Publicidad
Publicidad

Más contenido relacionado

Publicidad

Presentación Jesús Pire.pptx

  1. Plano Numérico Jesús Daniel Pire Figueroa PNF DEPORTES
  2. Plano Numérico  Se Conoce como plano numérico o cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un punto llamado origen o punto cero.  La finalidad del plano cartesiano describir la posición o ubicación de un punto en el plano, la cual está representada por el sistema de coordenadas.  El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría analítica.
  3. Distancia:  Partir de conocer la ubicación de dos puntos en el plano cartesiano, es posible determinar la distancia que hay entre éstos. Cuando algún punto se encuentra en el eje de las x o de las abscisas o en una recta paralela a éste eje, la distancia entre los puntos corresponde al valor absoluto de las diferencia de sus abscisas. (x 2 – x 1 ).
  4. Punto Medio:  En matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento.
  5. Ecuaciones Y trazado de circunferencias:  circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro (recordar que estamos hablando del Plano Cartesiano y es respecto a éste que trabajamos).  Determinación de una circunferencia Una circunferencia queda determinada cuando conocemos: a) Tres puntos de la misma, equidistantes del centro. b) b) El centro y el y un punto en ella c) El centro y una recta tangente hacia la circunferencia.
  6. Parábolas:  Matemáticas, una parábola (del griego παραβολή) es la sección cónica de excentricidad igual a 1, resultante de cortar un cono recto con un plano cuyo ángulo de inclinación respecto al eje de revolución del cono sea igual al presentado por su generatriz. El plano resultará por lo tanto paralelo a dicha recta. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta llamada directriz y un punto exterior a ella llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.  La parábola aparece en muchas ramas de las ciencias aplicadas debido a que su forma se corresponde con las gráficas de las ecuaciones cuadráticas. Por ejemplo, son parábolas las trayectorias ideales de los cuerpos que se mueven bajo la influencia exclusiva de la gravedad (ver movimiento parabólico y trayectoria balística).
  7. Elipse:  Una elipse es una curva plana, simple[1] y cerrada con dos ejes de simetría que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría con ángulo mayor que el de la generatriz respecto del eje de revolución.[2] Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado. La elipse es también la imagen afín de una circunferencia.La elipse es el lugar geométrico de todos los puntos de un plano, tales que la suma de las distancias a otros dos puntos fijos, llamados focos, es constante.
  8. Hipérbole:  Una curva abierta de dos ramas, obtenida cortando un cono recto mediante un plano no necesariamente paralelo al eje de simetría, y con ángulo menor que el de la generatriz respecto del eje de revolución.[1] En geometría analítica, una hipérbola es el lugar geométrico de los puntos de un plano, tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva. Siendo esta constante menor a la distancia entre los focos.
  9. Representar gráficamente las ecuaciones de las cónicas:  Sección cónica círculo
  10. Elipse
  11. Parábola
  12. Hipérbole:
Publicidad