Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
By: Baher EL ShaikhBy: Baher EL Shaikh
Mechanical EngineerMechanical Engineer
EMetahnexEMetahnex
1
 Shell and tube heat exchangers are one of the
most common equipment found in all plants
 How it works?
2
 Heat Exchanger
 Cooler
 Heater
 Condenser
 Reboiler
Both sides single phase and process stream
One stream process fl...
 Code
 Standard
 Specifications
Is recommended method of doing something
ASME BPV – TEMA
is the degree of excellence re...
2- Channel
3- Channel Flange
4- Pass Partition
5- Stationary Tubesheet
6- Shell Flange
7- Tube
8- Shell
9- Baffles
10- Flo...
6
 Front Head TypeFront Head Type
A - Type B - Type C - Type
7
 Shell TypeShell Type
E - Type F - Type
J - Type
K - Type
8
 Rear End Head TypesRear End Head Types
M - Type S - Type T - Type
Fixed Tubesheet Floating Head Pull-Through
Floating He...
 U-Tube Heat ExchangerU-Tube Heat Exchanger
 Fixed Tubesheet Heat ExchangerFixed Tubesheet Heat Exchanger
 Floating Tub...
AES
11
AKT
12
 Terminology
 Design data
 Material selection
 Codes overview
 Sample calculations
 Hydrostatic test
 Sample drawin...
 ASME
 TEMA
 API
 MAWP
 MDMT
 PWHT
 NPS – DN – NB – NPT
 Sch - BWG
14
 Heat Exchanger Data Sheet :
 Design pressure
 Design temperature
 Dimensions / passes
 Tubes ( dimensions, pattern)
...
16
 A – Yield StrengthA – Yield Strength
 B – Tensile StrengthB – Tensile Strength
 C – Rupture pointC – Rupture point
A
B...
 Creep Strength
a slow plastic strain increased by time and temperature (time and
temperature dependant) for stressed mat...
ASME code OverviewASME code Overview
ASME
BPV
code
Sec.I Power Boilers
Sec.II Materials
Sec.III Nuclear Fuel Containers
Se...
ASME code overviewASME code overview
 Sec. II: Materials
 Part A : Ferrous material specifications
 Part B : Non-Ferrou...
21
ASME code overviewASME code overview
TEMA code overviewTEMA code overview
 TEMA classes:
 Class R: Generally severe requirements for petroleum
and related pr...
Sample CalculationsSample Calculations
 Shell thickness calculations under Internal Pressure:
 t : Min. Required Shell T...
Sample CalculationsSample Calculations
 Channel thickness calculations under Internal Pressure:
 t : Min. Required Chann...
Sample CalculationsSample Calculations
 Body Flanges:
25
Sample CalculationsSample Calculations
 Body Flanges:
 Trial and error calculations
 Gasket seating conditions
 No. of...
Sample CalculationsSample Calculations
 Precautions in body flanges design and installations:
 Pairs of flanges
 Bolt h...
28
Sample CalculationsSample Calculations
 Nozzles and standard flanges:
 Flange Rating (ASME B16.5)
 Nozzle neck thick...
29
Sample CalculationsSample Calculations
Tubesheet:
• Tubesheet is the principal barrier between shell side and tube sid...
30
Sample CalculationsSample Calculations
Tubesheet:
• Tubesheet thickness for bending
T: Effective tubesheet thickness
S...
31
Sample CalculationsSample Calculations
Tubesheet:
• Tubesheet thickness for Shear:
T: Effective tubesheet thickness
DL...
32
Tube-to-TubesheetTube-to-Tubesheet
jointjoint
Expanded
Seal welded
Strength welded
33
Hydrostatic TestHydrostatic Test
 Test pressure : 1.3 X MAWP
 Test Procedure
 Gasket change
34
Sample drawingSample drawing
Construction drawing is the design output
Sample drawing 1 Sample drawing 2
35
Baher EL Shaikh
baherfm@yahoo.com
Próxima SlideShare
Cargando en…5
×

Heat Exchanger - Design, Construction and Working

Heat Exchanger - Design, Construction and Working

  • Inicia sesión para ver los comentarios

Heat Exchanger - Design, Construction and Working

  1. 1. By: Baher EL ShaikhBy: Baher EL Shaikh Mechanical EngineerMechanical Engineer EMetahnexEMetahnex 1
  2. 2.  Shell and tube heat exchangers are one of the most common equipment found in all plants  How it works? 2
  3. 3.  Heat Exchanger  Cooler  Heater  Condenser  Reboiler Both sides single phase and process stream One stream process fluid and the other cooling water or air One stream process fluid and heating utility as steam One stream condensing vapor and the other cooling water or air One stream bottom stream from a distillation column and the other a hot utility or process stream  Classification according to service . 3
  4. 4.  Code  Standard  Specifications Is recommended method of doing something ASME BPV – TEMA is the degree of excellence required API 660-ASME B16.5–ASME B36.10M–ASME B36.19-ASME B16.9–ASME B16.11 Is a detailed description of construction, materials,… etc Contractor or Owner specifications 4
  5. 5. 2- Channel 3- Channel Flange 4- Pass Partition 5- Stationary Tubesheet 6- Shell Flange 7- Tube 8- Shell 9- Baffles 10- Floating Head backing Device 11- Floating Tubesheet 12- Floating Head 13- Floating Head Flange 14 –Shell Cover 1- Channel Cover 5
  6. 6. 6
  7. 7.  Front Head TypeFront Head Type A - Type B - Type C - Type 7
  8. 8.  Shell TypeShell Type E - Type F - Type J - Type K - Type 8
  9. 9.  Rear End Head TypesRear End Head Types M - Type S - Type T - Type Fixed Tubesheet Floating Head Pull-Through Floating Head 9
  10. 10.  U-Tube Heat ExchangerU-Tube Heat Exchanger  Fixed Tubesheet Heat ExchangerFixed Tubesheet Heat Exchanger  Floating Tubesheet Heat exchangerFloating Tubesheet Heat exchanger 10
  11. 11. AES 11
  12. 12. AKT 12
  13. 13.  Terminology  Design data  Material selection  Codes overview  Sample calculations  Hydrostatic test  Sample drawing 13
  14. 14.  ASME  TEMA  API  MAWP  MDMT  PWHT  NPS – DN – NB – NPT  Sch - BWG 14
  15. 15.  Heat Exchanger Data Sheet :  Design pressure  Design temperature  Dimensions / passes  Tubes ( dimensions, pattern)  Nozzles & Connections  TEMA type 15  Baffles (No. & Type)
  16. 16. 16
  17. 17.  A – Yield StrengthA – Yield Strength  B – Tensile StrengthB – Tensile Strength  C – Rupture pointC – Rupture point A B C 17
  18. 18.  Creep Strength a slow plastic strain increased by time and temperature (time and temperature dependant) for stressed materials  Fatigue Strength The term “fatigue” refers to the situation where a specimen breaks under a load that it has previously withstood for a length of time  Toughness The materials capacity to absorb energy, which, is dependant upon strength as well as ductility 18
  19. 19. ASME code OverviewASME code Overview ASME BPV code Sec.I Power Boilers Sec.II Materials Sec.III Nuclear Fuel Containers Sec.IV Heating Boilers Sec. V Non Destructive Examination Sec. VI Operation of heating boilers Sec. VII Operation of power boilers Sec. VIII Pressure vessels Sec. IX Welding and Brazing Sec. X Fiber-Reinforced plastic PV Sec. XI Inspection of nuclear power plant Sec. XII Transport tanks 19
  20. 20. ASME code overviewASME code overview  Sec. II: Materials  Part A : Ferrous material specifications  Part B : Non-Ferrous material specifications  Part C : Specifications of welding rods, electrodes and filler metals  Part D : Properties  Sec. VIII: Rules of construction of pressure vessels  Division 1 : 3 Subsections + mandatory Annex + non mandatory Annex  Division 2: Alternative rules  Division 3 : Alternative rules of high pressure 20
  21. 21. 21 ASME code overviewASME code overview
  22. 22. TEMA code overviewTEMA code overview  TEMA classes:  Class R: Generally severe requirements for petroleum and related processing applications  Class C: Generally moderate requirements of commercial and general processing applications  Class B: Chemical Process service  TEMA subsections  10 subsection 22
  23. 23. Sample CalculationsSample Calculations  Shell thickness calculations under Internal Pressure:  t : Min. Required Shell Thickness  P : Design Pressure of Shell Side  S: Max. Allowable Stress of Shell Material  R: Shell Inside Radius (corroded conditions)  E : Joint Efficiency  CA: Corrosion Allowance  UT: Under Tolerance (if applicable) PR . SE – 0.6 P + CAt = + UT 23
  24. 24. Sample CalculationsSample Calculations  Channel thickness calculations under Internal Pressure:  t : Min. Required Channel Thickness  P : Design Pressure of Tube Side  S: Max. Allowable Stress of Channel Material  R: Channel Inside Radius (corroded conditions)  E : Joint Efficiency  CA: Corrosion Allowance  UT: Under Tolerance (if applicable) PR . SE – 0.6 P + CAt = + UT 24
  25. 25. Sample CalculationsSample Calculations  Body Flanges: 25
  26. 26. Sample CalculationsSample Calculations  Body Flanges:  Trial and error calculations  Gasket seating conditions  No. of bolts and size  Bolt circle diameter  Inside and outside diameters  Check min. and max. bolt spacing  Detailed analysis of the flange  Forces calculations  Moment calculations  Stresses calculations 26  Operating conditions
  27. 27. Sample CalculationsSample Calculations  Precautions in body flanges design and installations:  Pairs of flanges  Bolt holes shall straddle center line  Corrosion Allowance  Bolts shall be multiple of 4  Bolting shall be allowed to be removed from either side 27  Calculated thickness not include the RF  Cladding
  28. 28. 28 Sample CalculationsSample Calculations  Nozzles and standard flanges:  Flange Rating (ASME B16.5)  Nozzle neck thickness calculations  Area replacement calculations Sample  Impingement protection
  29. 29. 29 Sample CalculationsSample Calculations Tubesheet: • Tubesheet is the principal barrier between shell side and tube side • Tubes shall be uniformly distributed • Tubesheet thickness shall be designed for both sides • Tubesheet shall be designed for bending stresses and shear stresses • Corrosion allowance • Made from around flat piece of metal with holes drilled for the tubes
  30. 30. 30 Sample CalculationsSample Calculations Tubesheet: • Tubesheet thickness for bending T: Effective tubesheet thickness S: Allowable stress P: Design pressure corrected for vacuum if applicable at the other side η: Ligament efficiency For Square pattern For Triangular pattern G: Gasket effective diameter F: Factor
  31. 31. 31 Sample CalculationsSample Calculations Tubesheet: • Tubesheet thickness for Shear: T: Effective tubesheet thickness DL: Effective diameter of the tube center parameter DL=4A/C C: Perimeter of the tube layout A: Total area enclosed by the Perimeter C P: Design pressure S: Allowable stress do: Outside tube diameter
  32. 32. 32 Tube-to-TubesheetTube-to-Tubesheet jointjoint Expanded Seal welded Strength welded
  33. 33. 33 Hydrostatic TestHydrostatic Test  Test pressure : 1.3 X MAWP  Test Procedure  Gasket change
  34. 34. 34 Sample drawingSample drawing Construction drawing is the design output Sample drawing 1 Sample drawing 2
  35. 35. 35 Baher EL Shaikh baherfm@yahoo.com

×