Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
1
Camp magnètic
Lurdes Morral
Física 2n batxillerat
2
1- QUÈ SÓN ELS IMANTS?
Imants naturals: minerals, com ara la magnetita (Fe3O4), , capaços
d’atreure trossets de ferro, e...
3
1- QUÈ SÓN ELS IMANTS?
Materials ferromagnètics: Ferro, cobalt,
manganès, gadolini i disprosi. En contacte amb un
imant ...
4
1- QUÈ SÓN ELS IMANTS?
Ceràmics: els més utilitzats:
altaveus, aros per auriculars,
cilindres per enganxar figures a
les...
5
1- QUÈ SÓN ELS IMANTS?
Característiques dels imants:
• Les propietats magnètiques s’originen en
els pols
• Hi ha dos tip...
6
La brúixola: detector de propietats magnètiques
Quan acostem un imant a una brúixola,
el pol nord del imant atrau al pol...
7
1- QUÈ SÓN ELS IMANTS?
8
Model microscòpic per al magnetisme
La matèria està feta d’àtoms. Aquests són constituïts per un nucli, al voltant del
q...
9
1- QUÈ SÓN ELS IMANTS?
Materials ferromagnètics:
Els àtoms formen grups de 1010
, anomenats
dominis. Dins de cada domini...
10
2a- VISUALITZACIÓ DEL CAMP MAGNÈTIC
Espectre magnètic:
llimadures de ferro al
voltant d’un imant.
Petites brúixoles al ...
11
2a- VISUALITZACIÓ DEL CAMP MAGNÈTIC
12
2b- QUANTIFICACIÓ DEL CAMP MAGNÈTIC
La intensitat d’un camp magnètic, , s’anomena inducció magnètica.
Unitat: Tesla.
Ap...
13
El corrent elèctric té propietats magnètiques
1820, Oersted, va descobrir que un corrent elèctric de molta intensitat, ...
14
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per un conductor rectilini infinit
Un conductor rectilini infinit per...
15
Vector surt del paper i ve cap a
nosaltres (punta fletxa)
Vector entra dins el paper i s’allunya
de nosaltres (plomes f...
16
Exemple 1: Determinar la inducció magnètica en l’aire
(μ0), en un punt a 6 cm d’un conductor rectilini pel
que circula ...
17
Exemple 2: Dos filferros paral.lels estan separats 10 cm. Per un ,A, passa una
corrent de 30 A i per l’altre, B, passa ...
18
b) A 10cm a l’esquerra del conductor situat a l’esquerra (punt N en figura).
I1
d=0,1md=0,1m
I2
d=0,1m
N M O
I1 I2
Líni...
19
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per una espira
Suposem 4 fils conductors que es creuen formant un
qua...
20
I →
B
I
→
B
R
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per una espira
21
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per una bobina
Una bobina és un conductor llarg enrotllat en
forma d’...
22
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per una bobina
23
L
I
O P
R Q
3- CREACIÓ DE CAMPS MAGNÈTICS
Camp magnètic creat per una bobina
24
Exemple 3: Quin és el valor de la inducció magnètica en l’ interior d’una bobina de
10 cm de longitud i 500 espires per...
25
3- CREACIÓ DE CAMPS MAGNÈTICS
L’electroimant
Bobina dins la qual s’ha posat un
material ferromagnètic, que s’anomena
nu...
26
Timbre elèctric
En tocar el polsador, el corrent circula per la bobina de
l’electroimant. El camp magnètic originat atr...
27
3- CREACIÓ DE CAMPS MAGNÈTICS
28
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Força que fa un camp sobre una partícula carregada en moviment
Una càrrega q, ...
29
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
)( BVF xq
→→→
=
30
F= q v B sin α
qv
F
B
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
qv
F
B
Regla de la mà dreta
31
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Regla de la mà esquerra
qv
F
B
Força de Lorentz
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
)( BVF xq
→→→
=
33
Si és paral·lel av
→
B
→
- Els vectors siguin paral·lelsB
→
v
→
y
• Sigui una carrega positiva amb velocitat que penetr...
34
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
La força magnètica és perpendicular a la velocitat, és una força normal, i per...
35
v
→
v
→
x
y
x
y
z
q+
→
F
R
B
→
q+
B
→
→
F
v
→
+
→
F
v
→+
Si i formen un angle αv
→
B
→
qB
sinvm
R
α
=
→
B
α
R
z
x
y
v
→...
36
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Bq
vm
R =
37
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Aplicacions de les forces magnètiques sobre partícules en moviment
1-Cambra de...
38
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
2-Desviació magnètica als tubs de TV
3 feixos d’electrons, emesos per 3 canons...
39
SLAC (Stanford Linear Accelerator Center) de la Universidad de
Stanford, en California, que tiene ¡tres kilómetros y do...
40
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
3-Acceleradors de partícules Ciclotró, 1931
2 caixes buides
en forma de D en
u...
41
Exemple: Un ciclotró que accelera protons té un campo magnètic de 1,5 T i un radi
màxim de 0,5 m.
a ) Quina serà la fre...
42
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
3-Acceleradors de partícules
43
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
3-Acceleradors de partícules
44
El sincrotrón más potente que existía antes de 2008 es el Tevatrón del Fermi
National Accelerator Laboratory en Batavia...
45
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
3-Acceleradors de partícules
El descomunal LHC, que entró en funcionamiento en...
46
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
4-Selector de velocitats Felectrica= Fmagnètica
qE= qv B sin α
Si B és perpend...
47
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
5-Espectròmetre de masses
v:selector
B: conegut
A partir r, trobem q/m
dels is...
48
Un ió de 58
Ni de carga + e i massa 9,62 ·10- 26
Kg s’accelera a través d’una diferència
de potencial de 3 kV i es desv...
49
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Força que fa un camp sobre un
conductor que transporta corrent
F= I l B sin α
...
50
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Aplicacions de les forces magnètiques sobre conductors que transporten
corrent...
51
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
2-Motor elèctric
52
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Motor elèctric
You
tube
You
tube
Motor
tv3
applet
53
4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
Tv3
camp electr i magn
54
5- EL FLUX DE CAMP MAGNÈTIC
La quantitat de pluja que passa per un cèrcol depèn de:
•Si plou molt o poc
•El diàmetre de...
55
5- EL FLUX DE CAMP MAGNÈTIC
Flux de camp a través d’una bobina de N voltes:
φ = N B S cosϕ
Suposem que els imants creen...
56
6- EXPERIÈNCIES DE FARADAY
Voltímetre
Imant en
moviment
Experiment 1 Connectem els extrems d’una bobina a un voltímetre...
57
→
VI
→
VI
6- EXPERIÈNCIES DE FARADAY
Experiment 1
El sentit del corrent en apropar l’imant és oposat al que s’obté quan...
58
6- EXPERIÈNCIES DE FARADAY
Experiment 2 Substituïm l’imant de l’experiment 1 per un electroimant.
Obtenim els mateixos ...
59
7- LA LLEI DE LENZ
El fenomen d’inducció electromagnètica és tal que els seus efectes
s’oposen sempre a la causa que el...
60
7- LA LLEI DE LENZ
En acostar el pol N, l’espira genera un altre pol N, que s’hi oposi.
En acostar l’imant, augmenten l...
61
El sentit del corrent induït s’oposa a la variació del flux que la produeix
ε =
dφ
dt
−
• En apropar l’ imant a l’espir...
62
8- LA LLEI DE FARADAY-LENZ
El flux pot variar per tres motius:
•Variació del mòdul de B
•Variació de la superfície de l...
63
Si fem oscil.lar un imant penjat d’una molla davant
una bobina connectada a un oscil·loscopi s’obté
una tensió alterna ...
64
9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA
Alternador i corrent altern
Si la velocitat angular de gir, ω, és constant,
l’angle...
65
9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA
Alternador i corrent altern
ε = NBS ω sin ω t
La tensió màxima ens ho dóna NBSω
(va...
66
9- PRODUCCIÓ D’ENERGIA ELÈCTRICA
Dinamo i corrent continu
Dinamo en una bicicleta
67
Corrent continu (+ espires)
9- PRODUCCIÓ D’ENERGIA ELÈCTRICA
Dinamo i corrent continu
68
9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA
Alternadors industrials
Hem vist un alternador simplificat de només 2 pols.
Si enll...
69
Les companyies elèctriques han de proporcionar a
la xarxa tensió de freqüència fixa de 50 Hz a
Europa, i per tant els s...
70
10- ALTRES FORMES D’ INDUCCIÓ
Els alternadors produeixen corrent altern, però podrien produir corrent continu ja que la...
71
10- ALTRES FORMES D’ INDUCCIÓ
Consisteix en la inducció d’un corrent sobre si mateix. Perquè es produeixi, cal que
vari...
72
10- ALTRES FORMES D’ INDUCCIÓ
Autoinducció
Coeficient d’autoinducció o inductància (L): constant de proporcionalitat qu...
73
10- ALTRES FORMES D’INDUCCIÓ
Inducció mútua
Es produeix quan dos circuits situats a una distància suficient són capaços...
74
10- ALTRES FORMES D’INDUCCIÓ
Inducció mútua
Flux magnètic que travessa la segona bobina és proporcional a la intensitat...
75
10- ALTRES FORMES D’INDUCCIÓ
Es fa circular corrent altern pel primari (la intensitat varia
contínuament). El circuit p...
76
11- ALTRES DISPOSITIUS RELACIONATS AMB LA
INDUCCIÓ
Guitarra elèctrica
La corda de la guitarra es comporta com un imant....
77
Micròfon dinàmic: Consta d’un diafragma, una bobina i un imant
permanent.
El diafragma està unit a la bobina i es despl...
78
11- ALTRES DISPOSITIUS RELACIONATS AMB LA
INDUCCIÓ
Corrents de Focault
Si fem oscil.lar un disc de coure entre dues bob...
79
11- ALTRES DISPOSITIUS RELACIONATS AMB LA
INDUCCIÓ
Corrents de Focault Es pot aprofitar aquests corrents en alguns disp...
80
12- SÍNTESI DE MAXWELL PER A
L’ELECTROMAGNETISME
Maxwell desenvolupa la teoria electromagnètica. Unifica l’electricitat...
81
12- SÍNTESI DE MAXWELL PER A
L’ELECTROMAGNETISME
•Un camp magnètic variable indueix un camp elèctric variable.
•Un camp...
82
•James Clerk Maxwell proposa que la llum no és una ona mecànica sinó
una ona electromagnètica d’alta freqüència, i no n...
F= q v B sin α
2-Força de Lorentz
(Regla de la mà dreta)
qB
mv
R =
3- Llei Faraday-Lenz: inducció electromagnètica
φ = B S...
Próxima SlideShare
Cargando en…5
×

Camp magnètic

31.602 visualizaciones

Publicado el

Física de batxillerat: Camp magnètic. Força de Lorentz. Llei de Faraday -Lenz. Alternadors. Transformadors. Inducció electromagnètica.

Publicado en: Educación

Camp magnètic

  1. 1. 1 Camp magnètic Lurdes Morral Física 2n batxillerat
  2. 2. 2 1- QUÈ SÓN ELS IMANTS? Imants naturals: minerals, com ara la magnetita (Fe3O4), , capaços d’atreure trossets de ferro, es a dir, amb propietats magnètiques. Al seu voltant creen un camp magnètic, una zona de l’espai on es poden manifestar forces magnètiques. resum
  3. 3. 3 1- QUÈ SÓN ELS IMANTS? Materials ferromagnètics: Ferro, cobalt, manganès, gadolini i disprosi. En contacte amb un imant natural es converteixen en imants artificials.
  4. 4. 4 1- QUÈ SÓN ELS IMANTS? Ceràmics: els més utilitzats: altaveus, aros per auriculars, cilindres per enganxar figures a les neveres. Són molt fràgils. Òxids de ferro. Alnico: 8 % de alumini, 14 % de níquel, 24 % de cobalt, 51 % de ferro i un 3 % de coure. Molt bon preu, però no tenen molta força. Resisteixen altes temperatures De terres rares: Petits, de aparença metàl·lica, amb una força de 6 a 10 cops superior als tradicionals. Bor/neodimi: (Fe, Nd i B). S’oxiden fàcilment, es recobreixen per Zn, Ni o vernís epoxi. Flexibles: Aglomeració de partícules magnètiques (Fe i Sr) en un elastòmer (cautxú, PVC...).
  5. 5. 5 1- QUÈ SÓN ELS IMANTS? Característiques dels imants: • Les propietats magnètiques s’originen en els pols • Hi ha dos tipus de pols: nord (N) i sud (S) • Els pols del mateix tipus es repel·len i els de tipus contrari s’atrauen. • No es poden tenir monopols magnètics. Sempre van en parelles.
  6. 6. 6 La brúixola: detector de propietats magnètiques Quan acostem un imant a una brúixola, el pol nord del imant atrau al pol sud de la fletxa. En absència d’imants, una brúixola sempre marcarà la direcció nord-sud geogràfica. Anomenem pol nord d’un imant al que apunta al nord geogràfic. La Terra es comporta com un imant permanent. 1- QUÈ SÓN ELS IMANTS?
  7. 7. 7 1- QUÈ SÓN ELS IMANTS?
  8. 8. 8 Model microscòpic per al magnetisme La matèria està feta d’àtoms. Aquests són constituïts per un nucli, al voltant del qual es mouen els electrons. Els electrons en moviment són un corrent elèctric. Un corrent elèctric genera un camp magnètic. Cada electró pot generar un camp magnètic microscòpic. Els camps magnètics dels diferents electrons s’anul·len entre ells. L’àtom no té propietats magnètiques Materials diamagnètics: 1- QUÈ SÓN ELS IMANTS? Materials paramagnètics: L’àtom es comporta com un imant microscòpic, però aquests petits imants microscopis estan tan desordenats que el material no té propietats magnètiques.
  9. 9. 9 1- QUÈ SÓN ELS IMANTS? Materials ferromagnètics: Els àtoms formen grups de 1010 , anomenats dominis. Dins de cada domini, estan orientats de la mateixa manera, originant un imant permanent microscòpic. Els diferents dominis es troben desordenats. El camp magnètic és 0. Si posem aquests materials dins un camp magnètic, els diferents dominis s’alinearan amb el camp exterior. L’alineació perdura encara que traiem el camp exterior. Moments magnètics alineats amb el camp Moment magnètic resultant → B Dominis
  10. 10. 10 2a- VISUALITZACIÓ DEL CAMP MAGNÈTIC Espectre magnètic: llimadures de ferro al voltant d’un imant. Petites brúixoles al costat d’un imant. Cada brúixola marca la direcció i sentit del camp magnètic en cada punt. Camp magnètic, és un vector: Direcció: eix magnètic de la brúixola Sentit: Punta de la fletxa (el pol N)
  11. 11. 11 2a- VISUALITZACIÓ DEL CAMP MAGNÈTIC
  12. 12. 12 2b- QUANTIFICACIÓ DEL CAMP MAGNÈTIC La intensitat d’un camp magnètic, , s’anomena inducció magnètica. Unitat: Tesla. Aparell: Teslàmetre. B → B → B → B → B → B → B → B → •Surten del pol N de l’imant i es dirigeixen al S. •Vector , és tangent a elles. •No es tallen mai. •Estan més juntes on el camp és major. (en els pols) Camp uniforme: Quan les línies són paral·leles i equidistants. B → B → Línies de camp magnètic brúixola
  13. 13. 13 El corrent elèctric té propietats magnètiques 1820, Oersted, va descobrir que un corrent elèctric de molta intensitat, 10 A, desviava l’agulla d’una brúixola. Es comportava com un imant. Es desenvolupa la teoria electromagnètica. CIRCUIT TANCATCIRCUIT TANCAT CIRCUIT OBERTCIRCUIT OBERT Va situar l’agulla paral·lela a un conductor rectilini. Va observar que girava fins quedar perpendicular al conductor quan hi circulava un corrent elèctric L’agulla tornava a la seva posició inicial en tancar el pas del corrent elèctric. El pas del corrent exerceix sobre l’agulla imantada els mateixos efectes que un imant Interruptor obert brúixola conductor Interruptor tancat brúixola conductor 1- QUÈ SÓN ELS IMANTS?
  14. 14. 14 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per un conductor rectilini infinit Un conductor rectilini infinit per on hi circuli un corrent elèctric I, genera un camp magnètic B a una distància r: Quan una càrrega elèctrica està en repòs genera un camp elèctric, però si la càrrega es mou genera a la vegada un camp elèctric i un de magnètic. r2 I B 0 π µ = mA T 104 7− 0 π=µ µo,permeabilitat magnètica en el buit I→ B Walter fendt → B → B → B I Regla de la mà dreta
  15. 15. 15 Vector surt del paper i ve cap a nosaltres (punta fletxa) Vector entra dins el paper i s’allunya de nosaltres (plomes fletxa) Representació simbòlica 3- CREACIÓ DE CAMPS MAGNÈTICS Si fem dibuixos en dos dimensions, sense perspectiva, per representar vectors perpendiculars al full de paper utilitzem el següent conveni:
  16. 16. 16 Exemple 1: Determinar la inducció magnètica en l’aire (μ0), en un punt a 6 cm d’un conductor rectilini pel que circula una intensitat de corrent de 2 A. (s’ha de calcular el mòdul, la direcció i el sentit.) Solució: T d I B 50 1066,0 2 − ⋅== π µ I B  B  B  B  3- CREACIÓ DE CAMPS MAGNÈTICS I I d=0,06m a) 3D b) Vista lateral c) Vista “vertical”(des de sota). d=0,06m
  17. 17. 17 Exemple 2: Dos filferros paral.lels estan separats 10 cm. Per un ,A, passa una corrent de 30 A i per l’altre, B, passa una corrent de 40 A en sentits oposats. Calcula el camp resultant en un punt del pla dels dos conductors situat en: a)Un punt mig entre els dos conductors (punt M en figura). b)A 10cm a l’esquerra del conductor situat a l’esquerra. (punt N en figura). c) A 10cm a la dreta del conductor situat a la dreta. (punt O en figura). 3- CREACIÓ DE CAMPS MAGNÈTICS I1 d=0,1m a) d=0,1m I2 d=0,1m N M O TT d I B 44 7 10 1 102,110 5 6 05,02 30104 2 −− − ⋅=⋅= ⋅ ⋅⋅ == π π π µ TT d I B 44 7 20 2 106,110 5 8 05,02 40104 2 −− − ⋅=⋅= ⋅ ⋅⋅ == π π π µ I1 I2 A A B TBT 444 108,2102,1106,1 −−− ⋅=⋅+⋅=
  18. 18. 18 b) A 10cm a l’esquerra del conductor situat a l’esquerra (punt N en figura). I1 d=0,1md=0,1m I2 d=0,1m N M O I1 I2 Línia de camp B creada per I2 Línia de camp B creada per I1 N dB2=0,2m dB1=0,1 m = ⋅ ⋅⋅ === − 1,02 30104 2 2 7 101 1 π π π µ d I d IK B m = ⋅ ⋅⋅ === − 2,02 40104 2 2 7 202 2 π π π µ d I d IK B m TB 5 1 106 − ⋅= TB 5 2 104 − ⋅= 3- CREACIÓ DE CAMPS MAGNÈTICS TBT 555 102104106 −−− ⋅=⋅−⋅=
  19. 19. 19 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per una espira Suposem 4 fils conductors que es creuen formant un quadrat: 2/2 44 0 l I BB fil π µ == Podem aconseguir camps magnètics més intensos amb un fil conductor sense augmentar la intensitat del corrent. Si agafem 1 sol conductor i el dobleguem fent un quadrat: 2/2 4 0 l I B π µ < Normalment els conductors es dobleguen en forma de cercle. Tenim una espira. El camp al seu centre no és 4 cops la d’un conductor, sinó π vegades. 2/2 0 l I B π π µ = R I B 2 0µ =
  20. 20. 20 I → B I → B R 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per una espira
  21. 21. 21 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per una bobina Una bobina és un conductor llarg enrotllat en forma d’espiral. Conjunt d’espires ⇒ al centre d’una bobina el camp magnètic serà molt intens. l IN B µ= N= nombre d’espires l= longitud de la bobina N/l= densitat d’espires R I B 2 0µ = 1 espira
  22. 22. 22 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per una bobina
  23. 23. 23 L I O P R Q 3- CREACIÓ DE CAMPS MAGNÈTICS Camp magnètic creat per una bobina
  24. 24. 24 Exemple 3: Quin és el valor de la inducció magnètica en l’ interior d’una bobina de 10 cm de longitud i 500 espires per la cual circula una corrent d’ 1A? Calcula el camp en l’interior del solenoide si s’introdueix un cilindre de ferro (μr=350) dolç en ell. Per aquest motiu els electroimants es fabriquen introduint una peça de ferro o acer, anomenat nucli, en l’interior de la bobina === − − 1 7 0 0 10 1·500·10·4πµ l NI B TB 33 0 10·28,610·2 −− == π TBB l NI l NI B r r 20,2·350 · 00 0 ===== µ µµµ 3- CREACIÓ DE CAMPS MAGNÈTICS
  25. 25. 25 3- CREACIÓ DE CAMPS MAGNÈTICS L’electroimant Bobina dins la qual s’ha posat un material ferromagnètic, que s’anomena nucli. Intensifica el camp magnètic Aplicacions: • Aparells mèdics: RMN • Grues magnètiques • Motor elèctric i alternador • Microscopis electrònics • Timbres i altaveus
  26. 26. 26 Timbre elèctric En tocar el polsador, el corrent circula per la bobina de l’electroimant. El camp magnètic originat atreu l’armadura de ferro i es pica la campana. Quan passa això, el cargol de contacte deixa de tocar la làmina metàl.lica i s’obre el circuit. Desapareix el corrent i el camp magnètic i l’armadura es separa. Torna la situació inicial. 3- CREACIÓ DE CAMPS MAGNÈTICS Aplicacions:
  27. 27. 27 3- CREACIÓ DE CAMPS MAGNÈTICS
  28. 28. 28 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Força que fa un camp sobre una partícula carregada en moviment Una càrrega q, que es mou amb una velocitat v, en una zona on hi ha un camp magnètic B, experimenta una força magnètica, F, força de Lorentz, de mòdul: F= q v B sin α α= angle que formen el vector velocitat i el camp magnètic •Si la càrrega està en repòs, no hi ha força magnètica •Si B és més intens, major la força •Si la velocitat és paral·lela al camp (α = 0 o 1800 ), la força és nul·la, F=0 és perpendicular al camp (α = 900 ), la força és màxima, Fmax Vector força: Direcció: Perpendicular al pla que formen els vectors v i B. Sentit: regla de la mà dreta
  29. 29. 29 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) )( BVF xq →→→ =
  30. 30. 30 F= q v B sin α qv F B 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) qv F B Regla de la mà dreta
  31. 31. 31 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Regla de la mà esquerra qv F B
  32. 32. Força de Lorentz 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) )( BVF xq →→→ =
  33. 33. 33 Si és paral·lel av → B → - Els vectors siguin paral·lelsB → v → y • Sigui una carrega positiva amb velocitat que penetra en un camp magnètic de inducció magnètica . Segons la posició relativa dels dos vectors, podem tenir tres cassos : v → B → F = q v B sen 0 = 0 ⇒ F = 0 ⇒ B → v → y- Els vectors siguin perpendiculars B → v → y- Es vectors formin entre si un angle qualsevol α la partícula se mourà amb MRU mantenint la velocitat i direcció que portava doncs el camp no l’afecta. Si és perpendicular av → B → Bq vm RBvq R vm maF 2 n =⇒=== F = q v B sen 90 = 0 ⇒ F = q v B ⇒ essent R el radi de la trajectòria circular La partícula es mourà amb MCU doncs la força és perpendicular a la trajectòria 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
  34. 34. 34 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) La força magnètica és perpendicular a la velocitat, és una força normal, i per tant provoca una acceleració normal. Fa variar la direcció de la velocitat, però no el mòdul fa girar Bq vm R =
  35. 35. 35 v → v → x y x y z q+ → F R B → q+ B → → F v → + → F v →+ Si i formen un angle αv → B → qB sinvm R α = → B α R z x y v → + +q Càrrega en moviment sota un angle α La partícula seguirà una trajectòria helicoïdal F = q v B sin α 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
  36. 36. 36 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Bq vm R =
  37. 37. 37 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Aplicacions de les forces magnètiques sobre partícules en moviment 1-Cambra de bombolles en física d’altes energies: Radi de curvatura major, com més gran sigui la massa de la partícula, o menor sigui la càrrega. Les partícules segueixen espirals i en frenar-se pel líquid (hidrogen líquid) de la cambra, cada cop tenen un radi menor. Bq vm R =
  38. 38. 38 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 2-Desviació magnètica als tubs de TV 3 feixos d’electrons, emesos per 3 canons, copegen els luminòfors (3 punts de color primaris) de cada punt de la pantalla. Cada feix recorre les 625 línies de la pantalla en 40 ms
  39. 39. 39 SLAC (Stanford Linear Accelerator Center) de la Universidad de Stanford, en California, que tiene ¡tres kilómetros y doscientos metros de largo! Se trata probablemente del objeto totalmente recto más largo de la Tierra. El SLAC fue construido en 1966 Este monstruo rectísimo es capaz de proporcionar 50.000.000.000 eV (50 GeV, gigaelectronvoltios) a los electrones y positrones que acelera - los lleva a velocidades que se aproximan a la de la luz. Unas 1.000 personas trabajan en el SLAC. 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules
  40. 40. 40 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules Ciclotró, 1931 2 caixes buides en forma de D en un camp magnètic perpendicular. Tensió alterna de període igual al de pulsació del ciclotró Entre les D, camp elèctric que canvia de sentit. Accelera- ció applet Bq vm R = R v =ω m qBR v = m qB mR qBR ==ω qB m2 T π ω π 2== m qBR v final sortida = applet
  41. 41. 41 Exemple: Un ciclotró que accelera protons té un campo magnètic de 1,5 T i un radi màxim de 0,5 m. a ) Quina serà la freqüència del ciclotró? b) Determinar l’energia cinètica amb la que surten els protons (en eV). a) El període d’una partícula en un camp magnètic constant ve donat per T = 2 . π m / q B per tant la freqüència del ciclotró vindrà donada per l’equació f = q B / 2 π m = ( substituint directament ) = 22,9 MHz b)La energia cinètica dels protons emergents ve donada per l’equació E cinètica = ½ mv2 = ½ ( q2 B 2 / m ) r max 2 E cinètica = 4,31·10 - 12 J Les energies dels protons i d’altres partícules elementals s’expressen usualment en electronvolts (eV). Com que 1 eV = 1,6 ·10- 19 J , resulta E cinètica = 26,9 Mev 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
  42. 42. 42 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules
  43. 43. 43 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules
  44. 44. 44 El sincrotrón más potente que existía antes de 2008 es el Tevatrón del Fermi National Accelerator Laboratory en Batavia, Illinois, construido en 1987. Es un anillo con una circunferencia de unos seis kilómetros, y es capaz de proporcionar energías de hasta 1 TeV (teraelectronvoltio, un billón de electronvoltios 1012 ) a los protones y antiprotones que acelera. Estas partículas, cuando han recorrido el anillo cientos de miles de veces, llegan a moverse a velocidades próximas a la de la luz. No, en serio, muy próximas: les faltan unos 320 km/h para llegar a la velocidad de la luz. No sólo eso: el Tevatrón tiene dos tubos en el anillo, de modo que puede acelerar partículas en los dos tubos moviéndose en sentidos opuestos y luego hacer que colisionen en el punto de intersección con energías relativas de casi 2 TeV. El quark top fue descubierto en el Tevatrón en 1995. 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules
  45. 45. 45 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 3-Acceleradors de partícules El descomunal LHC, que entró en funcionamiento en 2009 es aún más potente. Se encuentra entre Suiza y Francia, y su circunferencia es más de tres veces la del Tevatrón - unos 27 kilómetros. De hecho, el LHC es tan brutal que necesita acelerar las partículas con muchos aceleradores secundarios, que forman una especie de cadena:
  46. 46. 46 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 4-Selector de velocitats Felectrica= Fmagnètica qE= qv B sin α Si B és perpendicular a v: B E v = Applet senzill applet
  47. 47. 47 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 5-Espectròmetre de masses v:selector B: conegut A partir r, trobem q/m dels isòtops applet qB mv r = ΔVmv2 q= 2 1 V∆ = 2 rB q m 22 v rB q m =
  48. 48. 48 Un ió de 58 Ni de carga + e i massa 9,62 ·10- 26 Kg s’accelera a través d’una diferència de potencial de 3 kV i es desvia per un camp magnètic de 0,12 T. a - ) Determinar el radi de curvatura de l’ òrbita de l’ió. b - ) Determinar la diferència que existia entre els radis de curvatura dels ions 58 Ni i 60 Ni. a) De l’equació r 2 = 2·m·Δ V / q·B 2 = 0,251 s’obté r = 0,501 m b) El radi de l’òrbita d’un ió en un determinat camp magnètic és proporcional a l’arrel quadrada de la seva massa per un determinat voltatge de l’accelerador. Si r1, és el radi de l’òrbita de l’ió 58 Ni i r2 el de l’òrbita de l’ió 60 Ni, la relació dels radis és r 2 / r 1 = ( m2 / m1) ½ Per tant, el radi de l’òrbita de l’íó 60 Ni és r2 = ( 60 / 58 )1/2 = 0,510 m La diferència entre els radis de les òrbites és r2 - r1 = 0,510 m - 0,501 m = 0,009 m = 9 mm 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ)
  49. 49. 49 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Força que fa un camp sobre un conductor que transporta corrent F= I l B sin α 6-Microscopi electrònic Permeten observar detalls de 10-10 m Força de Laplace
  50. 50. 50 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Aplicacions de les forces magnètiques sobre conductors que transporten corrent 1-Altaveu electrodinàmic El lector de CD, converteix la informació digital en un corrent elèctric, que es amplificat i enviat a l’altaveu. L’altaveu està format per una bobina unida a una membrana en forma de con. La bobina oscil.la gràcies a la força de Laplace i fa oscil.lar el con que empeny l’aire i genera una ona de pressió. Tv·3
  51. 51. 51 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) 2-Motor elèctric
  52. 52. 52 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Motor elèctric You tube You tube Motor tv3 applet
  53. 53. 53 4- ACCIÓ DE CAMPS MAGNÈTICS (F. LORENTZ) Tv3 camp electr i magn
  54. 54. 54 5- EL FLUX DE CAMP MAGNÈTIC La quantitat de pluja que passa per un cèrcol depèn de: •Si plou molt o poc •El diàmetre del cèrcol •La posició del cèrcol respecte la pluja Concepte de flux Flux magnètic que travessa una certa superfície: φ = B S cosϕ B: mòdul del vector inducció magnètica S: mòdul del vector superfície ϕ: angle que formen els dos vectors anteriors Vector superfície: perpendicular a la superfície i de mòdul, l’àrea de la superfície Weber=Tm2
  55. 55. 55 5- EL FLUX DE CAMP MAGNÈTIC Flux de camp a través d’una bobina de N voltes: φ = N B S cosϕ Suposem que els imants creen camps magnètics uniformes prop dels pols, i ϕ el suposem constant
  56. 56. 56 6- EXPERIÈNCIES DE FARADAY Voltímetre Imant en moviment Experiment 1 Connectem els extrems d’una bobina a un voltímetre o a un oscil·loscopi. Mantenint la bobina, acostem i allunyem un imant. Apareix tensió elèctrica. Aquest fenomen s’anomena inducció electromagnètica. Inductor: imant Induït: bobina on ha aparegut la tensió induïda o força electromotriu induïda Si deixem en repòs l’imant i movem la bobina, obtenim els mateixos resultats. Si imant i bobina estan en repòs, no es produeix εind.
  57. 57. 57 → VI → VI 6- EXPERIÈNCIES DE FARADAY Experiment 1 El sentit del corrent en apropar l’imant és oposat al que s’obté quan allunyem l’imant. Sense font d’alimentació, es pot produir corrent elèctric a partir d’un camp magnètic, per inducció
  58. 58. 58 6- EXPERIÈNCIES DE FARADAY Experiment 2 Substituïm l’imant de l’experiment 1 per un electroimant. Obtenim els mateixos resultats. Experiment 3 Mantenint en repòs inductor i induït, modificarem la intensitat del corrent elèctric que travessa la bobina, obrint i tancant l’interruptor. Apareix tensió elèctrica en l’induït, quan tanquem i obrim el circuit (quan el corrent varia)
  59. 59. 59 7- LA LLEI DE LENZ El fenomen d’inducció electromagnètica és tal que els seus efectes s’oposen sempre a la causa que els origina. La força electromotriu i el corrent induïts, tenen un sentit que tendeix a oposar-se a la variació que els produeix. Experiment 1 Bobina en repòs. Hi acostem el pol N d‘un imant. S’indueix corrent en l’espira produint un camp magnètic que té el N a l’esquerra Hi allunyem el pol N d‘un imant. S’indueix corrent en l’espira produint un camp magnètic que té el S a l’esquerra Se sap pel sentit del corrent
  60. 60. 60 7- LA LLEI DE LENZ En acostar el pol N, l’espira genera un altre pol N, que s’hi oposi. En acostar l’imant, augmenten les línies de camp magnètic en l’espira i aquesta en produeix en sentit contrari Principi de conservació de l’energia: Cal fer un treball per acostar l’imant, degut al rebuig, que es transforma en energia elèctrica.
  61. 61. 61 El sentit del corrent induït s’oposa a la variació del flux que la produeix ε = dφ dt − • En apropar l’ imant a l’espira, augmenta el camp magnètic que l’atravessa, i el flux • El corrent induït circula en el sentit en el que es genera un camp magnètic per l’ espira tal que el seu flux tendeix a contrarestar el del camp magnètic de l’imant → VI I I → VI I 8- LA LLEI DE FARADAY-LENZ
  62. 62. 62 8- LA LLEI DE FARADAY-LENZ El flux pot variar per tres motius: •Variació del mòdul de B •Variació de la superfície de l’espira •Variació de l’angle entre inductor- induït φ= B. S. cos α Funcionament dels alternadors Variació del flux
  63. 63. 63 Si fem oscil.lar un imant penjat d’una molla davant una bobina connectada a un oscil·loscopi s’obté una tensió alterna sinuisoïdal. 9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA Alternador i corrent altern Si ara l’imant el fem girar davant de la bobina de N espires connectada a l’oscil·loscopi, com que l’angle varia, el flux de camp magnètic també i de nou obtenim una tensió alterna (amb un sol imant no és perfecta). Tenim un model simplificat d’ alternador. La bobina fixa, estator és la induïda i l’imant, el rotor, és l’inductor.
  64. 64. 64 9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA Alternador i corrent altern Si la velocitat angular de gir, ω, és constant, l’angle girat serà: ϕ = ω t El flux: φ = NBS cos ϕ = NBS cos ωt La tensió induïda serà: ε = dφ dt − ε = NBS ω sin ω t Obtenim una tensió alterna: ja que el seu valor depèn del temps de forma sinusoïdal La freqüència de la tensió alterna, dependrà de la velocitat angular: π ω 2 =f Aquí fem girar la bobina i mantenim fix l’imant. Ara l’inductor és l’estator i l’induït, el rotor.
  65. 65. 65 9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA Alternador i corrent altern ε = NBS ω sin ω t La tensió màxima ens ho dóna NBSω (valor màxim de sin=+1) Tensió alterna: V = Vmax sin ω t Les companyies elèctriques donen una tensió alterna de 311 V, i en canvi a casa tenim 220V. Els polímetres no mesuren les Vmax sinó la tensió eficaç (Només els oscil.loscopis mostren la senyal tal i com és) V eficaç = 0’7 V max You tube generador Alternador tv3
  66. 66. 66 9- PRODUCCIÓ D’ENERGIA ELÈCTRICA Dinamo i corrent continu Dinamo en una bicicleta
  67. 67. 67 Corrent continu (+ espires) 9- PRODUCCIÓ D’ENERGIA ELÈCTRICA Dinamo i corrent continu
  68. 68. 68 9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA Alternadors industrials Hem vist un alternador simplificat de només 2 pols. Si enlloc d’un imant, s’utilitza un sistema d’imants, amb els eixos magnètics radials i els pols alternats, tindrem un alternador multipolar que aprofita millor cada gir. Per N pols (N/2 imants), i un rotor que giri a una freqüència frotor, La freqüència de la tensió induïda, fεind, serà: rotorind f N f 2 =ε En els alternadors industrials, el rotor està format per una sèrie de bobines alimentades per corrent continu (es comporten com imants) i indueixen tensió a les bobines fixes de l’induït (l’estator) Alternador d’un motor d’automòbil.
  69. 69. 69 Les companyies elèctriques han de proporcionar a la xarxa tensió de freqüència fixa de 50 Hz a Europa, i per tant els seus alternadors han de girar a una velocitat concreta en funció del nombre de pols. 9- PRODUCCIÓ DE L’ENERGIA ELÈCTRICA Alternadors industrials
  70. 70. 70 10- ALTRES FORMES D’ INDUCCIÓ Els alternadors produeixen corrent altern, però podrien produir corrent continu ja que la majoria dels dispositius electrònics funcionen amb corrent continu. Per què corrent altern? En el transport de corrent, hi ha molta pèrdua per efecte Joule, i aquesta pèrdua és menor quan es fa a tensions molt altes (centenars de kilovolts). Els transformadors, eleven el voltatge a la sortida de la central i la redueixen a uns quants kilovolts a prop de les poblacions. En els llocs de consum, la tensió es torna a disminuir fins a 125V, 220V o 380V. Només funcionen amb corrent altern. P= IR2 Es pot disminuir la resistència: caldria cables de gran secció i de conductivitat elevada (pesants o costosos). Es pot disminuir la intensitat P=IV Cal elevar el voltatgePotència transportada
  71. 71. 71 10- ALTRES FORMES D’ INDUCCIÓ Consisteix en la inducció d’un corrent sobre si mateix. Perquè es produeixi, cal que variï amb el temps la intensitat de corrent que recorre el circuit. Autoinducció Circuit amb un generador, interruptor i bobina. En tancar-lo es produeix un sentit del corrent →. La seva intensitat varia de 0 a I (quan s’estabilitza) i per tant produeix un camp magnètic variable en la bobina, que genera un corrent autoinduït → que s’oposa al corrent . En obrir l’interruptor l’ intensitat varia de I a 0. Durant aquest interval de temps, a la bobina hi ha un camp magnètic variable que produeix corrent induït. Té el mateix sentit del corrent del generador i fa que tardi a desaparèixer del tot. Es pot produir una guspira. També observem efectes d’autoinducció si el circuit té una resistència variable.
  72. 72. 72 10- ALTRES FORMES D’ INDUCCIÓ Autoinducció Coeficient d’autoinducció o inductància (L): constant de proporcionalitat que relaciona el flux magnètic que travessa la bobina o la resistència variable i la intensitat de corrent que circula pel circuit . (L:depèn del tipus de material, mida, forma) 1H = 1V s A-1 1H= 1 Henry dt d BΦ −=ε Faraday dt dI L−=ε Si relacionem L amb les característiques de la bobina I l N B ⋅= µ l: longitud N: nombre espires S: superfície SI l N NSBNB ⋅⋅⋅⋅=⋅⋅=Φ µ Si relacionem * * * ILB ⋅=Φ S l N L ⋅⋅= 2 µ
  73. 73. 73 10- ALTRES FORMES D’INDUCCIÓ Inducció mútua Es produeix quan dos circuits situats a una distància suficient són capaços d’induïr corrent l’un a l’altre. Suposem una bobina enrotllada a un nucli de ferro dolç (molt dur), connectada a un circuit amb un generador i un interruptor. Al costat li posem un altre circuit amb una sola bobina enrotllada en el ferro. Interruptor obert En tancar l’interruptor En obrir l’interruptor
  74. 74. 74 10- ALTRES FORMES D’INDUCCIÓ Inducció mútua Flux magnètic que travessa la segona bobina és proporcional a la intensitat que circula per la primera: 1122 IMB ⋅=Φ 2211 IMB ⋅=ΦIgual per la primera M12 i M21= coeficient d’inducció mútua o inductància mútua. Es mesuren en Henry (H) Es pot demostrar que són iguals. 2 1 1 2 1221 II MM BB Φ = Φ →= Transformadors Es fan servir per modificar el voltatge i la intensitat d’un corrent altern sense que s’hi produeixin pèrdues d’energia significatives. Són dues bobines enrotllades sobre un nucli de ferro comú. Primari: bobina que li volem canviar la tensió. Té N1 espires Secundari: la que ens dóna la tensió final. Té N2 espires Aplicació: els transformadors.
  75. 75. 75 10- ALTRES FORMES D’INDUCCIÓ Es fa circular corrent altern pel primari (la intensitat varia contínuament). El circuit primari indueix corrent en el secundari i a la inversa. Com que la inducció és mútua→ la variació de flux en cada espira dels dos circuits és la mateixa. dt d NV dt d NV B B 2 22 1 11 Φ −= Φ −=Faraday 2 2 1 121 N V N V dt d dt d BB =→ Φ = Φ Si suposem que no hi ha pèrdua d’energia, la potència d’entrada és la mateixa que la de sortida. 2211 IVIVIVP ⋅=⋅→⋅= 1 2 2 1 1 2 N N I I V V == Relació de transformació: Transformador elevador: N2 > N1 Transformador reductor : N2 < N1 Transformador d’aïllament : N2=N1
  76. 76. 76 11- ALTRES DISPOSITIUS RELACIONATS AMB LA INDUCCIÓ Guitarra elèctrica La corda de la guitarra es comporta com un imant. En fer-la fibrar, varia el flux magnètic que rep l’imant de la pastilla (pick-up), provocant canvi en el flux del bobinat i produint un corrent induït. Aquest corrent es transmet a l’amplificador.
  77. 77. 77 Micròfon dinàmic: Consta d’un diafragma, una bobina i un imant permanent. El diafragma està unit a la bobina i es desplaça en un sentit o en l’altre depenent de la pressió provocada per la vibració sonora. Micròfon electromagnètic El micròfon transforma senyal acústic en un senyal elèctric i l’altaveu fa la transformació inversa. Aquest moviment produeix un canvi en el flux magnètic que arriba a la bobina i provoca un corrent induït que varia segons el so. Ara cal un amplificador de senyal perquè el so sigui perceptible. 11- ALTRES DISPOSITIUS RELACIONATS AMB LA INDUCCIÓ
  78. 78. 78 11- ALTRES DISPOSITIUS RELACIONATS AMB LA INDUCCIÓ Corrents de Focault Si fem oscil.lar un disc de coure entre dues bobines on hi circuli corrent, el disc es frenarà bruscament. El coure no es atret per un imant. Per què passa? Podem imaginar que el disc de coure està format per un conjunt d’anells concèntrics. Quan el disc es mou, varia el flux magnètic a través d’aquestes espires. El corrent induït (Lenz), genera un camp magnètic que s’oposa al canvi de flux i frena el disc. L’energia mecànica del pèndol es convertirà en calor. Originen problemes industrials importants en els transformadors i en alternadors. Per disminuir els efectes les masses metàl.liques es construeixen de làmines fines i aïllades per un plàstic o òxid metàl.lic. Aquests corrents induïts s’anomenen corrents de Focault.
  79. 79. 79 11- ALTRES DISPOSITIUS RELACIONATS AMB LA INDUCCIÓ Corrents de Focault Es pot aprofitar aquests corrents en alguns dispositius Cuines d’inducció: un camp magnètic variable arriba al recipient metàl.lic. Els corrents de Focault que s’originen a les parets escalfen el que hi ha a l’interior sense que s’escalfi la superfície de la cuina. Detectors de metalls: Es transmet un corrent d’entrada que produeix un camp magnètic variable. En incidir sobre un objecte metàl.lic, es produeixen corrents de Focault que donen lloc a un corrent de sortida diferent i s’activa l’alarma. Frens electromagnètics: Hi ha uns discs solidaris de l’arbre de transmissió que giren entre uns electroimants connectats a una bateria. Quan es vol frenar, s’envia corrent als electroimants, es produeixen els corrents de Focault i originen una força addicional de frenat. Bobina i inducció tv3
  80. 80. 80 12- SÍNTESI DE MAXWELL PER A L’ELECTROMAGNETISME Maxwell desenvolupa la teoria electromagnètica. Unifica l’electricitat i el magnetisme. Expliquen totes les experiències i es dedueixen totes les altres lleis. Es sustenta en 4 equacions: ε tancadaQ SdE ==Φ ∫ →→ . 0. ==Φ ∫ →→ SdBB SdB dt d ldE → → →→ ∫∫ −==Φ ..         ⋅+⋅= ∫∫ →→→→ SdE dt d rdB .1. εµ Teorema de Gauss Teorema de Gauss Llei de Faraday Llei d’Ampère generalitzada
  81. 81. 81 12- SÍNTESI DE MAXWELL PER A L’ELECTROMAGNETISME •Un camp magnètic variable indueix un camp elèctric variable. •Un camp elèctric variable indueix un camp magnètic variable. Els camps elèctrics i magnètics relacionats són perpendiculars. Les ones electromagnètiques són el resultat de la propagació a l’espai d’un camp elèctric i un camp magnètic variables al llarg del temps. Hertz, 1887: Va aconseguir produir i detectar ones electromagnètiques i va mesurar la seva velocitat de propagació = 3⋅108 m/s. Deducció de c a partir de les lleis de l’electromagnetisme: BVqEqFF BE ⋅⋅=⋅→= v r vQ r Q B E v ⋅⋅ = ⋅ ⋅ ⋅ == µε π µ πε 1 4 4 1 2 2Aïllem v: µε ⋅ = 12 v En el buit: smv oo /103 1 8 ⋅= ⋅ = µε De les dues últimes es pot deduir que:
  82. 82. 82 •James Clerk Maxwell proposa que la llum no és una ona mecànica sinó una ona electromagnètica d’alta freqüència, i no necessita cap medi per propagar-se . Són la propagació d’un camp magnètic i un camp elèctric perpendiculars entre ells I a la direcció de propagació. Hertz produeix per primera vegada ones electromagnètiques (llum) a partir de circuits elèctrics alterns i realitza amb elles reflexió, refracció i interferències. E → E → E → Camp elèctric B → B → B → Camp magnètic 12- TEORIA ELECTROMAGNÈTICA DE MAXWELL c= µε. 1 0 0 B E c =
  83. 83. F= q v B sin α 2-Força de Lorentz (Regla de la mà dreta) qB mv R = 3- Llei Faraday-Lenz: inducció electromagnètica φ = B S cosϕ Flux 1 espira F= I l B sin α càrrega fil (Regla de la mà dreta) r2 I B 0 π µ = 1-Inducció magnètica o camp magnètic I→ B Conductor Bobina  IN B µ= qv F B dt φ ε d −= φ = N B S cosϕ Flux bobina 1 2 2 1 1 2 N N I I V V == Transformador 0 0 B E c = Maxwell

×