Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

2021 Dask Summit - Using STAC to catalog SpatioTemporal datasets

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio

Eche un vistazo a continuación

1 de 18 Anuncio

Más Contenido Relacionado

Presentaciones para usted (20)

Similares a 2021 Dask Summit - Using STAC to catalog SpatioTemporal datasets (20)

Anuncio

Más reciente (20)

2021 Dask Summit - Using STAC to catalog SpatioTemporal datasets

  1. 1. Using STAC to catalog SpatioTemporal datasets Rob Emanuele Geospatial Architect, Microsoft AI For Earth Member, STAC Project Steering Committee
  2. 2. Motivation: Sentinel 2 • Multispectral imaging satellites run by the European Space Agency (ESA) • Openly licensed data • Over 15 million individual captures with 10s of file assets each for a single product – Petabytes of data! • How can we find the images we need?
  3. 3. SpatioTemporal Asset Catalog (STAC) • Defines JSON schemas for encoding metadata about spatiotemporal data (remote sensing imagery, point cloud, weather data…) • Core definitions, with core and community extensions • v1.0.0-rc.4; final 1.0 release coming soon!
  4. 4. STAC API • Defines OpenAPI schemas for searching and discovering STAC metadata • Aligns with and extends the OGC API - Features specification • Includes a search endpoint for spatiotemporal and attribute queries within or across Collections • v1.0.0-beta.1, working towards a 1.0 release after the final STAC 1.0 release
  5. 5. STAC – Core Types Catalog General grouping of Catalogs, Collections and Items Item Represents a discrete set of data assets as a GeoJSON Feature Collection A specifically grouped set of Catalogs, Collections, and Items, along with additional metadata
  6. 6. STAC – Core Types: properties GEOJSON
  7. 7. STAC – Core Types: Links & Assets
  8. 8. STAC API • Landing Page is a Catalog • Collections have Items which can be searched by space, time and other properties • Aligns with OGC Features: API
  9. 9. STAC – Extensions • Allows the definition of reusable properties and other changes that any STAC object can implement • STAC is most useful with well defined data format, dataset, and domain specific extensions • Community extensions defined at https://stac-extensions.github.io/
  10. 10. Demo: Microsoft Planetary Computer STAC API
  11. 11. PySTAC • Implements core types in a Pythonic interface • Including common extensions with patterns to write custom extensions • Validates STAC • Convent for creating new STACs • Core dependency of other STAC Python tooling https://github.com/stac-utils/pystac
  12. 12. pystac-client • Implements searching and crawling of STAC APIs • Returns PySTAC objects https://github.com/stac-utils/pystac-client
  13. 13. AI for Earth https://github.com/stac-utils
  14. 14. Open Question: Representing Zarr et al The datacube extension adds support for adding dimensional information for n-dimensional datasets like Zarr or HDF5. This is a work in progress. It’s an unsolved problem of how best to represent Zarr datasets in STAC – e.g. are they Collection- only or can we represent Items?
  15. 15. STAC + Dask = Awesome With the metadata supplied by a STAC API query, we can lazily construct a DataArray from many files without having to read them and know how that data lines up in space and time. See Tom’s talk tomorrow for more details!
  16. 16. Learn More & Collaborate stacspec.org GitHub Gitter channel
  17. 17. Thanks! @lossyrob

×