: (0) 0 (0) 1,5t x v≡ ≡ ∧ ≡ − Asumiendo las ecuaciones del MAS para x(t) y v(t), ( ) { } ( ) { }cos x t A sen wt v t Aw wt δ δ ≡ + ≡ + a) De estas ecuaciones se puede obtener la ecuación para la A, en particular para t=0, ( ){ } ( ) 2 2 0 0 v A x w   ≡ +     Reemplazando datos, { } 2 2 1,5 0 0,75 2 A −  ≡ + ≡    0,75A ≡ b) La ecuación para x. Analizando las ecuaciones para x(t) y v(t), Lic. Percy Víctor Cañote Fajardo g k v(0) m t =0 X x(0)=0 v(0)v(0) 200
  22. 22. Cuaderno de Actividades: Física I ( ) { } ( ) { } 0,75 2 1,5 cos 2 x t sen t v t t δ δ ≡ + ≡ + Para t=0 y vecindades, ( ) ( ){ } { } ( ) ( ){ } { } 0 0,75 2 0 0,75 0 1,5 cos 2 0 1,5 cos x sen sen v δ δ δ δ ≡ + ≡ ≡ + ≡ Para satisfacer x(0)=0, 0δ ≡ ,π , el valor correcto es δ π≡ , con lo cual las ecuaciones quedan, ( ) { } { } ( ) { } { } 0,75 2 0,75 1,5 cos 2 1,5 cos 2 2x t sen t sen t v t t tπ π ≡ − ≡ − ≡ ≡ + + S6P4) En el sistema mostrado en la figura Obtenga la expresión de la energía mecánica para todo instante de tiempo t. Si: X = A cos (w0 t + φ) g: aceleración de la gravedad SOLUCION: Lic. Percy Víctor Cañote Fajardo g k + X = 0 m - 201
  23. 23. Cuaderno de Actividades: Física I En :PE mg kd′ ≡ Desde 0: 'x d x≡ + { }'RF mg kx mg k d x≡ − ≡ − + 0 ' ' 'kx kx kx mx mxmg kd≡ − ≡ − ≡− − ≡ ≡&& && ' ' 0 k x x m +→ ≡&& Esta ecuación nos dice que desde 0’ se observara MAS de frecuencia k w m ≡ . Ahora, debido a que la fuerza resultante es 'RF kx≡ − , cuando se escriba la EM desde 0’ solo se considerara Epe, ello se deduce debido a que, como la 'RF kx≡ − , es una fuerza elástica conservativa, solo tendrá asociada una energía potencial elástica, por lo tanto, M K peE E E≡ + Lic. Percy Víctor Cañote Fajardo PE 0 d PE’ 0’ x x’ X, X’ 202
  24. 24. Cuaderno de Actividades: Física I S6P32) Una placa P hace un movimiento armónico simple horizontal sobre una superficie sin fricción con una frecuencia ν = 1,5 Hz. Un bloque descansa sobre la placa, como se muestra en la figura adjunta y el coeficiente de fricción estático entre el bloque y la placa es µs = 0,6 ¿Cuál es la máxima amplitud de oscilación que puede tener el sistema sin que resbale el bloque sobre la placa? SOLUCIÓN: ( ) ( ) ( ),2 2 , ,: RES MAX MAX MAS RES MAX F M m a A F M m A M m ω ω+ ≡ ≡ → ≡ + +1442443 : SR M fF M a M M − ≡ ≡ RES,MAXF → , SR M MAX mgF a M M µ− ≡ ≡ RES,MAXF DCL (M): De las ecuaciones anteriores, Lic. Percy Víctor Cañote Fajardo µs B k P a m Fres M 0 a fS,M ≡ µs mg FRES FR ≡ FRES -µs mg 203
  25. 25. Cuaderno de Actividades: Física I 2 RES S SF mg k mg M M µ µ ω − − → ≡ ≡ MAX MAX A A ← 2 k =ω( M+m ) ( )2 2 sM M m mgω ω µ→ ≡ + −MAX MAXA A s mµ→ 2 g mω≡ ( )2 2 0,6 10 2 1,5 s MAX g x x A ω π µ → ≡≡MAXA → 2 6 9 MAXA π ≡ Observación: La antepenúltima ecuación sugiere solo comparar la aceleración máxima del MAS, del sistema (M+m), con la aceleración estática máxima de m. Discutir esto partiendo del cumplimiento del movimiento inminente de M respecto de m, siendo ésta un SRNI! (ℒ 3107090730) S6P6) En la figura mostrada halle la frecuencia angular w0 del MAS resultante, para pequeños desplazamientos x del centro de masa, si el disco homogéneo rueda sin deslizar, considere, M≡ masa del disco, R ≡ radio del disco y k ≡ constante del resorte. SOLUCIÓN: x pequeño → MAS , w0 = ? x = s = Rθ P’ // CM : τ = I α ( ) [ ] 23 2 2 2 21 3 2 2 MR kx R MR MR MR k R Rτ θ θ θ   = − = + = = −    6447448 && && Lic. Percy Víctor Cañote Fajardo k R M t M k 0 FR P 0 o’ 204
  26. 26. Cuaderno de Actividades: Física I 0 2 0 3 2 3 kk M w M θ θ→ + ≡ =⇒&& S6P33) Un cilindro de peso W y radio r está suspendido por una cuerda que le da vuelta en la forma que se indica en la figura adjunta. Un extremo de la cuerda está unido directamente a un soporte rígido mientras que el otro extremo está unido a un resorte de constante de elasticidad k. Si el cilindro se gira un ángulo θ y se suelta, determine la frecuencia natural del sistema. SOLUCION: Lic. Percy Víctor Cañote Fajardo k r θ 205
  27. 27. Cuaderno de Actividades: Física I α) De la dinamica rotacional, :O Okxr Tr Iτ α− ≡ − Por la “rodadura”: x rθ≡ 2 2 2 ...1 mr kr Tr W mgθ θ− ≡ − ¬ ≡&& De la dinámica traslacional, ( )RF T kx W m x≡ − − + ≡ && Usando nuevamente la rodadura, T kr W mrθ θ− − + ≡ && 2 2 ...: 2xr Tr kr Wr mrθ θ− − + ≡ && De 1 y 2, 3 2 2 ...3kr W mrθ θ− + ≡ && , 2 2Haciendo kr W krµ θ µ θ≡ − + → ≡ − &&&& 3 2 m rµ→ ≡ 2k r µ × − && 4 4 3 0 3 k m kg w W µ µ   → + ≡ →÷ ≡   && Lic. Percy Víctor Cañote Fajardo P x P 0 O T kx x O’ X θ w P’ P 206 { }0)0 0 //β ′ ′
  28. 28. Cuaderno de Actividades: Física I ( ) ( ) ( ) 2 0' 3 : 2 2 kx r W r mrτ θ   − ≡ −    && 1) De la rodadura: x rθ≡ 2) 2) → 1): 2 2kr W rθ − 23 2 mr≡ − θ&& 3) Sea 3 2 2 2 kr W kr m rµ θ µ θ µ≡ − → ≡ → ≡ −&&&& 2k r µ × && 4 0 3 k m µ µ→ + ≡&& 4 3 kg w W ≡ Lic. Percy Víctor Cañote Fajardo 207

×