SlideShare una empresa de Scribd logo
1 de 40
MECÁNICA DE FLUIDOS
Ecuación de continuidad. Ecuación de Bernoulli. Aplicaciones:
teorema de Torricelli, Teorema de Venturi. Tubo de Pitot. Efecto
Magnus. Viscosidad. Teorema de Poisseuille
¿POR QUÉ LA VELOCIDAD DEL RÍO DISMINUYE
COMO SE MUESTRA EN LA FIGURA?
• Un fluido ideal es Incompresible
y no tiene fricción interna
(viscosidad). El camino de una
partícula individual en un fluido
en movimiento se llama línea de
flujo. Si el patrón del flujo no
cambia con el tiempo, el flujo es
estable.
• El flujo puede ser:
• Laminar, en el que las capas
adyacentes de fluido se deslizan
suavemente unas sobre otras.
• Turbulento, donde el flujo es
irregular y caótico.
FLUJO DE FLUIDOS
Línea de flujo
Tubo de flujo
• El producto de la rapidez del fluido
ideal por el área que atraviesa es
constante en todos los puntos.
• Para un fluido incompresible y en
flujo estable
• De donde se deduce la ecuación de
continuidad,
𝐴1 𝑣1 = 𝐴2 𝑣2
• El producto Av es la razón del flujo
de volumen o la rapidez con que el
volumen cruza una sección del tubo,
𝑑𝑉
𝑑𝑡
= 𝐴. 𝑣
• También el producto 𝐴𝑣 se conoce
como gasto o caudal y se mide en el
SI en 𝑚3
/𝑠.
ECUACIÓN DE CONTINUIDAD
𝑑𝑚1 = 𝑑𝑚2
𝜌𝐴1 𝑣1 𝑑𝑡 = 𝜌𝐴2 𝑣2 𝑑𝑡
• La ecuación de Bernoulli
relaciona la presión p, la rapidez
de flujo 𝑣 y la altura 𝑦 de dos
puntos 1 y 2 cualesquiera,
suponiendo que el trabajo
realizado por las fuerzas
producidas por la presión
producen un cambio en las
energías cinética y potencial del
fluido.
TEOREMA DE BERNOULLI
𝑝1 + 𝜌𝑔𝑦1 +
1
2
𝜌𝑣1
2 = 𝑝2 + 𝜌𝑔𝑦2 +
1
2
𝜌𝑣2
2
EC. CONTINUIDAD O EC. BERNOULLI
EC. DE CONTINUIDAD O EC. BERNOULLI
EC. DE CONTINUIDAD O EC. BERNOULLI
¿CÓMO EXPLICAR LA VELA ROTATORIA?
SUSTENTACIÓN DEL ALA DE UN AVIÓN
• Los tornados y los huracanes
suelen levantar el techo de las
casas. Explique por qué
sucede basándose en la
ecuación de Bernoulli.
¿POR QUÉ AGREGAR ESTE DISPOSITIVO AL MÓVIL?
• Presión de agua en el hogar.
Entra agua en una casa por
tubo con diámetro interior de
2,0 𝑐𝑚 a una presión absoluta
de 4,0105 𝑃𝑎 (unas 4 𝑎𝑡𝑚 ).
Un tubo de 1,0 cm de
diámetro va al cuarto del
del segundo piso, 5,0 𝑚 más
arriba. La rapidez de flujo en
tubo de entrada es de
1,5 𝑚/𝑠 . Calcule la rapidez de
flujo, presión y razón de flujo
de volumen en el cuarto de
baño.
EJERCICIO
Al segundo piso
(tubo de 1,0 cm)
Medidor de
agua
Tanque de agua
caliente
Del suministro de
agua (tubo de 2,0
cm)
• Si el tanque está cerrado • Si el tanque está abierto
TEOREMA DE TORRICELLI
𝑃 𝑎
𝒗 𝟐
𝑃0
𝐴2
𝑣1
𝐴1
h
𝑃 𝑎
𝒗 𝟐
𝑃 𝑎
𝐴2
𝑣1
A1
h
𝑣2 = 2
𝑝0 − 𝑝 𝑎
𝜌
+ 2𝑔 ℎ 𝑣2 = 2𝑔 ℎ
MEDIDOR DE VENTURI I
• Aplicando Bernoulli entre los puntos 1 y 2 (𝑦1 = 𝑦2),
• Y como
𝑣1 =
2𝑔 ℎ
𝐴1 𝐴2
2 − 1
𝑝1 +
1
2
𝜌 𝑣1
2
= 𝑝2 +
1
2
𝜌 𝑣2
2
𝑣2 = 𝐴1 𝑣1 𝐴2 𝑝1 − 𝑝2 = 𝜌𝑔ℎ
TUBO DE PITOT
𝑝2 +
1
2
𝜌 𝑔𝑎𝑠 𝑣2
= 𝑝1
𝑣 =
2𝜌 𝑔𝑎𝑠 𝑔ℎ
𝜌𝑙í𝑞𝑢𝑖𝑑𝑜
• La viscosidad es el rozamiento
interno entre las capas de
fluido. A causa de la
viscosidad, es necesario
ejercer una fuerza para obligar
a una capa de fluido a
deslizarse sobre la otra.
FLUJO VISCOSO
Diferentes niveles de viscosidad en el fluido
• Entre dos capas de fluido que
están separadas por una
distancia dx habrá una
diferencia de velocidad igual
a:
• La fuerza por unidad de área que
hay que aplicar es proporcional al
gradiente de velocidad.
• La constante de proporcionalidad
se denomina viscosidad (𝜇).
𝐹 = −𝐴𝜇
𝑑𝑣
𝑑𝑥
Unidad
• 𝜇 = 𝑃𝑎. 𝑠
• 𝜇 = 𝑃(𝑝𝑜𝑖𝑠𝑒) = 0,1 𝑃𝑎. 𝑠
FLUJO VISCOSO
VISCOSIDAD DE ALGUNOS FLUIDOS
Fluido μ (Pa.s)
Agua 8,91×10-4
Aire 17,4×10-6
Argón 22,9×10-6
Benceno 6,04×10-4
Brea 2,3×108
Etanol (alcohol etílico) 1,074×10-3
Glicerina (glicerol) 1,5
Helio 19,9×10-6
Hidrógeno 8,4×10-6
Mercurio 1,526×10-3
Metano 11,2×10-6
Metanol 5,44×10-4
Nitrobenceno 1,863×10-3
Nitrógeno líquido 1,58×10-4
Propanol 1,945×10-3
Sangre humana 3×10-3 - 4×10-3
Xenón 21,2×10-6
(𝑃1 − 𝑃2)𝜋𝑟2
2𝜋𝑟𝐿
= −𝜇
𝑑𝑣
𝑑𝑟
LEY DE POISEUILLE
• Un fluido viscoso circula en régimen laminar por una
tubería de radio interior R, y de longitud L, por la
diferencia de presión existente en los extremos del tubo.
𝑟
𝑝1 𝜋 𝑟2 𝑝2 𝜋 𝑟2
𝐿
𝑅
El signo negativo se debe a que v
disminuye al aumentar r.
el área lateral de un cilindro de
longitud L y radio r.
𝐹 = (𝑃1 − 𝑃2)𝜋𝑟2
𝐹 = −𝐴𝜇
𝑑𝑣
𝑑𝑟
𝐹 = −2𝜋𝑟𝐿𝜇
𝑑𝑣
𝑑𝑟
• Integrando la ecuación (de r a
R y de v a 0) se obtiene el
perfil de velocidades en
función de la distancia radial,
al eje del tubo.
• Se obtiene:
que corresponde a un perfil
parabólico.
• La velocidad máxima en el
centro del tubo ( 𝑟 = 0).
• La velocidad mínima se da en
los bordes del tubo ( 𝑟 = 𝑅).
LEY DE POISEUILLE: PERFIL DE VELOCIDADES
(𝑃1 − 𝑃2)𝜋𝑟2
2𝜋𝑟𝐿
= −𝜇
𝑑𝑣
𝑑𝑟
𝑣 𝑟 =
(𝑃1 − 𝑃2) (𝑅2 − 𝑟2)
4𝜇𝐿
• El caudal de fluido 𝑑𝑄 que
circula por el anillo de radio r
y espesor 𝑑𝑟 es:
𝑑𝑄 = 𝑣 𝑟 𝑑𝐴 = 𝑣 𝑟 2𝜋𝑟𝑑𝑟
• El caudal total se obtiene
tomando en cuenta la
expresión para la velocidad
• Esta ley relaciona la causa, la
diferencia de presiones ∆𝑃, con el
caudal.
LEY DE POISEUILLE: CAUDAL O GASTO
𝑅
r𝑟 + 𝑑𝑟
𝑄 =
0
𝑅
∆𝑃 (𝑅2 − 𝑟2)
4𝜇𝐿
2𝜋𝑟𝑑𝑟
𝑄 =
𝜋𝑅4
8𝜇𝐿
∆𝑃
• Un bloque de 10 𝑘𝑔 se desliza
por un plano inclinado. Calcular
la velocidad terminal del bloque
si se mueve sobre una película de
aceite de 0,10 𝑚𝑚 de espesor.
Considere que la viscosidad del
aceite es 0,021 𝑃𝑎. 𝑠 . Considere
que la distribución de
velocidades es lineal y que la
superficie de contacto del bloque
con el aceite es de 0,10 𝑚2.
EJERCICIOS DE APLICACIÓN
20°0,10 𝑚𝑚
𝑣
• Una capa de agua fluye cuesta
abajo por un plano inclinado con
un perfil de velocidades que se
muestra en la figura. Determine
la magnitud y dirección del
esfuerzo de corte que el agua
ejerce sobre la superficie del
plano. Considere que 𝑈 =
3,0 𝑚/𝑠 y ℎ = 0,30 𝑐𝑚 . La
viscosidad del agua es 𝜇 = 1,21 ×
10−3 𝑃𝑎. 𝑠
EJERCICIO
EJERCICIO
• El espacio entre dos cilindros concéntricos de 6 in de
largo está lleno de glicerina. El cilindro interior tiene un
radio de 3 in y la separación ente cilindros es de 0,10 in .
Calcule el torque y la potencia requerida para rotar el
cilindro interior. Considere que la distribución de las
velocidades es lineal.
• La expresión
• La resistencia hidrodinámica
es mayor cuanto mayor es la
viscosidad del fluido, y mayor
cuanto más largo y más
estrecho es el conducto.
• ¿Cuál es la resistencia al agua
de una aguja hipodérmica de
20,0 cm de longitud y 0,060 cm
de radio interno?
• Solución:
• Reemplazamos valores:
LEY DE POISEUILLE
h 4
8 L
R
R



Resistencia
hidrodinámica h 4
8 L
R
R



 
 
3
H 42
8 1,0 10 0,20
R
0,060 10


 

 
9
h 5
Ns
R 3,93 10
m
 
• El número de Reynolds es una
magnitud adimensional que
sirve para determinar si el
flujo es laminar o turbulento.
• El número de Reynolds para
un flujo de fluido de radio R
se define como:
• Si Re > 1 500, el flujo es
turbulento
• Si Re < 1 000, el flujo es
laminar
• La velocidad media de la
sangre en la aorta (r=1,19
cm) durante la parte
estacionaria del latido del
corazón es de unos 35,0
cm/s . ¿Es laminar o
turbulento el flujo? La
viscosidad de la sangre es
2,08 x 10-3 Pa.s
• Solución:
NÚMERO DE REYNOLDS
e
vR
R


    3 2 2
e 3
1,1 10 35,0 10 1,19 10
R
2,08 10
 

  


2 203eR 
Flujo
turbulento
REPRESA RICOCOCHA
WARU WARU
ACUEDUCTOS NAZCA
LAGUNA DE CARHUACOCHA
http://hidraulicainca.com/puno/waru-waru-puno/sistemas-de-produccion-pre-inca-waru-waru/
ACUEDUCTO ROMANO
BARRERAS DEL RIO TÁMESIS
RÍO MOSCÚ
LAGO DE BRASILIA
TRASVASE DEL RIO TOCANTIS AL SAN FRANCISCO
VENECIA.: PROYECTO MOISÉS
EL GRAN RIO ARTIFICIAL DE LIBIA
MAR ARAL 1973-2014
REFERENCIAS BIBLIOGRÁFICAS
1. R. Serway, J. Jewett. Física para Ciencias e Ingeniería.
7° edición. Ed.Cengage Learning. Pág. 403-406.
2. J. Wilson, A. Buffa. Física. 6° edición. Ed. Pearson
Educación. Pág. 322-324.
3. Sears Zemansky. Física Universitaria. 12° edición.
Pearson Educación. Pág. 470-472.

Más contenido relacionado

La actualidad más candente

221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)Christian Venegas
 
4. mecánica de fluidos hidrodinamica
4. mecánica de fluidos   hidrodinamica4. mecánica de fluidos   hidrodinamica
4. mecánica de fluidos hidrodinamicaDavid Narváez
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidosVasco Nuñez
 
Practica 4 Experimento de Reynolds
Practica 4 Experimento de ReynoldsPractica 4 Experimento de Reynolds
Practica 4 Experimento de ReynoldsJasminSeufert
 
Ejercicios empuje hidrostatico_resuelto
Ejercicios empuje hidrostatico_resueltoEjercicios empuje hidrostatico_resuelto
Ejercicios empuje hidrostatico_resueltoEdwin Boada
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameerslide71
 
Guia operaciones unitarias 1
Guia operaciones unitarias 1Guia operaciones unitarias 1
Guia operaciones unitarias 1davpett
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera leycharliebm7512
 
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACLABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACALEXANDER HUALLA CHAMPI
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídosEbnezr Decena
 
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTOEXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTOLucero Gallegos González
 
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoriaQuispeCapquiquePablo
 
Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)JasminSeufert
 
Flotabilidad y estabilidad
Flotabilidad y estabilidadFlotabilidad y estabilidad
Flotabilidad y estabilidadKaren Ortiz
 
15 pérdidas de carga
15 pérdidas de carga15 pérdidas de carga
15 pérdidas de cargaDavid Rojas
 
Problemas de estatica_de_fluidos_manomet
Problemas de estatica_de_fluidos_manometProblemas de estatica_de_fluidos_manomet
Problemas de estatica_de_fluidos_manometWilson Herencia Cahuana
 

La actualidad más candente (20)

221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)221405948 ejercicios-resueltos(1)
221405948 ejercicios-resueltos(1)
 
Fenómenos de-transporte-1-parte2-1
Fenómenos de-transporte-1-parte2-1Fenómenos de-transporte-1-parte2-1
Fenómenos de-transporte-1-parte2-1
 
4. mecánica de fluidos hidrodinamica
4. mecánica de fluidos   hidrodinamica4. mecánica de fluidos   hidrodinamica
4. mecánica de fluidos hidrodinamica
 
Mecanica de fluidos
Mecanica de fluidosMecanica de fluidos
Mecanica de fluidos
 
Practica 4 Experimento de Reynolds
Practica 4 Experimento de ReynoldsPractica 4 Experimento de Reynolds
Practica 4 Experimento de Reynolds
 
Ejercicios empuje hidrostatico_resuelto
Ejercicios empuje hidrostatico_resueltoEjercicios empuje hidrostatico_resuelto
Ejercicios empuje hidrostatico_resuelto
 
Texto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelameTexto de ejerciciosresueltos de hidraulica 1 nelame
Texto de ejerciciosresueltos de hidraulica 1 nelame
 
Guia operaciones unitarias 1
Guia operaciones unitarias 1Guia operaciones unitarias 1
Guia operaciones unitarias 1
 
Problemas calor trabajo primera ley
Problemas calor trabajo primera leyProblemas calor trabajo primera ley
Problemas calor trabajo primera ley
 
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAACLABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
LABORATORIO N°5 (FLUJO EN SISTEMA DE TUBERIAS)-MECANICA DE FLUIDOS II- UNSAAC
 
Teorema de bernoulli
Teorema de bernoulliTeorema de bernoulli
Teorema de bernoulli
 
Mécanica de fluídos
Mécanica de fluídosMécanica de fluídos
Mécanica de fluídos
 
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTOEXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
EXPERIMENTO DE REYNOLDS PERFILES DE VELOCIDAD EN FLUJO LAMINAR Y TURBULENTO
 
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria
133251129 mecanica-de-fluidos-ejercicios-resueltos-y-teoria
 
Guía 2 propiedades de los fluidos
Guía 2 propiedades de los fluidosGuía 2 propiedades de los fluidos
Guía 2 propiedades de los fluidos
 
Ejrcicios elasticidad 2016
Ejrcicios elasticidad 2016Ejrcicios elasticidad 2016
Ejrcicios elasticidad 2016
 
Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)Práctica 2 Flujo Reptante (Ley de Stokes)
Práctica 2 Flujo Reptante (Ley de Stokes)
 
Flotabilidad y estabilidad
Flotabilidad y estabilidadFlotabilidad y estabilidad
Flotabilidad y estabilidad
 
15 pérdidas de carga
15 pérdidas de carga15 pérdidas de carga
15 pérdidas de carga
 
Problemas de estatica_de_fluidos_manomet
Problemas de estatica_de_fluidos_manometProblemas de estatica_de_fluidos_manomet
Problemas de estatica_de_fluidos_manomet
 

Similar a HIDRODINAMICA-PRINCIPIO DE BERNOULLI_APLICACIONES

Similar a HIDRODINAMICA-PRINCIPIO DE BERNOULLI_APLICACIONES (20)

Hidrodinámica
HidrodinámicaHidrodinámica
Hidrodinámica
 
Clase Hidrodinámica Fisica I Universidad
Clase Hidrodinámica Fisica I UniversidadClase Hidrodinámica Fisica I Universidad
Clase Hidrodinámica Fisica I Universidad
 
Subir
SubirSubir
Subir
 
Subir
SubirSubir
Subir
 
1 mecfluidos
1 mecfluidos1 mecfluidos
1 mecfluidos
 
UNIDAD II - REOLOGÍA E HIDRÁULICA DE LA CEMENTACIÓN.pdf
UNIDAD II - REOLOGÍA E HIDRÁULICA DE LA CEMENTACIÓN.pdfUNIDAD II - REOLOGÍA E HIDRÁULICA DE LA CEMENTACIÓN.pdf
UNIDAD II - REOLOGÍA E HIDRÁULICA DE LA CEMENTACIÓN.pdf
 
10. Flujo.pptx
10. Flujo.pptx10. Flujo.pptx
10. Flujo.pptx
 
Expo de ING I (1) (1).pptx
Expo de ING I (1) (1).pptxExpo de ING I (1) (1).pptx
Expo de ING I (1) (1).pptx
 
hidraulica
hidraulicahidraulica
hidraulica
 
Hidrodinámica 1
Hidrodinámica 1Hidrodinámica 1
Hidrodinámica 1
 
Curso hidraulica-neumatica-viscosidad-teoremas-pascal-principios-presion-fluj...
Curso hidraulica-neumatica-viscosidad-teoremas-pascal-principios-presion-fluj...Curso hidraulica-neumatica-viscosidad-teoremas-pascal-principios-presion-fluj...
Curso hidraulica-neumatica-viscosidad-teoremas-pascal-principios-presion-fluj...
 
fluidos_reales.pdf
fluidos_reales.pdffluidos_reales.pdf
fluidos_reales.pdf
 
MECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOSMECÁNICA DE FLUIDOS
MECÁNICA DE FLUIDOS
 
96983098 informe-fluidos
96983098 informe-fluidos96983098 informe-fluidos
96983098 informe-fluidos
 
Tuberías fluidos incompresibles
Tuberías fluidos incompresiblesTuberías fluidos incompresibles
Tuberías fluidos incompresibles
 
Viscosimetro ostwald
Viscosimetro ostwaldViscosimetro ostwald
Viscosimetro ostwald
 
S06.s1 - Material.pdf
S06.s1 - Material.pdfS06.s1 - Material.pdf
S06.s1 - Material.pdf
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
 
Lab#8 - Ecuación de Bernoulli.pdf
Lab#8 - Ecuación de Bernoulli.pdfLab#8 - Ecuación de Bernoulli.pdf
Lab#8 - Ecuación de Bernoulli.pdf
 
Laboratorio n° 1 viscosidad
Laboratorio n° 1 viscosidadLaboratorio n° 1 viscosidad
Laboratorio n° 1 viscosidad
 

Más de Yuri Milachay

Satélites del Perú
Satélites del PerúSatélites del Perú
Satélites del PerúYuri Milachay
 
Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.Yuri Milachay
 
Cinemática del punto material
Cinemática del punto materialCinemática del punto material
Cinemática del punto materialYuri Milachay
 
Campos Escalares y Vectoriales
Campos Escalares y VectorialesCampos Escalares y Vectoriales
Campos Escalares y VectorialesYuri Milachay
 
Vectores. Álgebra vectorial
Vectores. Álgebra vectorialVectores. Álgebra vectorial
Vectores. Álgebra vectorialYuri Milachay
 
Magnitudes. Sistemas de Unidades
Magnitudes. Sistemas de UnidadesMagnitudes. Sistemas de Unidades
Magnitudes. Sistemas de UnidadesYuri Milachay
 
Diagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. EquilibrioDiagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. EquilibrioYuri Milachay
 
Oscilaciones forzadas y Resonancia
Oscilaciones forzadas y ResonanciaOscilaciones forzadas y Resonancia
Oscilaciones forzadas y ResonanciaYuri Milachay
 
Energía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones AmortiguadasEnergía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones AmortiguadasYuri Milachay
 
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEOCURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEOYuri Milachay
 

Más de Yuri Milachay (20)

Satélites del Perú
Satélites del PerúSatélites del Perú
Satélites del Perú
 
Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.
 
Cinemática del punto material
Cinemática del punto materialCinemática del punto material
Cinemática del punto material
 
Cinemática
CinemáticaCinemática
Cinemática
 
Campos Escalares y Vectoriales
Campos Escalares y VectorialesCampos Escalares y Vectoriales
Campos Escalares y Vectoriales
 
Vectores. Álgebra vectorial
Vectores. Álgebra vectorialVectores. Álgebra vectorial
Vectores. Álgebra vectorial
 
Ley de Coulomb
Ley de CoulombLey de Coulomb
Ley de Coulomb
 
Magnitudes. Sistemas de Unidades
Magnitudes. Sistemas de UnidadesMagnitudes. Sistemas de Unidades
Magnitudes. Sistemas de Unidades
 
Upn moo s06
Upn moo s06Upn moo s06
Upn moo s06
 
Upn moo s04
Upn moo s04Upn moo s04
Upn moo s04
 
Upn moo s03
Upn moo s03Upn moo s03
Upn moo s03
 
Upn moo s02
Upn moo s02Upn moo s02
Upn moo s02
 
Upn moo s01
Upn moo s01Upn moo s01
Upn moo s01
 
Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
 
Upn moo s07
Upn moo s07Upn moo s07
Upn moo s07
 
Diagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. EquilibrioDiagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. Equilibrio
 
Ondas mecánicas
Ondas mecánicasOndas mecánicas
Ondas mecánicas
 
Oscilaciones forzadas y Resonancia
Oscilaciones forzadas y ResonanciaOscilaciones forzadas y Resonancia
Oscilaciones forzadas y Resonancia
 
Energía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones AmortiguadasEnergía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones Amortiguadas
 
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEOCURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
 

Último

Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfJosé Hecht
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajeKattyMoran3
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías productommartinezmarquez30
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejormrcrmnrojasgarcia
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbal
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbalPPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbal
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbalRosarioChoque3
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)jlorentemartos
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...Martin M Flynn
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
Actividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 EducacionActividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 Educacionviviantorres91
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FJulio Lozano
 

Último (20)

Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdfMEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
MEDIACIÓN INTERNACIONAL MF 1445 vl45.pdf
 
libro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguajelibro grafismo fonético guía de uso para el lenguaje
libro grafismo fonético guía de uso para el lenguaje
 
historieta materia de ecologías producto
historieta materia de ecologías productohistorieta materia de ecologías producto
historieta materia de ecologías producto
 
LOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejorLOS AMBIENTALISTAS todo por un mundo mejor
LOS AMBIENTALISTAS todo por un mundo mejor
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbal
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbalPPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbal
PPT_ Prefijo homo tema para trabajar los prefijos en razonamiento verbal
 
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
TEMA 13. LOS GOBIERNOS DEMOCRÁTICOS (1982-2018)
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
Unidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIUUnidad 2 | Teorías de la Comunicación | MCDIU
Unidad 2 | Teorías de la Comunicación | MCDIU
 
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
DIGNITAS INFINITA - DIGNIDAD HUMANA; Declaración del dicasterio para la doctr...
 
Sesión ¿Amor o egoísmo? Esa es la cuestión
Sesión  ¿Amor o egoísmo? Esa es la cuestiónSesión  ¿Amor o egoísmo? Esa es la cuestión
Sesión ¿Amor o egoísmo? Esa es la cuestión
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
Actividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 EducacionActividades eclipse solar 2024 Educacion
Actividades eclipse solar 2024 Educacion
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/FEl PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
El PROGRAMA DE TUTORÍAS PARA EL APRENDIZAJE Y LA FORMACIÓN INTEGRAL PTA/F
 

HIDRODINAMICA-PRINCIPIO DE BERNOULLI_APLICACIONES

  • 1. MECÁNICA DE FLUIDOS Ecuación de continuidad. Ecuación de Bernoulli. Aplicaciones: teorema de Torricelli, Teorema de Venturi. Tubo de Pitot. Efecto Magnus. Viscosidad. Teorema de Poisseuille
  • 2. ¿POR QUÉ LA VELOCIDAD DEL RÍO DISMINUYE COMO SE MUESTRA EN LA FIGURA?
  • 3. • Un fluido ideal es Incompresible y no tiene fricción interna (viscosidad). El camino de una partícula individual en un fluido en movimiento se llama línea de flujo. Si el patrón del flujo no cambia con el tiempo, el flujo es estable. • El flujo puede ser: • Laminar, en el que las capas adyacentes de fluido se deslizan suavemente unas sobre otras. • Turbulento, donde el flujo es irregular y caótico. FLUJO DE FLUIDOS Línea de flujo Tubo de flujo
  • 4. • El producto de la rapidez del fluido ideal por el área que atraviesa es constante en todos los puntos. • Para un fluido incompresible y en flujo estable • De donde se deduce la ecuación de continuidad, 𝐴1 𝑣1 = 𝐴2 𝑣2 • El producto Av es la razón del flujo de volumen o la rapidez con que el volumen cruza una sección del tubo, 𝑑𝑉 𝑑𝑡 = 𝐴. 𝑣 • También el producto 𝐴𝑣 se conoce como gasto o caudal y se mide en el SI en 𝑚3 /𝑠. ECUACIÓN DE CONTINUIDAD 𝑑𝑚1 = 𝑑𝑚2 𝜌𝐴1 𝑣1 𝑑𝑡 = 𝜌𝐴2 𝑣2 𝑑𝑡
  • 5. • La ecuación de Bernoulli relaciona la presión p, la rapidez de flujo 𝑣 y la altura 𝑦 de dos puntos 1 y 2 cualesquiera, suponiendo que el trabajo realizado por las fuerzas producidas por la presión producen un cambio en las energías cinética y potencial del fluido. TEOREMA DE BERNOULLI 𝑝1 + 𝜌𝑔𝑦1 + 1 2 𝜌𝑣1 2 = 𝑝2 + 𝜌𝑔𝑦2 + 1 2 𝜌𝑣2 2
  • 6. EC. CONTINUIDAD O EC. BERNOULLI
  • 7. EC. DE CONTINUIDAD O EC. BERNOULLI
  • 8. EC. DE CONTINUIDAD O EC. BERNOULLI
  • 9. ¿CÓMO EXPLICAR LA VELA ROTATORIA?
  • 10. SUSTENTACIÓN DEL ALA DE UN AVIÓN • Los tornados y los huracanes suelen levantar el techo de las casas. Explique por qué sucede basándose en la ecuación de Bernoulli.
  • 11. ¿POR QUÉ AGREGAR ESTE DISPOSITIVO AL MÓVIL?
  • 12. • Presión de agua en el hogar. Entra agua en una casa por tubo con diámetro interior de 2,0 𝑐𝑚 a una presión absoluta de 4,0105 𝑃𝑎 (unas 4 𝑎𝑡𝑚 ). Un tubo de 1,0 cm de diámetro va al cuarto del del segundo piso, 5,0 𝑚 más arriba. La rapidez de flujo en tubo de entrada es de 1,5 𝑚/𝑠 . Calcule la rapidez de flujo, presión y razón de flujo de volumen en el cuarto de baño. EJERCICIO Al segundo piso (tubo de 1,0 cm) Medidor de agua Tanque de agua caliente Del suministro de agua (tubo de 2,0 cm)
  • 13. • Si el tanque está cerrado • Si el tanque está abierto TEOREMA DE TORRICELLI 𝑃 𝑎 𝒗 𝟐 𝑃0 𝐴2 𝑣1 𝐴1 h 𝑃 𝑎 𝒗 𝟐 𝑃 𝑎 𝐴2 𝑣1 A1 h 𝑣2 = 2 𝑝0 − 𝑝 𝑎 𝜌 + 2𝑔 ℎ 𝑣2 = 2𝑔 ℎ
  • 14. MEDIDOR DE VENTURI I • Aplicando Bernoulli entre los puntos 1 y 2 (𝑦1 = 𝑦2), • Y como 𝑣1 = 2𝑔 ℎ 𝐴1 𝐴2 2 − 1 𝑝1 + 1 2 𝜌 𝑣1 2 = 𝑝2 + 1 2 𝜌 𝑣2 2 𝑣2 = 𝐴1 𝑣1 𝐴2 𝑝1 − 𝑝2 = 𝜌𝑔ℎ
  • 15. TUBO DE PITOT 𝑝2 + 1 2 𝜌 𝑔𝑎𝑠 𝑣2 = 𝑝1 𝑣 = 2𝜌 𝑔𝑎𝑠 𝑔ℎ 𝜌𝑙í𝑞𝑢𝑖𝑑𝑜
  • 16. • La viscosidad es el rozamiento interno entre las capas de fluido. A causa de la viscosidad, es necesario ejercer una fuerza para obligar a una capa de fluido a deslizarse sobre la otra. FLUJO VISCOSO Diferentes niveles de viscosidad en el fluido
  • 17. • Entre dos capas de fluido que están separadas por una distancia dx habrá una diferencia de velocidad igual a: • La fuerza por unidad de área que hay que aplicar es proporcional al gradiente de velocidad. • La constante de proporcionalidad se denomina viscosidad (𝜇). 𝐹 = −𝐴𝜇 𝑑𝑣 𝑑𝑥 Unidad • 𝜇 = 𝑃𝑎. 𝑠 • 𝜇 = 𝑃(𝑝𝑜𝑖𝑠𝑒) = 0,1 𝑃𝑎. 𝑠 FLUJO VISCOSO
  • 18. VISCOSIDAD DE ALGUNOS FLUIDOS Fluido μ (Pa.s) Agua 8,91×10-4 Aire 17,4×10-6 Argón 22,9×10-6 Benceno 6,04×10-4 Brea 2,3×108 Etanol (alcohol etílico) 1,074×10-3 Glicerina (glicerol) 1,5 Helio 19,9×10-6 Hidrógeno 8,4×10-6 Mercurio 1,526×10-3 Metano 11,2×10-6 Metanol 5,44×10-4 Nitrobenceno 1,863×10-3 Nitrógeno líquido 1,58×10-4 Propanol 1,945×10-3 Sangre humana 3×10-3 - 4×10-3 Xenón 21,2×10-6
  • 19. (𝑃1 − 𝑃2)𝜋𝑟2 2𝜋𝑟𝐿 = −𝜇 𝑑𝑣 𝑑𝑟 LEY DE POISEUILLE • Un fluido viscoso circula en régimen laminar por una tubería de radio interior R, y de longitud L, por la diferencia de presión existente en los extremos del tubo. 𝑟 𝑝1 𝜋 𝑟2 𝑝2 𝜋 𝑟2 𝐿 𝑅 El signo negativo se debe a que v disminuye al aumentar r. el área lateral de un cilindro de longitud L y radio r. 𝐹 = (𝑃1 − 𝑃2)𝜋𝑟2 𝐹 = −𝐴𝜇 𝑑𝑣 𝑑𝑟 𝐹 = −2𝜋𝑟𝐿𝜇 𝑑𝑣 𝑑𝑟
  • 20. • Integrando la ecuación (de r a R y de v a 0) se obtiene el perfil de velocidades en función de la distancia radial, al eje del tubo. • Se obtiene: que corresponde a un perfil parabólico. • La velocidad máxima en el centro del tubo ( 𝑟 = 0). • La velocidad mínima se da en los bordes del tubo ( 𝑟 = 𝑅). LEY DE POISEUILLE: PERFIL DE VELOCIDADES (𝑃1 − 𝑃2)𝜋𝑟2 2𝜋𝑟𝐿 = −𝜇 𝑑𝑣 𝑑𝑟 𝑣 𝑟 = (𝑃1 − 𝑃2) (𝑅2 − 𝑟2) 4𝜇𝐿
  • 21. • El caudal de fluido 𝑑𝑄 que circula por el anillo de radio r y espesor 𝑑𝑟 es: 𝑑𝑄 = 𝑣 𝑟 𝑑𝐴 = 𝑣 𝑟 2𝜋𝑟𝑑𝑟 • El caudal total se obtiene tomando en cuenta la expresión para la velocidad • Esta ley relaciona la causa, la diferencia de presiones ∆𝑃, con el caudal. LEY DE POISEUILLE: CAUDAL O GASTO 𝑅 r𝑟 + 𝑑𝑟 𝑄 = 0 𝑅 ∆𝑃 (𝑅2 − 𝑟2) 4𝜇𝐿 2𝜋𝑟𝑑𝑟 𝑄 = 𝜋𝑅4 8𝜇𝐿 ∆𝑃
  • 22. • Un bloque de 10 𝑘𝑔 se desliza por un plano inclinado. Calcular la velocidad terminal del bloque si se mueve sobre una película de aceite de 0,10 𝑚𝑚 de espesor. Considere que la viscosidad del aceite es 0,021 𝑃𝑎. 𝑠 . Considere que la distribución de velocidades es lineal y que la superficie de contacto del bloque con el aceite es de 0,10 𝑚2. EJERCICIOS DE APLICACIÓN 20°0,10 𝑚𝑚 𝑣
  • 23. • Una capa de agua fluye cuesta abajo por un plano inclinado con un perfil de velocidades que se muestra en la figura. Determine la magnitud y dirección del esfuerzo de corte que el agua ejerce sobre la superficie del plano. Considere que 𝑈 = 3,0 𝑚/𝑠 y ℎ = 0,30 𝑐𝑚 . La viscosidad del agua es 𝜇 = 1,21 × 10−3 𝑃𝑎. 𝑠 EJERCICIO
  • 24. EJERCICIO • El espacio entre dos cilindros concéntricos de 6 in de largo está lleno de glicerina. El cilindro interior tiene un radio de 3 in y la separación ente cilindros es de 0,10 in . Calcule el torque y la potencia requerida para rotar el cilindro interior. Considere que la distribución de las velocidades es lineal.
  • 25. • La expresión • La resistencia hidrodinámica es mayor cuanto mayor es la viscosidad del fluido, y mayor cuanto más largo y más estrecho es el conducto. • ¿Cuál es la resistencia al agua de una aguja hipodérmica de 20,0 cm de longitud y 0,060 cm de radio interno? • Solución: • Reemplazamos valores: LEY DE POISEUILLE h 4 8 L R R    Resistencia hidrodinámica h 4 8 L R R        3 H 42 8 1,0 10 0,20 R 0,060 10        9 h 5 Ns R 3,93 10 m  
  • 26. • El número de Reynolds es una magnitud adimensional que sirve para determinar si el flujo es laminar o turbulento. • El número de Reynolds para un flujo de fluido de radio R se define como: • Si Re > 1 500, el flujo es turbulento • Si Re < 1 000, el flujo es laminar • La velocidad media de la sangre en la aorta (r=1,19 cm) durante la parte estacionaria del latido del corazón es de unos 35,0 cm/s . ¿Es laminar o turbulento el flujo? La viscosidad de la sangre es 2,08 x 10-3 Pa.s • Solución: NÚMERO DE REYNOLDS e vR R       3 2 2 e 3 1,1 10 35,0 10 1,19 10 R 2,08 10         2 203eR  Flujo turbulento
  • 32. BARRERAS DEL RIO TÁMESIS
  • 35. TRASVASE DEL RIO TOCANTIS AL SAN FRANCISCO
  • 37. EL GRAN RIO ARTIFICIAL DE LIBIA
  • 39.
  • 40. REFERENCIAS BIBLIOGRÁFICAS 1. R. Serway, J. Jewett. Física para Ciencias e Ingeniería. 7° edición. Ed.Cengage Learning. Pág. 403-406. 2. J. Wilson, A. Buffa. Física. 6° edición. Ed. Pearson Educación. Pág. 322-324. 3. Sears Zemansky. Física Universitaria. 12° edición. Pearson Educación. Pág. 470-472.

Notas del editor

  1. 11/09/2016
  2. 11/09/2016
  3. 11/09/2016
  4. 11/09/2016
  5. 11/09/2016
  6. 11/09/2016
  7. 11/09/2016
  8. 11/09/2016