Short
The growing amount of data captured by sensors and the real time constraints imply that not only big data analytics but also Machine Learning (ML) inference shall be executed at the edge. The multiple options for neural network acceleration in Arm-based platforms provide an unprecedented opportunity for new intelligent devices. It also raises the risk of fragmentation and duplication of efforts when multiple frameworks shall support multiple accelerators.
Andrea Gallo, Linaro VP of Segment Groups, will summarise the existing NN frameworks, accelerator solutions, and will describe the efforts underway in the Arm ecosystem.
Abstract
The dramatically growing amount of data captured by sensors and the ever more stringent requirements for latency and real time constraints are paving the way for edge computing, and this implies that not only big data analytics but also Machine Learning (ML) inference shall be executed at the edge. The multiple options for neural network acceleration in recent Arm-based platforms provides an unprecedented opportunity for new intelligent devices with ML inference. It also raises the risk of fragmentation and duplication of efforts when multiple frameworks shall support multiple accelerators.
Andrea Gallo, Linaro VP of Segment Groups, will summarise the existing NN frameworks, model description formats, accelerator solutions, low cost development boards and will describe the efforts underway to identify the best technologies to improve the consolidation and enable the competitive innovative advantage from all vendors.
Audience
The session will be useful for executives to engineers. Executives will gain a deeper understanding of the issues and opportunities. Engineers at NN acceleration IP design houses will take away ideas for how to collaborate in the open source community on their area of expertise, how to evaluate the performance and accelerate multiple NN frameworks without modifying them for each new IP, whether it be targeting edge computing gateways, smart devices or simple microcontrollers.
Benefits to the Ecosystem
The AI deep learning neural network ecosystem is starting just now and it has similar implications with open source as GPU and video accelerators had in the early days with user space drivers, binary blobs, proprietary APIs and all possible ways to protect their IPs. The session will outline a proposal for a collaborative ecosystem effort to create a common framework to manage multiple NN accelerators while at the same time avoiding to modify deep learning frameworks with multiple forks.