SlideShare una empresa de Scribd logo
1 de 49
Descargar para leer sin conexión
Gene	
  expression	
  noise,	
  
regula0on,	
  and	
  noise	
  propaga0on	
  
Erik	
  van	
  Nimwegen	
  
Biozentrum,	
  University	
  of	
  Basel,	
  
and	
  Swiss	
  Ins8tute	
  of	
  Bioinforma8cs	
  
Basel	
   Our	
  group	
  
Cartoon	
  of	
  the	
  steps	
  in	
  gene	
  expression	
  
Gene	
  X	
  
RNA	
  
polymerase	
  
Gene	
  X	
  
RNA	
  
polymerase	
  
mRNA	
  gene	
  X	
  
Transcrip0on	
  rate:	
  	
   rλ
mRNA	
  decay	
  rate	
  
Protein	
  X	
  
Transla0on	
  rate	
  
Protein	
  decay	
  rate:	
  
pλ
pµ
rµ
Gene	
  expression	
  differen3al	
  equa3ons	
  
• 	
  P	
  =	
  Amount	
  of	
  protein	
  X.	
  
• 	
  R	
  =	
  Amount	
  of	
  mRNA	
  X.	
  
• 	
  P	
  increases	
  due	
  to	
  transla0on	
  of	
  mRNA	
  and	
  decreases	
  due	
  to	
  protein	
  decay.	
  
p p
dP
R P
dt
λ µ= −
• 	
  R	
  increases	
  due	
  to	
  transcrip0on	
  and	
  decreases	
  due	
  to	
  mRNA	
  decay.	
  
r r
dR
R
dt
λ µ= −
Steady-­‐state:	
  	
   P =
λr
λp
µr
µp
R =
λr
µr
• 	
  In	
  reality	
  there	
  are	
  are	
  really	
  an	
  integer	
  number	
  p(t)	
  of	
  proteins	
  at	
  0me	
  t,	
  and	
  r(t)	
  mRNAs.	
  
• 	
  Numbers	
  may	
  be	
  small,	
  e.g.	
  there	
  is	
  only	
  one	
  copy	
  of	
  the	
  gene	
  in	
  the	
  DNA.	
  
• 	
  The	
  RNA	
  polymerases,	
  ribosomes,	
  and	
  mRNAs	
  	
  are	
  tumbling	
  around	
  in	
  the	
  cell,	
  	
  
	
  	
  constantly	
  bumping	
  into	
  other	
  molecules	
  (i.e.	
  following	
  Brownian	
  mo0on).	
  
Discreteness	
  and	
  Stochas3city:	
  
Surprise	
  surprise:	
  	
  
Gene	
  expression	
  is	
  stochas3c	
  
Low copy
Plasmid
•  GFP	
  fluorescence	
  per	
  cell	
  propor0onal	
  to	
  protein	
  
number.	
  
•  Not	
  surprisingly,	
  fluctua0ons	
  are	
  observed	
  between	
  
cells.	
  
•  What	
  kind	
  of	
  fluctua0ons	
  would	
  one	
  expect	
  in	
  a	
  
simplest	
  possible	
  model?	
  	
  
	
  
Stochas3c	
  transcrip3on	
  and	
  decay	
  
Gene	
  X	
  
RNA	
  
polymerase	
  
Gene	
  X	
  
RNA	
  
polymerase	
  
mRNA	
  gene	
  X	
  
Probability	
  	
  	
  	
  	
  	
  per	
  unit	
  0me	
  to	
  transcribe	
  a	
  
new	
  mRNA.	
  
Differen0al	
  equa0on	
  for	
  the	
  distribu0on:	
  
1 1
( )
( ) ( 1) ( ) ( ) ( )n
r n r n r r n
dP t
P t n P t n P t
dt
λ µ λ µ− += + + − +
Probability	
  that	
  there	
  are	
  n	
  mRNAs	
  at	
  0me	
  t:	
  
rλ rµ
Pn
(t)
Probability	
  	
  	
  	
  	
  per	
  mRNA	
  per	
  unit	
  
0me	
  that	
  it	
  will	
  decay.	
  	
  
Steady-­‐state	
  is	
  Poisson	
  distribu3on	
  
Probability	
  to	
  have	
  n	
  mRNAs:	
   Pn
=
1
n!
λr
µr
⎛
⎝
⎜
⎞
⎠
⎟
n
e
−λr /µr
Mean:	
   n =
λ
µ
Variance:	
   var(n) = n =
λ
µ
Standard-­‐devia3on:	
  σ (n) = n
0 1 2 3 4 5
0.0
0.2
0.4
0.6
0.8
Number of mRNA n
Probability
0 2 4 6 8 10
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
Number of mRNA n
Probability
0 5 10 15 20 25 30
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Number of mRNA n
Probability
λr
µr
= 0.1 10r
r
λ
µ
=
λr
µr
=1
(Shahrezaei,	
  Swain	
  PNAS	
  2008)	
  
Transla3on	
  amplifies	
  mRNA	
  fluctua3ons	
  
mean	
  and	
  variance:	
  
a =
λr
µp
b =
λp
µp
“burst	
  size”:	
  transla0ons	
  per	
  mRNA	
  life0me.	
  
n = ab, var(n) = (b+1) n
λr
µr
µp
transcrip0on	
  
mRNA	
  decay	
  
transla0on	
  
protein	
  decay	
  
λp
λr
µr
λp
µp
•  Proteins	
  are	
  oZen	
  long-­‐lived:	
  approxima0on	
  protein-­‐decay	
  slow	
  rela0ve	
  to	
  mRNA	
  decay.	
  
•  Solu0on	
  in	
  terms	
  of	
  two	
  ra0os:	
  
Transcrip0on	
  events	
  per	
  protein	
  life0me.	
  
Pn
=
Γ(a + n)
Γ(a)n!
b
b +1
⎛
⎝⎜
⎞
⎠⎟
n
1−
b
b +1
⎛
⎝⎜
⎞
⎠⎟
a
noise:	
   η(n) =
σ(n)
n
=
var(n)
n
2
=
b +1
n
mRNAs	
  per	
  cell	
  for	
  E.	
  coli	
  
hp://book.bionumbers.org/	
  
Typical	
  genes	
  have	
  less	
  than	
  1	
  	
  
mRNA	
  per	
  cell	
  in	
  E	
  coli	
  
Fluorescently	
  labeling	
  single	
  
mRNAs	
  (Fluorescence	
  In	
  
Situ	
  Hybridiza0on).	
  
Coun0ng	
  mRNAs	
  per	
  cell	
  
under	
  the	
  microscope.	
  
Mean	
  mRNAs	
  per	
  cell	
  
Taniguchi	
  et	
  al,	
  Science	
  (2010)	
  
From:	
  Milo	
  and	
  Phillips,	
  Cell	
  Biology	
  by	
  the	
  numbers	
  	
  
Some	
  addi3onal	
  numbers	
  for	
  E.	
  coli	
  
• 	
  RNA	
  polymerases	
  per	
  cell:	
  1’500-­‐10’000	
  (depending	
  on	
  growth	
  rate).	
  
• 	
  Ribosomes	
  per	
  cell:	
  14’000	
  (1	
  doubling	
  per	
  hour)	
  –	
  45’000	
  (2	
  doublings	
  per	
  hour).	
  
• 	
  mRNA	
  decay	
  rate:	
  1-­‐15	
  minutes	
  half-­‐life.	
  
	
  
•  Protein	
  decay	
  rate:	
  typically	
  a	
  few	
  hours.	
  	
  
•  Protein	
  dilu0on	
  rate:	
  cell	
  doubling	
  0me,	
  i.e.	
  30	
  min	
  to	
  2	
  hours.	
  	
  
Bernstein	
  et	
  al,	
  PNAS	
  (2002)	
   Taniguchi	
  et	
  al,	
  Science	
  (2002)	
  
Distribu3on	
  mRNA	
  half-­‐lifes	
   Distribu3on	
  mean	
  proteins	
  per	
  cell	
  
Measuring	
  variability	
  within	
  and	
  across	
  cells	
  
Two	
  3mes	
  the	
  same	
  promoter	
  
Intrinsic	
  and	
  extrinsic	
  noise	
  
•  Total	
  variance	
  in	
  fluorescence	
  per	
  cell	
  can	
  be	
  decomposed	
  into	
  two	
  parts:	
  
•  Intrinsic	
  =	
  variance	
  within	
  cell:	
  
	
  
•  Extrinsic	
  variance	
  =	
  the	
  rest,	
  i.e.	
  variability	
  across	
  cells:	
  	
  
vtot
= var(g) + var(r) = vi
+ ve
vi
=
1
2
(g − r)2
ve
= gr − g r
Hey!	
  That	
  covariance	
  could	
  be	
  nega8ve!	
  	
  How	
  can	
  a	
  variance	
  be	
  nega8ve?	
  	
  
How	
  to	
  properly	
  infer	
  	
  
intrinsic	
  and	
  extrinsic	
  variance	
  
Gives	
  orthodox	
  sta0s0cal	
  es0mators	
  	
  
that	
  can	
  give	
  nega0ve	
  es0mates.	
  
A	
  Bayesian	
  solu3on	
  is	
  never	
  pathological	
  and	
  much	
  more	
  accurate	
  when	
  extrinsic	
  noise	
  is	
  small	
  	
  
Extrinsic:	
  Gaussian	
  distribu0on	
  of	
  mean	
  μi	
  across	
  cells	
  i:	
  
	
  
Intrinsic:	
  Gaussian	
  devia0on	
  of	
  green	
  gi	
  and	
  red	
  ri	
  from	
  mean	
  μi:	
  	
  
P(gi
,ri
| µi
) =
1
2πv
exp −
(gi
− µi
)2
+ (ri
− µi
)2
2v
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
Posterior	
  for	
  the	
  intrinsic	
  variance	
  v	
  and	
  extrinsic	
  variance	
  vμ:	
  
P(v,vµ
| D) = vµ
+ v / 2( )
−(n−1)/2
v−n/2
exp −
n
4v
(g − r)2
−
n
(2vµ
+ v)
var
r + g
2
⎛
⎝⎜
⎞
⎠⎟
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
Example	
  with	
  low	
  extrinsic	
  noise	
  
Inference	
  based	
  on	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  only.	
  	
  (g − r)2
Bayesian	
  result.	
  	
  
Result	
  assuming	
  extrinsic	
  noise	
  known.	
  	
  
Extrinsic	
  noise	
  implies	
  	
  
transcrip3on/transla3on/decay	
  rates	
  	
  fluctuate	
  
Extrinsic	
  noise	
  in	
  Elowitz	
  et	
  al:	
   Intrinsic	
  noise	
  falls	
  as	
  the	
  promoter	
  is	
  induced.	
  
Extrinsic	
  noise	
  peaks	
  at	
  intermediate	
  induc0on.	
  
R	
  Phillips	
  (Annu	
  Rev	
  Con	
  Mat	
  Phys,	
  2015)	
  
•  Transcrip0on	
  rate	
  can	
  vary	
  when	
  the	
  
promoter	
  switches	
  between	
  different	
  states.	
  
•  Switching	
  rates	
  depend	
  on	
  concentra0ons	
  of	
  
DNA	
  binding	
  proteins	
  (polymerases,	
  TFs).	
  
	
  
•  These	
  concentra0ons	
  will	
  fluctuate	
  from	
  cell	
  
to	
  cell.	
  
Noise	
  propaga3on	
  
•  Regulatory	
  cascade:	
  Gene	
  1	
  induces	
  gene	
  2.	
  Gene	
  3	
  cons0tu0ve.	
  
•  As	
  gene	
  1	
  is	
  induced,	
  its	
  own	
  noise	
  level	
  drops.	
  
•  Gene	
  2	
  goes	
  through	
  an	
  intermediate	
  peak	
  in	
  noise	
  level.	
  	
  
•  Gene	
  3’s	
  noise	
  is	
  unaffected.	
  
	
  
	
  
Interpreta3on:	
  
At	
  intermediate	
  levels	
  of	
  gene	
  1,	
  the	
  promoter	
  of	
  gene	
  2	
  shows	
  most	
  
switching	
  between	
  bound	
  and	
  unbound	
  states	
  and	
  most	
  sensi0vity	
  to	
  
fluctua0ons	
  in	
  the	
  concentra0on	
  of	
  gene	
  1.	
  
Cells	
  are	
  not	
  sta3c:	
  
Inves0ga0ng	
  stochas0c	
  regulatory	
  dynamics	
  
Wish	
  list	
  
•  Follow	
  growth	
  and	
  gene	
  expression	
  dynamics	
  in	
  single	
  cells	
  over	
  long	
  0me	
  scales.	
  
•  Accurate	
  quan0fica0on.	
  
•  Follow	
  different	
  cell	
  lineages	
  separately	
  to	
  allow	
  observa0on	
  of	
  rare	
  events.	
  
•  Precise	
  dynamical	
  control	
  over	
  growth	
  environment.	
  
Wang	
  et	
  al.	
  Robust	
  growth	
  of	
  Escherichia	
  coli.	
  Curr	
  Biol.	
  2010	
  
The	
  mother	
  machine	
  
Our	
  extension:	
  
The	
  Dual	
  Input	
  Mother	
  Machine	
  
Switching	
  growth	
  media	
  between	
  	
  
glucose	
  and	
  lactose	
  
•  GFP/lacZ	
  fusion	
  reports	
  lac-­‐operon	
  expression.	
  
•  Switch	
  glucose/lactose	
  every	
  4	
  hours.	
  
•  Immediate	
  growth	
  arrest	
  at	
  first	
  switch	
  to	
  lactose.	
  
•  Stochas0c	
  induc0on	
  of	
  lac-­‐operon	
  and	
  restart	
  of	
  growth.	
  
•  Dilu0on	
  of	
  GFP/lacZ	
  during	
  glucose	
  phase.	
  
•  No	
  more	
  growth	
  arrests	
  upon	
  later	
  switches.	
  
Automated	
  Image	
  Analysis:	
  
The	
  Mother	
  Machine	
  Analyzer	
  
Florian	
  Jug	
   Gene	
  Myers	
  
MPI	
  Cell	
  Biology,	
  Dresden	
  
•  Tracking	
  and	
  segmenta0on	
  done	
  in	
  parallel	
  using	
  a	
  
single	
  objec0ve	
  func0on.	
  
•  Interac3ve	
  cura3on:	
  	
  
•  User	
  input	
  interpreted	
  as	
  addi0onal	
  constraints.	
  
•  Automa0c	
  re-­‐op0miza0on.	
  	
  
Cells	
  expand	
  exponen3ally	
  during	
  their	
  cell	
  cycle	
  
2
3
4
2
3
4
2
3
4
2
3
4
0 4 8 12 16 20
time (h)
celllength(µm)
0.970 0.975 0.980 0.985 0.990 0.995 1.000
0.0
0.2
0.4
0.6
0.8
1.0
Pearson correlation exp. growth curve
FractionCellCycles
Cumula3ve	
  correla3on	
  coeff.	
  
of	
  log(size)	
  vs	
  3me	
  
Example	
  growth	
  dynamics	
  of	
  log-­‐size	
  vs	
  3me	
  
Roughly	
  two-­‐fold	
  variability	
  in	
  growth	
  rates	
  
Fluorescence	
  roughly	
  tracks	
  cell	
  size	
  
but	
  produc3on	
  fluctuates	
  significantly	
  
Approximately	
  4-­‐fold	
  varia3on	
  in	
  produc3on	
  rate	
  
Examples	
  of	
  total	
  
fluorescence	
  against	
  0me	
  
for	
  single	
  cells	
  growing	
  in	
  
lactose.	
  
Distribu0on	
  of	
  GFP	
  molecules	
  produced	
  per	
  
second.	
  
Distribu3on	
  of	
  total	
  fluorescence	
  	
  
and	
  fluorescence	
  concentra3ons	
  
5000 10000 15000 20000 25000 30000 35000
0.00000
0.00005
0.00010
0.00015
Fluorescence HAUL
Probabilitydensity
Total Fluorescence Distribution
m=10'616, s=2911, sêm=0.274
8.5 9.0 9.5 10.0 10.5
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Log Fluorescence HAUL
Probabilitydensity
Total Log Fluorescence Distribution
m=9.23,s2
=0.07
4000 6000 8000 10000 12000
0.0000
0.0002
0.0004
0.0006
0.0008
Fluorescence concentrationHAUêmicronL
Probabilitydensity
Fluorescence Concentration Distribution
m=4278, s=661, sêm=0.154
8.0 8.5 9.0 9.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Log Fluorescence concentrationHAUêmicronL
Probabilitydensity
Log Fluorescence Concentration Distribution
m=8.35,s2
=0.022
Very	
  roughly	
  log-­‐normal	
  distribu0ons.	
  Concentra0on	
  has	
  significantly	
  less	
  varia0on.	
  
Measuring	
  transcrip3on	
  	
  
from	
  all	
  E.	
  coli	
  promoters	
  in	
  single	
  cells	
  
•  GFP	
  fluorescence	
  per	
  cell	
  propor0onal	
  to	
  protein	
  number.	
  
•  GFP	
  levels	
  of	
  single	
  cells	
  can	
  be	
  measured	
  in	
  high-­‐throughput	
  using	
  FACS.	
  
•  Quan0ta0vely	
  characterize	
  the	
  distribu0on	
  of	
  expression	
  levels	
  across	
  single	
  cells,	
  for	
  
all	
  E.	
  coli	
  promoters.	
  
ORF1	
   ORF2	
   ORF4	
   E. coli genomeORF3	
  
Plasmid
Zaslaver et al.
2006
Silander	
  et	
  al.	
  PLoS	
  genet	
  2012	
  
Wolf	
  et	
  al.	
  eLife	
  2015	
  
FACS:	
  
Measuring	
  and	
  selec3ng	
  single	
  cells	
  
•  Cells	
  move	
  one-­‐by-­‐one	
  in	
  a	
  flow	
  channel.	
  
•  Each	
  cell	
  passes	
  in	
  front	
  of	
  a	
  laser	
  and	
  its	
  fluorescence	
  is	
  
measured.	
  
	
  
•  By	
  selec0vely	
  charging	
  par0cles	
  based	
  on	
  their	
  measured	
  
fluorescence,	
  one	
  can	
  select	
  cells	
  whose	
  fluorescence	
  lies	
  in	
  
a	
  certain	
  range.	
  
Gene	
  expression	
  distribu3ons	
  	
  
for	
  two	
  example	
  promoters	
  
µ1 µ2
σ1
σ2
Promoter 1 Promoter 2
Means	
  and	
  variances	
  of	
  
na3ve	
  E.	
  coli	
  promoters	
  
•  Variance	
  in	
  log-­‐expression	
  in	
  shows	
  a	
  trend	
  of	
  decreasing	
  with	
  mean	
  expression.	
  
•  Different	
  promoters	
  with	
  same	
  mean	
  can	
  show	
  significantly	
  different	
  variance.	
  
•  There	
  seems	
  to	
  be	
  a	
  clear	
  lower	
  bound	
  on	
  variance	
  as	
  a	
  func0on	
  of	
  mean.	
  
5 6 7 8 9 10 11
0.0
0.2
0.4
0.6
0.8
Mean Log@GFP IntensityD
VarianceLog@GFPpercellD
background	
  
2	
  *	
  background	
  
7 8 9 10 11 12 13
0.0
0.2
0.4
0.6
0.8
Mean Log@proteins per cellD
VarianceLog@proteinspercellD
7 8
0.0
0.2
0.4
0.6
0.8
Excessnoise
Means	
  and	
  variances	
  of	
  
na3ve	
  E.	
  coli	
  promoters	
  
Red	
  curve:	
  	
  	
  
σab
2
= 0.025, b = 450
n = ab, var(n) = (b+1) nAt	
  constant	
  transcrip0on/transla0on/decay	
  rates:	
  
	
  
Assume	
  a	
  and	
  b	
  both	
  fluctuate:	
   var(n) = (b +1) n +σab
2
n
2
nmeas
= nbg
+ n + ε var(n) var log(nmeas
)⎡⎣ ⎤⎦ = σab
2
1−
nbg
nmeas
⎛
⎝
⎜
⎞
⎠
⎟
2
+
(b +1)
nmeas
1−
nbg
nmeas
⎛
⎝
⎜
⎞
⎠
⎟
Noise	
  levels	
  vary	
  across	
  
na3ve	
  E.	
  coli	
  promoters	
  
7 8 9 10 11 12 13
0.0
0.2
0.4
0.6
0.8
Mean Log@ proteins per cellsD
Excessnoise
Excess	
  noise	
  (variance	
  –	
  lower	
  bound	
  as	
  func.	
  mean)	
  
Selec3on	
  on	
  noise	
  levels	
  
High	
  noise	
  
DriZ?	
  Selected	
  for	
  noise?	
  
Low	
  noise.	
  
Selec0on	
  to	
  minimize	
  noise?	
  
What	
  noise	
  would	
  one	
  get	
  without	
  selec3on?	
  	
  
Evolve	
  synthe8c	
  promoters	
  in	
  a	
  precisely	
  controlled	
  selec0ve	
  environment.	
  
Directed	
  evolu0on	
  of	
  promoters	
  	
  
that	
  express	
  at	
  a	
  desired	
  level	
  
*	
  	
  	
  	
  *	
  	
  *	
  
28	
  
Evolu0on	
  of	
  popula0on	
  expression	
  levels	
  
Selec0ng	
  for	
  	
  
Medium	
  expression	
  
29	
  
Selec0ng	
  for	
  
High	
  expression	
  
Expression	
  distribu0ons	
  of	
  	
  
individual	
  synthe0c	
  promoters	
  
•  We	
  isolated	
  ~400	
  clones	
  from	
  evolu0onary	
  runs	
  for	
  both	
  medium	
  and	
  high	
  expression.	
  
•  Measured	
  each	
  clone’s	
  expression	
  distribu0on.	
  	
  
How	
  do	
  noise	
  levels	
  of	
  synthe3c	
  promoters	
  compare	
  with	
  those	
  of	
  na3ve	
  promoters?	
  	
  
Na0ve	
  promoters	
  
Synthe0c	
  promoters	
  
•  Synthe0c	
  promoters	
  were	
  not	
  selected	
  on	
  their	
  noise	
  proper0es.	
  
•  Low	
  noise	
  is	
  the	
  default	
  behavior	
  of	
  E.	
  coli	
  promoters.	
  
•  Selec0on	
  must	
  have	
  acted	
  so	
  as	
  to	
  increase	
  the	
  noise	
  levels	
  of	
  some	
  na0ve	
  promoters.	
  
Iden0cal	
  distribu0ons	
  at	
  the	
  	
  
low	
  noise	
  end.	
  
High	
  noise	
  enriched	
  in	
  	
  
na0ve	
  promoters.	
  	
  
Selec0on	
  caused	
  increased	
  noise	
  in	
  	
  
a	
  substan0al	
  frac0on	
  na0ve	
  promoters	
  
What	
  is	
  `special’	
  about	
  na3ve	
  promoters	
  that	
  show	
  high	
  noise?	
  
Noisy	
  genes	
  have	
  more	
  regulatory	
  inputs	
  
•  185	
  E.	
  coli	
  transcrip0on	
  factors	
  (TFs).	
  
•  	
  4123	
  known	
  regulatory	
  interac0ons	
  TF	
  →	
  promoter.	
  
Genes	
  with	
  higher	
  noise	
  have	
  (on	
  average)	
  higher	
  numbers	
  of	
  known	
  regulatory	
  inputs.	
  
2	
  or	
  more	
  inputs	
  
1	
  known	
  input	
  
no	
  known	
  inputs	
  
synthe0c	
  proms.	
  
Why	
  is	
  there	
  a	
  general	
  associa3on	
  between	
  noise	
  and	
  regula3on?	
  
Why	
  did	
  selec3on	
  cause	
  noise	
  to	
  increase?	
  
Noise-­‐propaga3on:	
  nuisance	
  or	
  opportunity?	
  	
  
Noise	
  as	
  an	
  unavoidable	
  side-­‐effect	
  of	
  regula3on	
  
•  Explains	
  the	
  general	
  associa0on	
  of	
  noise	
  and	
  regula0on.	
  
•  `Fluctua0on-­‐dissipa0on	
  rela0on’:	
  Genes	
  that	
  need	
  complex	
  regula0on	
  unavoidably	
  couple	
  
to	
  the	
  noise	
  in	
  their	
  regulators.	
  
•  Generally	
  assumed	
  to	
  be	
  detrimental:	
  reduces	
  the	
  accuracy	
  of	
  regula0on.	
  
Stochas3city	
  as	
  a	
  bet-­‐hedging	
  strategy	
  
•  Phenotypic	
  diversity	
  can	
  generally	
  be	
  selected	
  for	
  in	
  fluctua0ng	
  environments.	
  
•  Maybe	
  noise-­‐propaga0on	
  can	
  be	
  beneficial	
  in	
  some	
  circumstances?	
  
Let’s	
  do	
  some	
  theory	
  on	
  how	
  gene	
  expression	
  noise	
  affects	
  fitness	
  
Fitness	
  func0on	
  
in	
  a	
  single	
  environment	
  
f (x | µ*,τ ) = exp −
(x −µ* )2
2τ 2
"
#
$
%
&
'
p(x | µ,σ ) =
1
2πσ
exp −
(x −µ)2
2σ 2
"
#
$
%
&
'
f (µ,σ | µ*,τ ) = dxp(x | µ,σ ) f (x | µ*,τ ) =∫
τ 2
τ 2
+σ 2
exp −
(µ −µ* )2
2(τ 2
+σ 2
)
#
$
%
&
'
(
The	
  fitness	
  of	
  a	
  promoter	
  `genotype’	
  (frac0on	
  of	
  its	
  cells	
  selected)	
  is	
  a	
  convolu0on	
  of	
  these	
  
two	
  func0ons	
  (approx.	
  area	
  on	
  the	
  intersec0on):	
  
Fitness	
  (probability	
  to	
  be	
  selected):	
  
Promoter	
  expression	
  distribu0on:	
  
σ = 0.1
µ µ*
τ
Moving	
  the	
  mean	
  toward	
  	
  the	
  
	
  desired	
  level	
  always	
  increases	
  fitness	
  
f (µ,σ | µ*,τ ) =
τ 2
τ 2
+σ 2
exp −
(µ −µ* )2
2(τ 2
+σ 2
)
"
#
$
%
&
'
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
f (µ = 8.0,σ = 0.1) = 0.066 f (µ = 8.1,σ = 0.1) = 0.174
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
At	
  op0mal	
  mean	
  	
  
minimal	
  noise	
  is	
  preferred	
  
f (µ,σ | µ*,τ ) =
τ 2
τ 2
+σ 2
exp −
(µ −µ* )2
2(τ 2
+σ 2
)
"
#
$
%
&
'
f (µ = 8.15,σ = 0.1) = 0.196 f (µ = 8.15,σ = 0.025) = 0.625
As	
  mean	
  moves	
  away	
  from	
  the	
  op0mum	
  
there	
  is	
  a	
  bifurca0on	
  to	
  nonzero	
  op0mal	
  noise	
  
f (µ,σ | µ*,τ ) =
τ 2
τ 2
+σ 2
exp −
(µ −µ* )2
2(τ 2
+σ 2
)
"
#
$
%
&
'
f (µ = 8.0,σ = 0.05) = 0.0077
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
f (µ = 8.0,σ = 0.1) = 0.066
7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4
0.0
0.2
0.4
0.6
0.8
1.0
Log expression
ExpressionêSelectionprobability
`Bifurca3on’	
  in	
  op3mal	
  σ	
  
	
  
When	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  the	
  op0mal	
  noise	
  level	
  is	
  
non-­‐zero:	
  
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
Expression deviation »mu-mu*»
Optimalsigma
Op3mal	
  σ	
  	
  	
  
σ* = (µ −µ* )2
−τ 2
τ = 0.05
τ = 0.2µ −µ*
≥ τ
Variable	
  environment:	
  
Fitness	
  of	
  an	
  unregulated	
  gene	
  
log f (µ,σ )[ ]= −
(µ −µe )2
2(τ 2
+σ 2
)
+
1
2
log
τ 2
τ 2
+σ 2
"
#
$
%
&
'Log-­‐fitness	
  in	
  a	
  variable	
  environment:	
  
Assuming	
  no	
  regula0on,	
  op0mal	
  mean	
  equals	
  
Log-­‐fitness	
  becomes:	
  
	
  
	
  
	
  
Op3mal	
  noise	
  matches	
  the	
  varia3on	
  in	
  desired	
  expression	
  levels:	
  
	
  
log f (µ,σ )[ ]= −
var(µe )
2(τ 2
+σ 2
)
+
1
2
log
τ 2
τ 2
+σ 2
"
#
$
%
&
'
This	
  is	
  the	
  bet	
  hedging	
  scenario.	
  But:	
  
Wouldn’t	
  it	
  be	
  beer	
  to	
  evolve	
  gene	
  regula0on?	
  	
  
σopt
2
= var(µe )−τ 2
µ = µe
Effects	
  of	
  coupling	
  a	
  gene	
  to	
  a	
  regulator	
  
Regulator’s	
  ac0vity	
  
Gene	
  coupled	
  to	
  the	
  regulator.	
  
Gene	
  without	
  regula0on	
  
TF	
  
TF
Two	
  main	
  effects	
  on	
  the	
  gene’s	
  expression:	
  
1.  Condi3on-­‐response:	
  Mean	
  depends	
  on	
  regulator’s	
  (condi0on-­‐dependent)	
  ac0vity.	
  
2.  Noise-­‐propaga3on:	
  Noise	
  increases	
  due	
  to	
  propaga0on	
  of	
  the	
  regulator’s	
  noise.	
  
We	
  developed	
  a	
  general	
  theory	
  to	
  calculate	
  how	
  these	
  effects	
  conspire	
  to	
  affect	
  fitness.	
  	
  
Fitness	
  depends	
  on	
  only	
  4	
  effec3ve	
  parameters	
  
Varia0on	
  in	
  desired	
  levels:	
  V	
  	
  
στ
1.	
  Expression	
  mismatch:	
   Y 2
=
V
σ 2
+τ 2
Varia0on	
  in	
  regulator	
  levels:	
  Vr	
  	
  
σr
2.	
  Signal-­‐to-­‐noise	
  of	
  the	
  regulator:	
   S2
=
Vr
σr
2
3.	
  Correla3on	
  regulator/desired	
  levels:	
  R
Fitness	
  effect	
  of	
  the	
  regulatory	
  interac3on:	
  
4.	
  Coupling	
  strength:	
   X
log[ f ]= −
1
2
Y 2
(1− R2
)+ SX − RY( )
2
(1+ X 2
)
−
1
2
log 1+ X 2"
#
$
%
Scenario:	
  Start	
  with	
  unregulated	
  promoter.	
  What	
  fitness	
  can	
  be	
  obtained	
  by	
  coupling	
  to	
  
regulator	
  with	
  signal-­‐to-­‐noise	
  S	
  and	
  correla0on	
  R?	
  
Fitness	
  with	
  op0mal	
  coupling	
  to	
  a	
  regulator	
  
of	
  given	
  correla0on	
  R	
  and	
  signal-­‐to-­‐noise	
  S	
  
Fitness	
  of	
  the	
  
unregulated	
  promoter.	
  
Y=4	
  
Perfect	
  
	
  correla0on	
  
No	
  
correla0on	
  
Noisy	
  	
  
regulator	
  
Precise	
  	
  
regulator	
  
Coupling	
  to	
  a	
  near	
  op3mal	
  regulator:	
  
condi3on-­‐response	
  effect	
  
Y=4	
  
TF	
   TF
σtot = 0.16
R = 0.95
S = 3.3
Fitness	
  of	
  the	
  
unregulated	
  promoter.	
  
Coupling	
  to	
  a	
  noisy	
  uncorrelated	
  regulator:	
  
noise-­‐propaga3on	
  implements	
  bet	
  hedging	
  strategy	
  
Y=4	
  
TF	
   TF
σtot = 0.55
R = 0
S = 0.19
Fitness	
  of	
  the	
  
unregulated	
  promoter.	
  
Intermediate	
  case:	
  
a	
  moderately	
  correlated	
  regulator	
  
Y=4	
  
TF	
   TF
σtot = 0.23
R = 0.64
S = 2.45
Fitness	
  of	
  the	
  
unregulated	
  promoter.	
  
Op0mal	
  S	
  at	
  a	
  given	
  R.	
  
Y=4	
  
Condi3on-­‐response	
  and	
  noise-­‐propaga3on	
  	
  
typically	
  act	
  in	
  concert	
  
Regulator	
  	
  
too	
  noisy.	
  
Regulator	
  not	
  
noisy	
  enough.	
  
•  Noise-­‐propaga0on	
  is	
  oZen	
  func8onal,	
  ac0ng	
  as	
  a	
  rudimentary	
  form	
  of	
  regula0on.	
  
•  De	
  novo	
  evolu0on	
  of	
  regula0on:	
  Star0ng	
  from	
  pure	
  noise-­‐propaga0on	
  (R=0,S=0)	
  
there	
  is	
  a	
  con0nuum	
  of	
  solu0ons	
  of	
  increasing	
  accuracy	
  along	
  which	
  condi0on-­‐
response	
  and	
  noise-­‐propaga0on	
  op0mally	
  complement	
  each	
  other.	
  	
  	
  
	
  
•  Regulated	
  genes	
  are	
  noisy	
  because,	
  whenever	
  the	
  condi0on-­‐response	
  is	
  imperfect,	
  
maximal	
  fitness	
  requires	
  noisy	
  regulators.	
  
Summary	
  Theory:	
  
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
Y: Expression mismatch
R:Correlationofregulator'sexpressionwithdesired-levels
σtot
2
=σ 2
Low	
  noise	
  regime:	
  
Promoters	
  with	
  low	
  expression	
  mismatch	
  Y<1	
  `do	
  not	
  bother’	
  to	
  be	
  regulated.	
  
For	
  extremely	
  	
  correlated	
  regulators,	
  zero	
  noise-­‐propaga0on	
  is	
  the	
  op0mum.	
  
Phase	
  diagram	
  of	
  final	
  noise	
  
aZer	
  coupling	
  to	
  regulators	
  with	
  op0mal	
  noise	
  levels.	
  
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
Y: Expression mismatch
R:Correlationofregulator'sexpressionwithdesired-levels
σtot
2
=σ 2
Noise-­‐propaga3on	
  regime:	
  
The	
  final	
  noise	
  level	
  matches	
  the	
  frac0on	
  of	
  variance	
  in	
  desired	
  levels	
  not	
  tracked	
  by	
  the	
  
condi0on-­‐response.	
  
σtot
2
= (1− R2
)var(µe )−τ 2
Phase	
  diagram	
  of	
  final	
  noise	
  
aZer	
  coupling	
  to	
  regulators	
  with	
  op0mal	
  noise	
  levels.	
  
Amount	
  of	
  regula3on	
  required.	
  
Variance	
  in	
  desired	
  levels	
  
Selec3on	
  tolerance	
  
Limited	
  accuracy	
  of	
  the	
  condi3on-­‐response.	
  
Frac3on	
  variance	
  not	
  tracked	
  by	
  regula3on.	
  
Conclusions	
  
signal	
  
regulator	
  
•  We	
  evolved	
  synthe0c	
  promoters	
  de	
  novo	
  in	
  E.	
  coli	
  under	
  carefully-­‐
controlled	
  selec0ve	
  condi0ons.	
  
•  No	
  evidence	
  E.	
  coli	
  promoters	
  have	
  been	
  selected	
  to	
  lower	
  noise.	
  	
  
•  Regulated	
  genes	
  have	
  been	
  selected	
  to	
  increase	
  noise.	
  	
  
Experimental	
  observa3ons	
  
Theory	
  
•  Coupling	
  a	
  regulator	
  to	
  a	
  target	
  promoter	
  has	
  two	
  effects:	
  
1.  Condi0on-­‐response.	
  
2.  Noise-­‐propaga0on.	
  
•  Noise-­‐propaga0on	
  alone	
  can	
  act	
  as	
  a	
  rudimentary	
  form	
  of	
  regula0on.	
  
•  Accurate	
  regula0on	
  can	
  evolve	
  smoothly	
  along	
  a	
  con0nuum	
  in	
  which	
  
noise-­‐propaga0on	
  and	
  condi0on-­‐response	
  act	
  in	
  concert.	
  	
  
•  Whenever	
  the	
  condi0on-­‐response	
  has	
  limited	
  accuracy,	
  noisy	
  
regula0on	
  is	
  preferred.	
  
•  Explains	
  the	
  general	
  associa0on	
  between	
  noise	
  and	
  regula0on.	
  	
  
Thank	
  you!	
  
Luise	
  Wolf	
  	
  	
  	
  	
  	
  	
  	
  Olin	
  Silander	
  
Theory/computa3on	
  PhD	
  and	
  post-­‐doc	
  posi3ons	
  available!	
  
This	
  work:	
  
Our	
  group	
  

Más contenido relacionado

La actualidad más candente

Varriation Within and Between Species
Varriation Within and Between SpeciesVarriation Within and Between Species
Varriation Within and Between Speciesac_arafat
 
plastome engineering
plastome engineeringplastome engineering
plastome engineeringKanchan Rawat
 
Isolation and Molecular Detection of
Isolation and Molecular Detection ofIsolation and Molecular Detection of
Isolation and Molecular Detection ofHany Ellakany
 
Polymerase Chain Reaction Practical
Polymerase Chain Reaction PracticalPolymerase Chain Reaction Practical
Polymerase Chain Reaction PracticalSabahat Ali
 
Discovery and Molecular characterization of virus PPT
 Discovery and Molecular characterization of virus PPT   Discovery and Molecular characterization of virus PPT
Discovery and Molecular characterization of virus PPT Mesele Tilahun
 
Sequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMSequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMThermo Fisher Scientific
 
application of pcr in agriculture
application of pcr in agricultureapplication of pcr in agriculture
application of pcr in agricultureharshitajiancdfst
 
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...Fruit breedomics workshop wp6 molecular markers technology and methods riccar...
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...fruitbreedomics
 
Nested PCR,Fusion primers, Integrated PCR
Nested PCR,Fusion primers, Integrated PCRNested PCR,Fusion primers, Integrated PCR
Nested PCR,Fusion primers, Integrated PCRSani Jwel
 
SAB presentation to Jim narrated
SAB presentation to Jim narratedSAB presentation to Jim narrated
SAB presentation to Jim narratedguestba7bf7
 
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...iosrjce
 
Fda 2005-dna-in-vaccines
Fda 2005-dna-in-vaccinesFda 2005-dna-in-vaccines
Fda 2005-dna-in-vaccinesstellablue
 
Bacterial genetics png 2011
Bacterial genetics png 2011Bacterial genetics png 2011
Bacterial genetics png 2011Prasad Gunjal
 

La actualidad más candente (20)

Varriation Within and Between Species
Varriation Within and Between SpeciesVarriation Within and Between Species
Varriation Within and Between Species
 
plastome engineering
plastome engineeringplastome engineering
plastome engineering
 
Isolation and Molecular Detection of
Isolation and Molecular Detection ofIsolation and Molecular Detection of
Isolation and Molecular Detection of
 
PCR
PCRPCR
PCR
 
Polymerase Chain Reaction Practical
Polymerase Chain Reaction PracticalPolymerase Chain Reaction Practical
Polymerase Chain Reaction Practical
 
Ti plasmid vector
Ti plasmid vectorTi plasmid vector
Ti plasmid vector
 
Discovery and Molecular characterization of virus PPT
 Discovery and Molecular characterization of virus PPT   Discovery and Molecular characterization of virus PPT
Discovery and Molecular characterization of virus PPT
 
Sequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMSequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TM
 
application of pcr in agriculture
application of pcr in agricultureapplication of pcr in agriculture
application of pcr in agriculture
 
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...Fruit breedomics workshop wp6 molecular markers technology and methods riccar...
Fruit breedomics workshop wp6 molecular markers technology and methods riccar...
 
Bacterial Genetics
Bacterial GeneticsBacterial Genetics
Bacterial Genetics
 
NCSU Poster
NCSU PosterNCSU Poster
NCSU Poster
 
Nested PCR,Fusion primers, Integrated PCR
Nested PCR,Fusion primers, Integrated PCRNested PCR,Fusion primers, Integrated PCR
Nested PCR,Fusion primers, Integrated PCR
 
Types of PCR
Types of PCRTypes of PCR
Types of PCR
 
05 costa
05 costa05 costa
05 costa
 
SAB presentation to Jim narrated
SAB presentation to Jim narratedSAB presentation to Jim narrated
SAB presentation to Jim narrated
 
reporter gene
reporter genereporter gene
reporter gene
 
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
Assessment of genetic fidelity of in vitro propagated clones of Celastrus pan...
 
Fda 2005-dna-in-vaccines
Fda 2005-dna-in-vaccinesFda 2005-dna-in-vaccines
Fda 2005-dna-in-vaccines
 
Bacterial genetics png 2011
Bacterial genetics png 2011Bacterial genetics png 2011
Bacterial genetics png 2011
 

Destacado

Reciprocity between robustness and plasticity as a universal quantitative law...
Reciprocity between robustness and plasticity as a universal quantitative law...Reciprocity between robustness and plasticity as a universal quantitative law...
Reciprocity between robustness and plasticity as a universal quantitative law...Lake Como School of Advanced Studies
 
Impact of Environmental Noise in communities of neutral species - Jordi Hidalgo
Impact of Environmental Noise in communities of neutral species - Jordi HidalgoImpact of Environmental Noise in communities of neutral species - Jordi Hidalgo
Impact of Environmental Noise in communities of neutral species - Jordi HidalgoLake Como School of Advanced Studies
 
Systems Biology and Medicine: Understanding disease by understanding the netw...
Systems Biology and Medicine: Understanding disease by understanding the netw...Systems Biology and Medicine: Understanding disease by understanding the netw...
Systems Biology and Medicine: Understanding disease by understanding the netw...Lake Como School of Advanced Studies
 
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaTraditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaLake Como School of Advanced Studies
 
Integrative analysis and visualization of clinical and molecular data for can...
Integrative analysis and visualization of clinical and molecular data for can...Integrative analysis and visualization of clinical and molecular data for can...
Integrative analysis and visualization of clinical and molecular data for can...Lake Como School of Advanced Studies
 
How do antibiotics work? …. and can physicists help? - Rosalind Allen
How do antibiotics work? …. and can physicists help? - Rosalind AllenHow do antibiotics work? …. and can physicists help? - Rosalind Allen
How do antibiotics work? …. and can physicists help? - Rosalind AllenLake Como School of Advanced Studies
 

Destacado (20)

Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner
 
Reciprocity between robustness and plasticity as a universal quantitative law...
Reciprocity between robustness and plasticity as a universal quantitative law...Reciprocity between robustness and plasticity as a universal quantitative law...
Reciprocity between robustness and plasticity as a universal quantitative law...
 
Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner Exploratory Adaptation in Random Networks - Naama Brenner
Exploratory Adaptation in Random Networks - Naama Brenner
 
Impact of Environmental Noise in communities of neutral species - Jordi Hidalgo
Impact of Environmental Noise in communities of neutral species - Jordi HidalgoImpact of Environmental Noise in communities of neutral species - Jordi Hidalgo
Impact of Environmental Noise in communities of neutral species - Jordi Hidalgo
 
Systems Biology and Medicine: Understanding disease by understanding the netw...
Systems Biology and Medicine: Understanding disease by understanding the netw...Systems Biology and Medicine: Understanding disease by understanding the netw...
Systems Biology and Medicine: Understanding disease by understanding the netw...
 
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto EstradaTraditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
Traditional vs Nontraditional Methods for Network Analytics - Ernesto Estrada
 
A tutorial in Connectome Analysis (0) - Marcus Kaiser
A tutorial in Connectome Analysis (0) - Marcus KaiserA tutorial in Connectome Analysis (0) - Marcus Kaiser
A tutorial in Connectome Analysis (0) - Marcus Kaiser
 
Spatial network, Theory and applications - Marc Barthelemy II
Spatial network, Theory and applications - Marc Barthelemy IISpatial network, Theory and applications - Marc Barthelemy II
Spatial network, Theory and applications - Marc Barthelemy II
 
Temporal networks - Alain Barrat
Temporal networks - Alain BarratTemporal networks - Alain Barrat
Temporal networks - Alain Barrat
 
Social and economical networks from (big-)data - Esteban Moro II
Social and economical networks from (big-)data - Esteban Moro IISocial and economical networks from (big-)data - Esteban Moro II
Social and economical networks from (big-)data - Esteban Moro II
 
Closing session - Hans V. Westerhoff
Closing session - Hans V. WesterhoffClosing session - Hans V. Westerhoff
Closing session - Hans V. Westerhoff
 
Mesoscale Structures in Networks - Mason A. Porter
Mesoscale Structures in Networks - Mason A. PorterMesoscale Structures in Networks - Mason A. Porter
Mesoscale Structures in Networks - Mason A. Porter
 
Spatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc BarthelemySpatial network, Theory and applications - Marc Barthelemy
Spatial network, Theory and applications - Marc Barthelemy
 
Integrative analysis and visualization of clinical and molecular data for can...
Integrative analysis and visualization of clinical and molecular data for can...Integrative analysis and visualization of clinical and molecular data for can...
Integrative analysis and visualization of clinical and molecular data for can...
 
A tutorial in Connectome Analysis (1) - Marcus Kaiser
A tutorial in Connectome Analysis (1) - Marcus KaiserA tutorial in Connectome Analysis (1) - Marcus Kaiser
A tutorial in Connectome Analysis (1) - Marcus Kaiser
 
How do antibiotics work? …. and can physicists help? - Rosalind Allen
How do antibiotics work? …. and can physicists help? - Rosalind AllenHow do antibiotics work? …. and can physicists help? - Rosalind Allen
How do antibiotics work? …. and can physicists help? - Rosalind Allen
 
A tutorial in Connectome Analysis (3) - Marcus Kaiser
A tutorial in Connectome Analysis (3) - Marcus KaiserA tutorial in Connectome Analysis (3) - Marcus Kaiser
A tutorial in Connectome Analysis (3) - Marcus Kaiser
 
A tutorial in Connectome Analysis (2) - Marcus Kaiser
A tutorial in Connectome Analysis (2) - Marcus KaiserA tutorial in Connectome Analysis (2) - Marcus Kaiser
A tutorial in Connectome Analysis (2) - Marcus Kaiser
 
Functional Brain Networks - Javier M. Buldù
Functional Brain Networks - Javier M. BuldùFunctional Brain Networks - Javier M. Buldù
Functional Brain Networks - Javier M. Buldù
 
Noise Pollution
Noise PollutionNoise Pollution
Noise Pollution
 

Similar a Gene expression noise, regulation, and noise propagation - Erik van Nimwegen

Molecular genetics
Molecular genetics Molecular genetics
Molecular genetics Afra Fathima
 
Tools used in molecular biology
Tools used in molecular biologyTools used in molecular biology
Tools used in molecular biologySAURABH SHUKLA
 
Tools used in molecular biology
Tools used in molecular biology Tools used in molecular biology
Tools used in molecular biology SAURABH SHUKLA
 
C value, Cot Curve & Rot Curve L1-3.pdf
C value, Cot Curve & Rot Curve L1-3.pdfC value, Cot Curve & Rot Curve L1-3.pdf
C value, Cot Curve & Rot Curve L1-3.pdfNitin Wahi
 
Introns: structure and functions
Introns: structure and functionsIntrons: structure and functions
Introns: structure and functionsbhagatyogesh12
 
Prions , prions diseases & pcr
Prions , prions diseases & pcrPrions , prions diseases & pcr
Prions , prions diseases & pcrDr. Waqas Nawaz
 
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...Pradeep Singh Narwat
 
Real time pcr
Real time pcrReal time pcr
Real time pcrali h
 
Third Generation Sequencing
Third Generation Sequencing Third Generation Sequencing
Third Generation Sequencing priyanka raviraj
 
Machine Learning - Genetic Algorithm Fundamental
Machine Learning - Genetic Algorithm FundamentalMachine Learning - Genetic Algorithm Fundamental
Machine Learning - Genetic Algorithm FundamentalAnggi Andriyadi
 
Genome organisation in eukaryotes...........!!!!!!!!!!!
Genome organisation in eukaryotes...........!!!!!!!!!!!Genome organisation in eukaryotes...........!!!!!!!!!!!
Genome organisation in eukaryotes...........!!!!!!!!!!!manish chovatiya
 
Arnab kumar de
Arnab kumar deArnab kumar de
Arnab kumar deArnab De
 
GENOME_STRUCTURE1.ppt
GENOME_STRUCTURE1.pptGENOME_STRUCTURE1.ppt
GENOME_STRUCTURE1.pptsherylbadayos
 
DNA Microarray and Analysis of Metabolic Control
DNA Microarray and Analysis of Metabolic ControlDNA Microarray and Analysis of Metabolic Control
DNA Microarray and Analysis of Metabolic Controlshilpa sharma
 
Molecular_bilogy_lab_report_2
Molecular_bilogy_lab_report_2Molecular_bilogy_lab_report_2
Molecular_bilogy_lab_report_2Elijah Willie
 
Sept2016 plenary mercer_sequins
Sept2016 plenary mercer_sequinsSept2016 plenary mercer_sequins
Sept2016 plenary mercer_sequinsGenomeInABottle
 
POLYMERASE CHAIN REACTION.pptx
POLYMERASE   CHAIN   REACTION.pptxPOLYMERASE   CHAIN   REACTION.pptx
POLYMERASE CHAIN REACTION.pptxHarsharankaur36
 

Similar a Gene expression noise, regulation, and noise propagation - Erik van Nimwegen (20)

Molecular genetics
Molecular genetics Molecular genetics
Molecular genetics
 
Tools used in molecular biology
Tools used in molecular biologyTools used in molecular biology
Tools used in molecular biology
 
Tools used in molecular biology
Tools used in molecular biology Tools used in molecular biology
Tools used in molecular biology
 
C value, Cot Curve & Rot Curve L1-3.pdf
C value, Cot Curve & Rot Curve L1-3.pdfC value, Cot Curve & Rot Curve L1-3.pdf
C value, Cot Curve & Rot Curve L1-3.pdf
 
Introns: structure and functions
Introns: structure and functionsIntrons: structure and functions
Introns: structure and functions
 
Prions , prions diseases & pcr
Prions , prions diseases & pcrPrions , prions diseases & pcr
Prions , prions diseases & pcr
 
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...Junk DNA/ Non-coding DNA and its Importance  (Regulatory RNAs, RNA interferen...
Junk DNA/ Non-coding DNA and its Importance (Regulatory RNAs, RNA interferen...
 
SNP Genotyping Technologies
SNP Genotyping TechnologiesSNP Genotyping Technologies
SNP Genotyping Technologies
 
Molecular Biology
Molecular BiologyMolecular Biology
Molecular Biology
 
Real time pcr
Real time pcrReal time pcr
Real time pcr
 
Third Generation Sequencing
Third Generation Sequencing Third Generation Sequencing
Third Generation Sequencing
 
Markers
MarkersMarkers
Markers
 
Machine Learning - Genetic Algorithm Fundamental
Machine Learning - Genetic Algorithm FundamentalMachine Learning - Genetic Algorithm Fundamental
Machine Learning - Genetic Algorithm Fundamental
 
Genome organisation in eukaryotes...........!!!!!!!!!!!
Genome organisation in eukaryotes...........!!!!!!!!!!!Genome organisation in eukaryotes...........!!!!!!!!!!!
Genome organisation in eukaryotes...........!!!!!!!!!!!
 
Arnab kumar de
Arnab kumar deArnab kumar de
Arnab kumar de
 
GENOME_STRUCTURE1.ppt
GENOME_STRUCTURE1.pptGENOME_STRUCTURE1.ppt
GENOME_STRUCTURE1.ppt
 
DNA Microarray and Analysis of Metabolic Control
DNA Microarray and Analysis of Metabolic ControlDNA Microarray and Analysis of Metabolic Control
DNA Microarray and Analysis of Metabolic Control
 
Molecular_bilogy_lab_report_2
Molecular_bilogy_lab_report_2Molecular_bilogy_lab_report_2
Molecular_bilogy_lab_report_2
 
Sept2016 plenary mercer_sequins
Sept2016 plenary mercer_sequinsSept2016 plenary mercer_sequins
Sept2016 plenary mercer_sequins
 
POLYMERASE CHAIN REACTION.pptx
POLYMERASE   CHAIN   REACTION.pptxPOLYMERASE   CHAIN   REACTION.pptx
POLYMERASE CHAIN REACTION.pptx
 

Más de Lake Como School of Advanced Studies

LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...Lake Como School of Advanced Studies
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLake Como School of Advanced Studies
 
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Lake Como School of Advanced Studies
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...Lake Como School of Advanced Studies
 
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...Lake Como School of Advanced Studies
 
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...Lake Como School of Advanced Studies
 
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market  States and Subtleties of Correlations - Thomas GuhrEconophysics V: Market  States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market States and Subtleties of Correlations - Thomas GuhrLake Como School of Advanced Studies
 

Más de Lake Como School of Advanced Studies (20)

Electromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena PianElectromagnetic counterparts of Gravitational Waves - Elena Pian
Electromagnetic counterparts of Gravitational Waves - Elena Pian
 
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
LOW FREQUENCY GW SOURCES: Chapter III: Probing massive black hole binary with...
 
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
LOW FREQUENCY GW SOURCES: Chapter II: Massive black hole binary cosmic evolut...
 
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto SesanaLOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
LOW FREQUENCY GW SOURCES: Chapter I: Overview of LISA sources - Alberto Sesana
 
Gravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del PozzoGravitational waves data analysis - Walter Del Pozzo
Gravitational waves data analysis - Walter Del Pozzo
 
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
Space based Gravitational Wave Observations I – M Hewitson from Lake Como Sch...
 
Space based Gravitational Wave Observations II - M Hewitson
Space based Gravitational Wave Observations II  - M HewitsonSpace based Gravitational Wave Observations II  - M Hewitson
Space based Gravitational Wave Observations II - M Hewitson
 
Space based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M HewitsonSpace based Gravitational Wave Observations III - M Hewitson
Space based Gravitational Wave Observations III - M Hewitson
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
The Analytical/Numerical Relativity Interface behind Gravitational Waves: Lec...
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
Ground based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni LosurdoGround based GW dedetctors - Giovanni Losurdo
Ground based GW dedetctors - Giovanni Losurdo
 
Gravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault DamourGravitational Waves and Binary Systems (4) - Thibault Damour
Gravitational Waves and Binary Systems (4) - Thibault Damour
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Gravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault DamourGravitational Waves and Binary Systems (1) - Thibault Damour
Gravitational Waves and Binary Systems (1) - Thibault Damour
 
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...Econophysics VII: Credits and the Instability of the Financial System - Thoma...
Econophysics VII: Credits and the Instability of the Financial System - Thoma...
 
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
Econophysics VI: Price Cross-Responses in Correlated Financial Markets - Thom...
 
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market  States and Subtleties of Correlations - Thomas GuhrEconophysics V: Market  States and Subtleties of Correlations - Thomas Guhr
Econophysics V: Market States and Subtleties of Correlations - Thomas Guhr
 

Último

well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxzaydmeerab121
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptAmirRaziq1
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterHanHyoKim
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfAtiaGohar1
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfSubhamKumar3239
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxpriyankatabhane
 
How we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxHow we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxJosielynTars
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDivyaK787011
 

Último (20)

well logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptxwell logging & petrophysical analysis.pptx
well logging & petrophysical analysis.pptx
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
Immunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.pptImmunoblott technique for protein detection.ppt
Immunoblott technique for protein detection.ppt
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarter
 
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdfReplisome-Cohesin Interfacing A Molecular Perspective.pdf
Replisome-Cohesin Interfacing A Molecular Perspective.pdf
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
complex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdfcomplex analysis best book for solving questions.pdf
complex analysis best book for solving questions.pdf
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
 
How we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptxHow we decide powerpoint presentation.pptx
How we decide powerpoint presentation.pptx
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
办理麦克马斯特大学毕业证成绩单|购买加拿大文凭证书
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdfDECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
DECOMPOSITION PATHWAYS of TM-alkyl complexes.pdf
 

Gene expression noise, regulation, and noise propagation - Erik van Nimwegen

  • 1. Gene  expression  noise,   regula0on,  and  noise  propaga0on   Erik  van  Nimwegen   Biozentrum,  University  of  Basel,   and  Swiss  Ins8tute  of  Bioinforma8cs   Basel   Our  group  
  • 2. Cartoon  of  the  steps  in  gene  expression   Gene  X   RNA   polymerase   Gene  X   RNA   polymerase   mRNA  gene  X   Transcrip0on  rate:     rλ mRNA  decay  rate   Protein  X   Transla0on  rate   Protein  decay  rate:   pλ pµ rµ
  • 3. Gene  expression  differen3al  equa3ons   •   P  =  Amount  of  protein  X.   •   R  =  Amount  of  mRNA  X.   •   P  increases  due  to  transla0on  of  mRNA  and  decreases  due  to  protein  decay.   p p dP R P dt λ µ= − •   R  increases  due  to  transcrip0on  and  decreases  due  to  mRNA  decay.   r r dR R dt λ µ= − Steady-­‐state:     P = λr λp µr µp R = λr µr •   In  reality  there  are  are  really  an  integer  number  p(t)  of  proteins  at  0me  t,  and  r(t)  mRNAs.   •   Numbers  may  be  small,  e.g.  there  is  only  one  copy  of  the  gene  in  the  DNA.   •   The  RNA  polymerases,  ribosomes,  and  mRNAs    are  tumbling  around  in  the  cell,        constantly  bumping  into  other  molecules  (i.e.  following  Brownian  mo0on).   Discreteness  and  Stochas3city:  
  • 4. Surprise  surprise:     Gene  expression  is  stochas3c   Low copy Plasmid •  GFP  fluorescence  per  cell  propor0onal  to  protein   number.   •  Not  surprisingly,  fluctua0ons  are  observed  between   cells.   •  What  kind  of  fluctua0ons  would  one  expect  in  a   simplest  possible  model?      
  • 5. Stochas3c  transcrip3on  and  decay   Gene  X   RNA   polymerase   Gene  X   RNA   polymerase   mRNA  gene  X   Probability            per  unit  0me  to  transcribe  a   new  mRNA.   Differen0al  equa0on  for  the  distribu0on:   1 1 ( ) ( ) ( 1) ( ) ( ) ( )n r n r n r r n dP t P t n P t n P t dt λ µ λ µ− += + + − + Probability  that  there  are  n  mRNAs  at  0me  t:   rλ rµ Pn (t) Probability          per  mRNA  per  unit   0me  that  it  will  decay.    
  • 6. Steady-­‐state  is  Poisson  distribu3on   Probability  to  have  n  mRNAs:   Pn = 1 n! λr µr ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ n e −λr /µr Mean:   n = λ µ Variance:   var(n) = n = λ µ Standard-­‐devia3on:  σ (n) = n 0 1 2 3 4 5 0.0 0.2 0.4 0.6 0.8 Number of mRNA n Probability 0 2 4 6 8 10 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Number of mRNA n Probability 0 5 10 15 20 25 30 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Number of mRNA n Probability λr µr = 0.1 10r r λ µ = λr µr =1
  • 7. (Shahrezaei,  Swain  PNAS  2008)   Transla3on  amplifies  mRNA  fluctua3ons   mean  and  variance:   a = λr µp b = λp µp “burst  size”:  transla0ons  per  mRNA  life0me.   n = ab, var(n) = (b+1) n λr µr µp transcrip0on   mRNA  decay   transla0on   protein  decay   λp λr µr λp µp •  Proteins  are  oZen  long-­‐lived:  approxima0on  protein-­‐decay  slow  rela0ve  to  mRNA  decay.   •  Solu0on  in  terms  of  two  ra0os:   Transcrip0on  events  per  protein  life0me.   Pn = Γ(a + n) Γ(a)n! b b +1 ⎛ ⎝⎜ ⎞ ⎠⎟ n 1− b b +1 ⎛ ⎝⎜ ⎞ ⎠⎟ a noise:   η(n) = σ(n) n = var(n) n 2 = b +1 n
  • 8. mRNAs  per  cell  for  E.  coli   hp://book.bionumbers.org/  
  • 9. Typical  genes  have  less  than  1     mRNA  per  cell  in  E  coli   Fluorescently  labeling  single   mRNAs  (Fluorescence  In   Situ  Hybridiza0on).   Coun0ng  mRNAs  per  cell   under  the  microscope.   Mean  mRNAs  per  cell   Taniguchi  et  al,  Science  (2010)   From:  Milo  and  Phillips,  Cell  Biology  by  the  numbers    
  • 10. Some  addi3onal  numbers  for  E.  coli   •   RNA  polymerases  per  cell:  1’500-­‐10’000  (depending  on  growth  rate).   •   Ribosomes  per  cell:  14’000  (1  doubling  per  hour)  –  45’000  (2  doublings  per  hour).   •   mRNA  decay  rate:  1-­‐15  minutes  half-­‐life.     •  Protein  decay  rate:  typically  a  few  hours.     •  Protein  dilu0on  rate:  cell  doubling  0me,  i.e.  30  min  to  2  hours.     Bernstein  et  al,  PNAS  (2002)   Taniguchi  et  al,  Science  (2002)   Distribu3on  mRNA  half-­‐lifes   Distribu3on  mean  proteins  per  cell  
  • 11. Measuring  variability  within  and  across  cells   Two  3mes  the  same  promoter   Intrinsic  and  extrinsic  noise   •  Total  variance  in  fluorescence  per  cell  can  be  decomposed  into  two  parts:   •  Intrinsic  =  variance  within  cell:     •  Extrinsic  variance  =  the  rest,  i.e.  variability  across  cells:     vtot = var(g) + var(r) = vi + ve vi = 1 2 (g − r)2 ve = gr − g r Hey!  That  covariance  could  be  nega8ve!    How  can  a  variance  be  nega8ve?    
  • 12. How  to  properly  infer     intrinsic  and  extrinsic  variance   Gives  orthodox  sta0s0cal  es0mators     that  can  give  nega0ve  es0mates.   A  Bayesian  solu3on  is  never  pathological  and  much  more  accurate  when  extrinsic  noise  is  small     Extrinsic:  Gaussian  distribu0on  of  mean  μi  across  cells  i:     Intrinsic:  Gaussian  devia0on  of  green  gi  and  red  ri  from  mean  μi:     P(gi ,ri | µi ) = 1 2πv exp − (gi − µi )2 + (ri − µi )2 2v ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ Posterior  for  the  intrinsic  variance  v  and  extrinsic  variance  vμ:   P(v,vµ | D) = vµ + v / 2( ) −(n−1)/2 v−n/2 exp − n 4v (g − r)2 − n (2vµ + v) var r + g 2 ⎛ ⎝⎜ ⎞ ⎠⎟ ⎡ ⎣ ⎢ ⎢ ⎤ ⎦ ⎥ ⎥ Example  with  low  extrinsic  noise   Inference  based  on                              only.    (g − r)2 Bayesian  result.     Result  assuming  extrinsic  noise  known.    
  • 13. Extrinsic  noise  implies     transcrip3on/transla3on/decay  rates    fluctuate   Extrinsic  noise  in  Elowitz  et  al:   Intrinsic  noise  falls  as  the  promoter  is  induced.   Extrinsic  noise  peaks  at  intermediate  induc0on.   R  Phillips  (Annu  Rev  Con  Mat  Phys,  2015)   •  Transcrip0on  rate  can  vary  when  the   promoter  switches  between  different  states.   •  Switching  rates  depend  on  concentra0ons  of   DNA  binding  proteins  (polymerases,  TFs).     •  These  concentra0ons  will  fluctuate  from  cell   to  cell.  
  • 14. Noise  propaga3on   •  Regulatory  cascade:  Gene  1  induces  gene  2.  Gene  3  cons0tu0ve.   •  As  gene  1  is  induced,  its  own  noise  level  drops.   •  Gene  2  goes  through  an  intermediate  peak  in  noise  level.     •  Gene  3’s  noise  is  unaffected.       Interpreta3on:   At  intermediate  levels  of  gene  1,  the  promoter  of  gene  2  shows  most   switching  between  bound  and  unbound  states  and  most  sensi0vity  to   fluctua0ons  in  the  concentra0on  of  gene  1.  
  • 15. Cells  are  not  sta3c:   Inves0ga0ng  stochas0c  regulatory  dynamics   Wish  list   •  Follow  growth  and  gene  expression  dynamics  in  single  cells  over  long  0me  scales.   •  Accurate  quan0fica0on.   •  Follow  different  cell  lineages  separately  to  allow  observa0on  of  rare  events.   •  Precise  dynamical  control  over  growth  environment.   Wang  et  al.  Robust  growth  of  Escherichia  coli.  Curr  Biol.  2010   The  mother  machine  
  • 16. Our  extension:   The  Dual  Input  Mother  Machine  
  • 17. Switching  growth  media  between     glucose  and  lactose   •  GFP/lacZ  fusion  reports  lac-­‐operon  expression.   •  Switch  glucose/lactose  every  4  hours.   •  Immediate  growth  arrest  at  first  switch  to  lactose.   •  Stochas0c  induc0on  of  lac-­‐operon  and  restart  of  growth.   •  Dilu0on  of  GFP/lacZ  during  glucose  phase.   •  No  more  growth  arrests  upon  later  switches.  
  • 18. Automated  Image  Analysis:   The  Mother  Machine  Analyzer   Florian  Jug   Gene  Myers   MPI  Cell  Biology,  Dresden   •  Tracking  and  segmenta0on  done  in  parallel  using  a   single  objec0ve  func0on.   •  Interac3ve  cura3on:     •  User  input  interpreted  as  addi0onal  constraints.   •  Automa0c  re-­‐op0miza0on.    
  • 19. Cells  expand  exponen3ally  during  their  cell  cycle   2 3 4 2 3 4 2 3 4 2 3 4 0 4 8 12 16 20 time (h) celllength(µm) 0.970 0.975 0.980 0.985 0.990 0.995 1.000 0.0 0.2 0.4 0.6 0.8 1.0 Pearson correlation exp. growth curve FractionCellCycles Cumula3ve  correla3on  coeff.   of  log(size)  vs  3me   Example  growth  dynamics  of  log-­‐size  vs  3me   Roughly  two-­‐fold  variability  in  growth  rates  
  • 20. Fluorescence  roughly  tracks  cell  size   but  produc3on  fluctuates  significantly   Approximately  4-­‐fold  varia3on  in  produc3on  rate   Examples  of  total   fluorescence  against  0me   for  single  cells  growing  in   lactose.   Distribu0on  of  GFP  molecules  produced  per   second.  
  • 21. Distribu3on  of  total  fluorescence     and  fluorescence  concentra3ons   5000 10000 15000 20000 25000 30000 35000 0.00000 0.00005 0.00010 0.00015 Fluorescence HAUL Probabilitydensity Total Fluorescence Distribution m=10'616, s=2911, sêm=0.274 8.5 9.0 9.5 10.0 10.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Log Fluorescence HAUL Probabilitydensity Total Log Fluorescence Distribution m=9.23,s2 =0.07 4000 6000 8000 10000 12000 0.0000 0.0002 0.0004 0.0006 0.0008 Fluorescence concentrationHAUêmicronL Probabilitydensity Fluorescence Concentration Distribution m=4278, s=661, sêm=0.154 8.0 8.5 9.0 9.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Log Fluorescence concentrationHAUêmicronL Probabilitydensity Log Fluorescence Concentration Distribution m=8.35,s2 =0.022 Very  roughly  log-­‐normal  distribu0ons.  Concentra0on  has  significantly  less  varia0on.  
  • 22. Measuring  transcrip3on     from  all  E.  coli  promoters  in  single  cells   •  GFP  fluorescence  per  cell  propor0onal  to  protein  number.   •  GFP  levels  of  single  cells  can  be  measured  in  high-­‐throughput  using  FACS.   •  Quan0ta0vely  characterize  the  distribu0on  of  expression  levels  across  single  cells,  for   all  E.  coli  promoters.   ORF1   ORF2   ORF4   E. coli genomeORF3   Plasmid Zaslaver et al. 2006 Silander  et  al.  PLoS  genet  2012   Wolf  et  al.  eLife  2015  
  • 23. FACS:   Measuring  and  selec3ng  single  cells   •  Cells  move  one-­‐by-­‐one  in  a  flow  channel.   •  Each  cell  passes  in  front  of  a  laser  and  its  fluorescence  is   measured.     •  By  selec0vely  charging  par0cles  based  on  their  measured   fluorescence,  one  can  select  cells  whose  fluorescence  lies  in   a  certain  range.  
  • 24. Gene  expression  distribu3ons     for  two  example  promoters   µ1 µ2 σ1 σ2 Promoter 1 Promoter 2
  • 25. Means  and  variances  of   na3ve  E.  coli  promoters   •  Variance  in  log-­‐expression  in  shows  a  trend  of  decreasing  with  mean  expression.   •  Different  promoters  with  same  mean  can  show  significantly  different  variance.   •  There  seems  to  be  a  clear  lower  bound  on  variance  as  a  func0on  of  mean.   5 6 7 8 9 10 11 0.0 0.2 0.4 0.6 0.8 Mean Log@GFP IntensityD VarianceLog@GFPpercellD background   2  *  background  
  • 26. 7 8 9 10 11 12 13 0.0 0.2 0.4 0.6 0.8 Mean Log@proteins per cellD VarianceLog@proteinspercellD 7 8 0.0 0.2 0.4 0.6 0.8 Excessnoise Means  and  variances  of   na3ve  E.  coli  promoters   Red  curve:       σab 2 = 0.025, b = 450 n = ab, var(n) = (b+1) nAt  constant  transcrip0on/transla0on/decay  rates:     Assume  a  and  b  both  fluctuate:   var(n) = (b +1) n +σab 2 n 2 nmeas = nbg + n + ε var(n) var log(nmeas )⎡⎣ ⎤⎦ = σab 2 1− nbg nmeas ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ 2 + (b +1) nmeas 1− nbg nmeas ⎛ ⎝ ⎜ ⎞ ⎠ ⎟
  • 27. Noise  levels  vary  across   na3ve  E.  coli  promoters   7 8 9 10 11 12 13 0.0 0.2 0.4 0.6 0.8 Mean Log@ proteins per cellsD Excessnoise Excess  noise  (variance  –  lower  bound  as  func.  mean)   Selec3on  on  noise  levels   High  noise   DriZ?  Selected  for  noise?   Low  noise.   Selec0on  to  minimize  noise?   What  noise  would  one  get  without  selec3on?     Evolve  synthe8c  promoters  in  a  precisely  controlled  selec0ve  environment.  
  • 28. Directed  evolu0on  of  promoters     that  express  at  a  desired  level   *        *    *   28  
  • 29. Evolu0on  of  popula0on  expression  levels   Selec0ng  for     Medium  expression   29   Selec0ng  for   High  expression  
  • 30. Expression  distribu0ons  of     individual  synthe0c  promoters   •  We  isolated  ~400  clones  from  evolu0onary  runs  for  both  medium  and  high  expression.   •  Measured  each  clone’s  expression  distribu0on.     How  do  noise  levels  of  synthe3c  promoters  compare  with  those  of  na3ve  promoters?    
  • 31. Na0ve  promoters   Synthe0c  promoters   •  Synthe0c  promoters  were  not  selected  on  their  noise  proper0es.   •  Low  noise  is  the  default  behavior  of  E.  coli  promoters.   •  Selec0on  must  have  acted  so  as  to  increase  the  noise  levels  of  some  na0ve  promoters.   Iden0cal  distribu0ons  at  the     low  noise  end.   High  noise  enriched  in     na0ve  promoters.     Selec0on  caused  increased  noise  in     a  substan0al  frac0on  na0ve  promoters   What  is  `special’  about  na3ve  promoters  that  show  high  noise?  
  • 32. Noisy  genes  have  more  regulatory  inputs   •  185  E.  coli  transcrip0on  factors  (TFs).   •   4123  known  regulatory  interac0ons  TF  →  promoter.   Genes  with  higher  noise  have  (on  average)  higher  numbers  of  known  regulatory  inputs.   2  or  more  inputs   1  known  input   no  known  inputs   synthe0c  proms.   Why  is  there  a  general  associa3on  between  noise  and  regula3on?   Why  did  selec3on  cause  noise  to  increase?  
  • 33. Noise-­‐propaga3on:  nuisance  or  opportunity?     Noise  as  an  unavoidable  side-­‐effect  of  regula3on   •  Explains  the  general  associa0on  of  noise  and  regula0on.   •  `Fluctua0on-­‐dissipa0on  rela0on’:  Genes  that  need  complex  regula0on  unavoidably  couple   to  the  noise  in  their  regulators.   •  Generally  assumed  to  be  detrimental:  reduces  the  accuracy  of  regula0on.   Stochas3city  as  a  bet-­‐hedging  strategy   •  Phenotypic  diversity  can  generally  be  selected  for  in  fluctua0ng  environments.   •  Maybe  noise-­‐propaga0on  can  be  beneficial  in  some  circumstances?   Let’s  do  some  theory  on  how  gene  expression  noise  affects  fitness  
  • 34. Fitness  func0on   in  a  single  environment   f (x | µ*,τ ) = exp − (x −µ* )2 2τ 2 " # $ % & ' p(x | µ,σ ) = 1 2πσ exp − (x −µ)2 2σ 2 " # $ % & ' f (µ,σ | µ*,τ ) = dxp(x | µ,σ ) f (x | µ*,τ ) =∫ τ 2 τ 2 +σ 2 exp − (µ −µ* )2 2(τ 2 +σ 2 ) # $ % & ' ( The  fitness  of  a  promoter  `genotype’  (frac0on  of  its  cells  selected)  is  a  convolu0on  of  these   two  func0ons  (approx.  area  on  the  intersec0on):   Fitness  (probability  to  be  selected):   Promoter  expression  distribu0on:   σ = 0.1 µ µ* τ
  • 35. Moving  the  mean  toward    the    desired  level  always  increases  fitness   f (µ,σ | µ*,τ ) = τ 2 τ 2 +σ 2 exp − (µ −µ* )2 2(τ 2 +σ 2 ) " # $ % & ' 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability f (µ = 8.0,σ = 0.1) = 0.066 f (µ = 8.1,σ = 0.1) = 0.174
  • 36. 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability At  op0mal  mean     minimal  noise  is  preferred   f (µ,σ | µ*,τ ) = τ 2 τ 2 +σ 2 exp − (µ −µ* )2 2(τ 2 +σ 2 ) " # $ % & ' f (µ = 8.15,σ = 0.1) = 0.196 f (µ = 8.15,σ = 0.025) = 0.625
  • 37. As  mean  moves  away  from  the  op0mum   there  is  a  bifurca0on  to  nonzero  op0mal  noise   f (µ,σ | µ*,τ ) = τ 2 τ 2 +σ 2 exp − (µ −µ* )2 2(τ 2 +σ 2 ) " # $ % & ' f (µ = 8.0,σ = 0.05) = 0.0077 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability f (µ = 8.0,σ = 0.1) = 0.066 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 0.0 0.2 0.4 0.6 0.8 1.0 Log expression ExpressionêSelectionprobability `Bifurca3on’  in  op3mal  σ     When                                              ,  the  op0mal  noise  level  is   non-­‐zero:   0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Expression deviation »mu-mu*» Optimalsigma Op3mal  σ       σ* = (µ −µ* )2 −τ 2 τ = 0.05 τ = 0.2µ −µ* ≥ τ
  • 38. Variable  environment:   Fitness  of  an  unregulated  gene   log f (µ,σ )[ ]= − (µ −µe )2 2(τ 2 +σ 2 ) + 1 2 log τ 2 τ 2 +σ 2 " # $ % & 'Log-­‐fitness  in  a  variable  environment:   Assuming  no  regula0on,  op0mal  mean  equals   Log-­‐fitness  becomes:         Op3mal  noise  matches  the  varia3on  in  desired  expression  levels:     log f (µ,σ )[ ]= − var(µe ) 2(τ 2 +σ 2 ) + 1 2 log τ 2 τ 2 +σ 2 " # $ % & ' This  is  the  bet  hedging  scenario.  But:   Wouldn’t  it  be  beer  to  evolve  gene  regula0on?     σopt 2 = var(µe )−τ 2 µ = µe
  • 39. Effects  of  coupling  a  gene  to  a  regulator   Regulator’s  ac0vity   Gene  coupled  to  the  regulator.   Gene  without  regula0on   TF   TF Two  main  effects  on  the  gene’s  expression:   1.  Condi3on-­‐response:  Mean  depends  on  regulator’s  (condi0on-­‐dependent)  ac0vity.   2.  Noise-­‐propaga3on:  Noise  increases  due  to  propaga0on  of  the  regulator’s  noise.   We  developed  a  general  theory  to  calculate  how  these  effects  conspire  to  affect  fitness.    
  • 40. Fitness  depends  on  only  4  effec3ve  parameters   Varia0on  in  desired  levels:  V     στ 1.  Expression  mismatch:   Y 2 = V σ 2 +τ 2 Varia0on  in  regulator  levels:  Vr     σr 2.  Signal-­‐to-­‐noise  of  the  regulator:   S2 = Vr σr 2 3.  Correla3on  regulator/desired  levels:  R Fitness  effect  of  the  regulatory  interac3on:   4.  Coupling  strength:   X log[ f ]= − 1 2 Y 2 (1− R2 )+ SX − RY( ) 2 (1+ X 2 ) − 1 2 log 1+ X 2" # $ % Scenario:  Start  with  unregulated  promoter.  What  fitness  can  be  obtained  by  coupling  to   regulator  with  signal-­‐to-­‐noise  S  and  correla0on  R?  
  • 41. Fitness  with  op0mal  coupling  to  a  regulator   of  given  correla0on  R  and  signal-­‐to-­‐noise  S   Fitness  of  the   unregulated  promoter.   Y=4   Perfect    correla0on   No   correla0on   Noisy     regulator   Precise     regulator  
  • 42. Coupling  to  a  near  op3mal  regulator:   condi3on-­‐response  effect   Y=4   TF   TF σtot = 0.16 R = 0.95 S = 3.3 Fitness  of  the   unregulated  promoter.  
  • 43. Coupling  to  a  noisy  uncorrelated  regulator:   noise-­‐propaga3on  implements  bet  hedging  strategy   Y=4   TF   TF σtot = 0.55 R = 0 S = 0.19 Fitness  of  the   unregulated  promoter.  
  • 44. Intermediate  case:   a  moderately  correlated  regulator   Y=4   TF   TF σtot = 0.23 R = 0.64 S = 2.45 Fitness  of  the   unregulated  promoter.  
  • 45. Op0mal  S  at  a  given  R.   Y=4   Condi3on-­‐response  and  noise-­‐propaga3on     typically  act  in  concert   Regulator     too  noisy.   Regulator  not   noisy  enough.   •  Noise-­‐propaga0on  is  oZen  func8onal,  ac0ng  as  a  rudimentary  form  of  regula0on.   •  De  novo  evolu0on  of  regula0on:  Star0ng  from  pure  noise-­‐propaga0on  (R=0,S=0)   there  is  a  con0nuum  of  solu0ons  of  increasing  accuracy  along  which  condi0on-­‐ response  and  noise-­‐propaga0on  op0mally  complement  each  other.         •  Regulated  genes  are  noisy  because,  whenever  the  condi0on-­‐response  is  imperfect,   maximal  fitness  requires  noisy  regulators.   Summary  Theory:  
  • 46. 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 Y: Expression mismatch R:Correlationofregulator'sexpressionwithdesired-levels σtot 2 =σ 2 Low  noise  regime:   Promoters  with  low  expression  mismatch  Y<1  `do  not  bother’  to  be  regulated.   For  extremely    correlated  regulators,  zero  noise-­‐propaga0on  is  the  op0mum.   Phase  diagram  of  final  noise   aZer  coupling  to  regulators  with  op0mal  noise  levels.  
  • 47. 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 Y: Expression mismatch R:Correlationofregulator'sexpressionwithdesired-levels σtot 2 =σ 2 Noise-­‐propaga3on  regime:   The  final  noise  level  matches  the  frac0on  of  variance  in  desired  levels  not  tracked  by  the   condi0on-­‐response.   σtot 2 = (1− R2 )var(µe )−τ 2 Phase  diagram  of  final  noise   aZer  coupling  to  regulators  with  op0mal  noise  levels.   Amount  of  regula3on  required.   Variance  in  desired  levels   Selec3on  tolerance   Limited  accuracy  of  the  condi3on-­‐response.   Frac3on  variance  not  tracked  by  regula3on.  
  • 48. Conclusions   signal   regulator   •  We  evolved  synthe0c  promoters  de  novo  in  E.  coli  under  carefully-­‐ controlled  selec0ve  condi0ons.   •  No  evidence  E.  coli  promoters  have  been  selected  to  lower  noise.     •  Regulated  genes  have  been  selected  to  increase  noise.     Experimental  observa3ons   Theory   •  Coupling  a  regulator  to  a  target  promoter  has  two  effects:   1.  Condi0on-­‐response.   2.  Noise-­‐propaga0on.   •  Noise-­‐propaga0on  alone  can  act  as  a  rudimentary  form  of  regula0on.   •  Accurate  regula0on  can  evolve  smoothly  along  a  con0nuum  in  which   noise-­‐propaga0on  and  condi0on-­‐response  act  in  concert.     •  Whenever  the  condi0on-­‐response  has  limited  accuracy,  noisy   regula0on  is  preferred.   •  Explains  the  general  associa0on  between  noise  and  regula0on.    
  • 49. Thank  you!   Luise  Wolf                Olin  Silander   Theory/computa3on  PhD  and  post-­‐doc  posi3ons  available!   This  work:   Our  group