Hemos actualizado nuestra política de privacidad. Haga clic aquí para revisar los detalles. Pulse aquí para revisar los detalles
Active su período de prueba de 30 días gratis para desbloquear las lecturas ilimitadas.
Active su período de prueba de 30 días gratis para seguir leyendo.
Descargar para leer sin conexión
The Graph Minor Theorem says that the collection of finite graphs
ordered by the minor relation is a well quasi order. This apparently
innocent statement hides a monstrous proof: the original result by
Robertson and Seymour is about 500 pages and twenty articles, in which a
new and deep branch of Graph Theory has been developed.
The theorem is famous and full of consequences both on the theoretical side
of Mathematics and in applications, e.g., to Computer Science. But there
is no concise proof available, although many attempts have been made.
In this talk, arising from one such failed attempts, an analysis of the
Graph Minor Theorem is presented. Why is it so hard?
Assuming to use the by-now standard Nash-Williams's approach to prove it,we will
illustrate a number of methods which allow to solve or circumvent some
of the difficulties. Finally, we will show that the core of this line of
thought lies in a coherence question which is common to many parts of
Mathematics: elsewhere it has been solved, although we were unable to
adapt those solutions to the present framework. So, there is hope for a
short proof of the Graph Minor Theorem but it will not be elementary.
The Graph Minor Theorem says that the collection of finite graphs
ordered by the minor relation is a well quasi order. This apparently
innocent statement hides a monstrous proof: the original result by
Robertson and Seymour is about 500 pages and twenty articles, in which a
new and deep branch of Graph Theory has been developed.
The theorem is famous and full of consequences both on the theoretical side
of Mathematics and in applications, e.g., to Computer Science. But there
is no concise proof available, although many attempts have been made.
In this talk, arising from one such failed attempts, an analysis of the
Graph Minor Theorem is presented. Why is it so hard?
Assuming to use the by-now standard Nash-Williams's approach to prove it,we will
illustrate a number of methods which allow to solve or circumvent some
of the difficulties. Finally, we will show that the core of this line of
thought lies in a coherence question which is common to many parts of
Mathematics: elsewhere it has been solved, although we were unable to
adapt those solutions to the present framework. So, there is hope for a
short proof of the Graph Minor Theorem but it will not be elementary.
Parece que ya has recortado esta diapositiva en .
¡Acabas de recortar tu primera diapositiva!
Los recortes son una forma práctica de recopilar diapositivas importantes para volver a ellas más tarde. Ahora puedes personalizar el nombre de un tablero de recortes para guardar tus recortes.La familia SlideShare crece. Disfruta de acceso a millones de libros electrónicos, audiolibros, revistas y mucho más de Scribd.
Cancela en cualquier momento.Lecturas ilimitadas
Aprenda más rápido y de forma más inteligente con los mejores expertos
Descargas ilimitadas
Descárguelo para aprender sin necesidad de estar conectado y desde cualquier lugar
¡Además, tiene acceso gratis a Scribd!
Acceso instantáneo a millones de libros electrónicos, audiolibros, revistas, podcasts y mucho más.
Lea y escuche sin conexión desde cualquier dispositivo.
Acceso gratis a servicios prémium como TuneIn, Mubi y muchos más.
Hemos actualizado su política de privacidad para cumplir con las cambiantes normativas de privacidad internacionales y para ofrecerle información sobre las limitadas formas en las que utilizamos sus datos.
Puede leer los detalles a continuación. Al aceptar, usted acepta la política de privacidad actualizada.
¡Gracias!