SlideShare una empresa de Scribd logo
1 de 19
Descargar para leer sin conexión
Section 5.3
             Evaluating Definite Integrals

                           Math 1a


                     December 10, 2007


Announcements
   my next office hours: Monday 1–2, Tuesday 3–4 (SC 323)
   MT II is graded. Come to OH to talk about it
   Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun
   1/13 in Hall C, all 7–8:30pm
   Final tentatively scheduled for January 17, 9:15am
Outline


   FTC2
     Proof
     Examples

   Total Change

   Indefinite Integrals
      My first table of integrals

   Examples
      “Negative Area”
Theorem (The Second Fundamental Theorem of Calculus,
Strong Form)
Suppose f is integrable on [a, b] and f = F for another function f ,
then
                         b
                             f (x) dx = F (b) − F (a).
                     a
Proof.
We will choose Riemann sums which converge to the right-hand
side. Let n be given. On the interval [xi−1 , xi ] there is a point ci
such that
                                     F (xi ) − F (xi−1 )
                 f (ci ) = F (ci ) =
                                         xi − xi−1
Then
                     n                   n
                                              F (xi ) − F (xi−1 )
             Rn =         f (ci )∆x =
                    i=1                 i=1
                = F (xn ) − F (x0 ) = F (b) − F (a).

So Rn → F (b) − F (a) as n → ∞.
Examples




  Find the following integrals:
            1                 1                     1                            2
                                                                                     1
                x 2 dx,           x 3 dx,               x n dx (n = −1),               dx
                                                                                     x
        0                 0                     0                            1
            π                         1                     π/4
                                          e x dx,
                sin θ dθ,                                         tan θ dθ
        0                         0                     0
Outline


   FTC2
     Proof
     Examples

   Total Change

   Indefinite Integrals
      My first table of integrals

   Examples
      “Negative Area”
The Integral as Total Change


   Another way to state this theorem is:
                            b
                                F (x) dx = F (b) − F (a),
                        a

   or the integral of a derivative along an interval is the total change
   between the sides of that interval. This has many ramifications:
The Integral as Total Change


   Another way to state this theorem is:
                             b
                                 F (x) dx = F (b) − F (a),
                         a

   or the integral of a derivative along an interval is the total change
   between the sides of that interval. This has many ramifications:

   Theorem
   If v (t) represents the velocity of a particle moving rectilinearly,
   then
                             t1
                                  v (t) dt = s(t1 ) − s(t0 ).
                         t0
The Integral as Total Change


   Another way to state this theorem is:
                            b
                                F (x) dx = F (b) − F (a),
                        a

   or the integral of a derivative along an interval is the total change
   between the sides of that interval. This has many ramifications:

   Theorem
   If MC (x) represents the marginal cost of making x units of a
   product, then
                                                x
                      C (x) = C (0) +               MC (q) dq.
                                            0
The Integral as Total Change


   Another way to state this theorem is:
                            b
                                F (x) dx = F (b) − F (a),
                        a

   or the integral of a derivative along an interval is the total change
   between the sides of that interval. This has many ramifications:

   Theorem
   If ρ(x) represents the density of a thin rod at a distance of x from
   its end, then the mass of the rod up to x is
                                              x
                                m(x) =            ρ(s) ds.
                                          0
Example
If oil leaks from a tank at a rate of r (t) gallons per minute at time
                   120
t, what does             r (t) dt represent?
               0
Example
If oil leaks from a tank at a rate of r (t) gallons per minute at time
                   120
t, what does             r (t) dt represent?
               0

Solution
The amount of oil lost in two hours.
Outline


   FTC2
     Proof
     Examples

   Total Change

   Indefinite Integrals
      My first table of integrals

   Examples
      “Negative Area”
A new notation for antiderivatives



   To emphasize the relationship between antidifferentiation and
   integration, we use the indefinite integral notation

                                   f (x) dx

   for any function whose derivative is f (x).
A new notation for antiderivatives



   To emphasize the relationship between antidifferentiation and
   integration, we use the indefinite integral notation

                                  f (x) dx

   for any function whose derivative is f (x). Thus

                             x 2 dx = 3 x 3 + C .
                                      1
My first table of integrals

      [f (x) + g (x)] dx =   f (x) dx +   g (x) dx

                  x n+1
       x n dx =                             cf (x) dx = c    f (x) dx
                        + C (n = −1)
                  n+1
                                                 1
             e x dx = e x + C                      dx = ln x + C
                                                 x
                                                          ax
                                                ax dx =       +C
          sin x dx = − cos x + C
                                                         ln a
                                            csc2 x dx = − cot x + C
           cos x dx = sin x + C

          sec2 x dx = tan x + C           csc x cot x dx = − csc x + C
                                                1
                                          √          dx = arcsin x + C
        sec x tan x dx = sec x + C
                                              1 − x2
           1
                dx = arctan x + C
         1 + x2
Outline


   FTC2
     Proof
     Examples

   Total Change

   Indefinite Integrals
      My first table of integrals

   Examples
      “Negative Area”
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the vertical lines x = 0 and x = 3.
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the vertical lines x = 0 and x = 3.

Solution
                 3
                     (x − 1)(x − 2) dx. Notice the integrand is positive on
Consider
             0
[0, 1) and (2, 3], and negative on (1, 2). If we want the area of the
region, we have to do
       1                                 2                                   3
           (x − 1)(x − 2) dx −               (x − 1)(x − 2) dx +                 (x − 1)(x − 2) dx
A=
      0                                  1                               2
                               1                            2                              3
      13
            − 2 x 2 + 2x               13
                                             − 2 x 2 + 2x           13
                                                                         − 2 x 2 + 2x
              3                                3                           3
                                   −
  =   3x                               3x                       +   3x
                               0                            1                              2
      5    1                 5  11
        −−
  =                      +     =.
      6    6                 6   6

Más contenido relacionado

La actualidad más candente

Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integralsLawrence De Vera
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration MethodsSilvius
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!A Jorge Garcia
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Matthew Leingang
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsMatthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives Seyid Kadher
 

La actualidad más candente (14)

Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
Summary of Integration Methods
Summary of Integration MethodsSummary of Integration Methods
Summary of Integration Methods
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!Stuff You Must Know Cold for the AP Calculus BC Exam!
Stuff You Must Know Cold for the AP Calculus BC Exam!
 
Roots equations
Roots equationsRoots equations
Roots equations
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)Lesson 8: Basic Differentation Rules (slides)
Lesson 8: Basic Differentation Rules (slides)
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Lesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functionsLesson 8: Derivatives of Polynomials and Exponential functions
Lesson 8: Derivatives of Polynomials and Exponential functions
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives
 

Destacado

Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation SlidesMatthew Leingang
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingMatthew Leingang
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...Purvi P. Patel
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers IMatthew Leingang
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationMatthew Leingang
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
Lesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryLesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryMatthew Leingang
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationMatthew Leingang
 
Lesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsLesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsMatthew Leingang
 

Destacado (20)

Ayurvedic Treatment 10.22.13
Ayurvedic Treatment 10.22.13Ayurvedic Treatment 10.22.13
Ayurvedic Treatment 10.22.13
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson 29: Areas
Lesson 29: AreasLesson 29: Areas
Lesson 29: Areas
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation Slides
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...
Qualitative Research on Health as a Human Right in Lewis & Clark County, Mont...
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Lesson 23: The Chain Rule
Lesson 23: The Chain RuleLesson 23: The Chain Rule
Lesson 23: The Chain Rule
 
Lesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers ILesson 27: Lagrange Multipliers I
Lesson 27: Lagrange Multipliers I
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit Differentiation
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game TheoryLesson 34: Introduction To Game Theory
Lesson 34: Introduction To Game Theory
 
Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Lesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in EconomicsLesson 21: Partial Derivatives in Economics
Lesson 21: Partial Derivatives in Economics
 

Similar a Lesson 31: Evaluating Definite Integrals

Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codesSpringer
 
Roots equations
Roots equationsRoots equations
Roots equationsoscar
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptxPlanningHCEGC
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reducedKyro Fitkry
 

Similar a Lesson 31: Evaluating Definite Integrals (20)

Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
The integral
The integralThe integral
The integral
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Desktop
DesktopDesktop
Desktop
 
Desktop
DesktopDesktop
Desktop
 
Roots equations
Roots equationsRoots equations
Roots equations
 
differentiol equation.pptx
differentiol equation.pptxdifferentiol equation.pptx
differentiol equation.pptx
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Business math
Business mathBusiness math
Business math
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Md2521102111
Md2521102111Md2521102111
Md2521102111
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
gfg
gfggfg
gfg
 
Common derivatives integrals_reduced
Common derivatives integrals_reducedCommon derivatives integrals_reduced
Common derivatives integrals_reduced
 

Más de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 

Más de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 

Último

The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxmbikashkanyari
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdfChris Skinner
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryWhittensFineJewelry1
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfJamesConcepcion7
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Anamaria Contreras
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Aggregage
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdfMintel Group
 
14680-51-4.pdf Good quality CAS Good quality CAS
14680-51-4.pdf  Good  quality CAS Good  quality CAS14680-51-4.pdf  Good  quality CAS Good  quality CAS
14680-51-4.pdf Good quality CAS Good quality CAScathy664059
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...SOFTTECHHUB
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024Adnet Communications
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationAnamaria Contreras
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFChandresh Chudasama
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...ssuserf63bd7
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfShashank Mehta
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverseSiemens
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerAggregage
 

Último (20)

The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptxThe-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
The-Ethical-issues-ghhhhhhhhjof-Byjus.pptx
 
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
20220816-EthicsGrade_Scorecard-JP_Morgan_Chase-Q2-63_57.pdf
 
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold JewelryEffective Strategies for Maximizing Your Profit When Selling Gold Jewelry
Effective Strategies for Maximizing Your Profit When Selling Gold Jewelry
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdf
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
Strategic Project Finance Essentials: A Project Manager’s Guide to Financial ...
 
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdftrending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
trending-flavors-and-ingredients-in-salty-snacks-us-2024_Redacted-V2.pdf
 
14680-51-4.pdf Good quality CAS Good quality CAS
14680-51-4.pdf  Good  quality CAS Good  quality CAS14680-51-4.pdf  Good  quality CAS Good  quality CAS
14680-51-4.pdf Good quality CAS Good quality CAS
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
How To Simplify Your Scheduling with AI Calendarfly The Hassle-Free Online Bo...
 
TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024TriStar Gold Corporate Presentation - April 2024
TriStar Gold Corporate Presentation - April 2024
 
PSCC - Capability Statement Presentation
PSCC - Capability Statement PresentationPSCC - Capability Statement Presentation
PSCC - Capability Statement Presentation
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDF
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
Intermediate Accounting, Volume 2, 13th Canadian Edition by Donald E. Kieso t...
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdf
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 
Interoperability and ecosystems: Assembling the industrial metaverse
Interoperability and ecosystems:  Assembling the industrial metaverseInteroperability and ecosystems:  Assembling the industrial metaverse
Interoperability and ecosystems: Assembling the industrial metaverse
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon Harmer
 

Lesson 31: Evaluating Definite Integrals

  • 1. Section 5.3 Evaluating Definite Integrals Math 1a December 10, 2007 Announcements my next office hours: Monday 1–2, Tuesday 3–4 (SC 323) MT II is graded. Come to OH to talk about it Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun 1/13 in Hall C, all 7–8:30pm Final tentatively scheduled for January 17, 9:15am
  • 2. Outline FTC2 Proof Examples Total Change Indefinite Integrals My first table of integrals Examples “Negative Area”
  • 3. Theorem (The Second Fundamental Theorem of Calculus, Strong Form) Suppose f is integrable on [a, b] and f = F for another function f , then b f (x) dx = F (b) − F (a). a
  • 4. Proof. We will choose Riemann sums which converge to the right-hand side. Let n be given. On the interval [xi−1 , xi ] there is a point ci such that F (xi ) − F (xi−1 ) f (ci ) = F (ci ) = xi − xi−1 Then n n F (xi ) − F (xi−1 ) Rn = f (ci )∆x = i=1 i=1 = F (xn ) − F (x0 ) = F (b) − F (a). So Rn → F (b) − F (a) as n → ∞.
  • 5. Examples Find the following integrals: 1 1 1 2 1 x 2 dx, x 3 dx, x n dx (n = −1), dx x 0 0 0 1 π 1 π/4 e x dx, sin θ dθ, tan θ dθ 0 0 0
  • 6. Outline FTC2 Proof Examples Total Change Indefinite Integrals My first table of integrals Examples “Negative Area”
  • 7. The Integral as Total Change Another way to state this theorem is: b F (x) dx = F (b) − F (a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications:
  • 8. The Integral as Total Change Another way to state this theorem is: b F (x) dx = F (b) − F (a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If v (t) represents the velocity of a particle moving rectilinearly, then t1 v (t) dt = s(t1 ) − s(t0 ). t0
  • 9. The Integral as Total Change Another way to state this theorem is: b F (x) dx = F (b) − F (a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If MC (x) represents the marginal cost of making x units of a product, then x C (x) = C (0) + MC (q) dq. 0
  • 10. The Integral as Total Change Another way to state this theorem is: b F (x) dx = F (b) − F (a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is x m(x) = ρ(s) ds. 0
  • 11. Example If oil leaks from a tank at a rate of r (t) gallons per minute at time 120 t, what does r (t) dt represent? 0
  • 12. Example If oil leaks from a tank at a rate of r (t) gallons per minute at time 120 t, what does r (t) dt represent? 0 Solution The amount of oil lost in two hours.
  • 13. Outline FTC2 Proof Examples Total Change Indefinite Integrals My first table of integrals Examples “Negative Area”
  • 14. A new notation for antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation f (x) dx for any function whose derivative is f (x).
  • 15. A new notation for antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation f (x) dx for any function whose derivative is f (x). Thus x 2 dx = 3 x 3 + C . 1
  • 16. My first table of integrals [f (x) + g (x)] dx = f (x) dx + g (x) dx x n+1 x n dx = cf (x) dx = c f (x) dx + C (n = −1) n+1 1 e x dx = e x + C dx = ln x + C x ax ax dx = +C sin x dx = − cos x + C ln a csc2 x dx = − cot x + C cos x dx = sin x + C sec2 x dx = tan x + C csc x cot x dx = − csc x + C 1 √ dx = arcsin x + C sec x tan x dx = sec x + C 1 − x2 1 dx = arctan x + C 1 + x2
  • 17. Outline FTC2 Proof Examples Total Change Indefinite Integrals My first table of integrals Examples “Negative Area”
  • 18. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3.
  • 19. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution 3 (x − 1)(x − 2) dx. Notice the integrand is positive on Consider 0 [0, 1) and (2, 3], and negative on (1, 2). If we want the area of the region, we have to do 1 2 3 (x − 1)(x − 2) dx − (x − 1)(x − 2) dx + (x − 1)(x − 2) dx A= 0 1 2 1 2 3 13 − 2 x 2 + 2x 13 − 2 x 2 + 2x 13 − 2 x 2 + 2x 3 3 3 − = 3x 3x + 3x 0 1 2 5 1 5 11 −− = + =. 6 6 6 6