SlideShare una empresa de Scribd logo
1 de 16
REPÚBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN
UNIVERSIDAD POLITECNICA TERRITORIAL ANDRÉS ELOY BLANCO
BARQUISIMETO – ESTADO LARA
MARÍA GIL
SECCIÓN: AD0105
PLANO NÚMERICO
PLANO NUMÉRICO
El plano numérico, llamado cartesiano está formado por dos rectas numéricas, una horizontal y otra vertical que se
cortan en un punto. La recta horizontal es llamada eje de las abscisas o de las equis (x), y la vertical, eje de las ordenadas
o de las yes, (y); el punto donde se cortan recibe el nombre de origen. El plano cartesiano tiene como finalidad describir
la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. Las coordenadas se forman
asociando un valor del eje de las "X" y uno de las "Y", respectivamente, esto indica que un punto se puede ubicar en el
plano cartesiano con base en sus coordenadas, lo cual se representa como:
P (x, y) Para localizar puntos en el plano cartesiano se debe llevar a cabo el
siguiente procedimiento:
1. Para localizar la abscisa o valor de x, se cuentan las unidades
correspondientes hacia la derecha si son positivas o hacia a izquierda si
son negativas, a partir del punto de origen, en este caso el cero.
2. Desde donde se localiza el valor de x, se cuentan las unidades
correspondientes hacia arriba si son positivas o hacia abajo, si son
negativas y de esta forma se localiza cualquier punto dadas sus
coordenadas.
EJEMPLOS:
Localizar el punto A ( -4, 5 ) en el plano cartesiano.
Este procedimiento también se emplea cuando se
requiere determinar las coordenadas de cualquier
punto que esté en el plano cartesiano.
Determinar las coordenadas del punto M.
Las coordenadas del punto M son (3,-5).
DISTANCIA
¿Qué es la distancia entre dos puntos sobre un plano? Es simplemente la distancia mínima que hay entre ambas
posiciones, las cuales vienen determinadas por las sus coordenadas en el eje de las X y en el eje de las Y. La distancia
mínima es sinónimo del camino más corto que separa a ambas singularidades.
EJEMPLO
PUNTO MEDIO
Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos
puntos cualquiera o extremos de un segmento. Más generalmente punto equidistante en
matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos,
ya sean puntos, segmentos, rectas.
EJEMPLOS PARA HALLAR EL PUNTO MEDIO DE UN
SEGMENTO
EJEMPLOS PARA HALLAR EL PUNTO MEDIO DE UN
SEGMENTO
ECUACIONES Y TRAZADO DE CIRCUNFERENCIAS
La circunferencia se define como el lugar geométrico de los
puntos del plano que equidistan de un punto fijo C (a, b) que
llamamos centro.
ELEMENTOS DE LAS CIRCUNFERENCIAS
•Centro, el punto interior equidistante de todos los puntos de la circunferencia.
•Radio, el segmento que une el centro con un punto cualquiera de la circunferencia;
•Diámetro, el mayor segmento que une dos puntos de la circunferencia
•Cuerda, el segmento que une dos puntos de la circunferencia
•Recta secante, la que corta a la circunferencia en dos puntos;
•Recta tangente, la que toca a la circunferencia en un sólo punto;
•Punto de tangencia, el de contacto de la recta tangente con la circunferencia;
•Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;
ECUACIÓN DE LA CIRCUNFERENCIA CON CENTRO EN (0,0)
Cuando el centro está en el origen (0, 0), la ecuación de una circunferencia se simplifica a:
A está ecuación se le conoce como ecuación canónica y se da cuando el centro de la circunferencia es el
punto C(0,0), por lo que la expresión ordinaria queda reducida a:
EJEMPLO:
Determinar la ecuación de la circunferencia que pasa por el punto 6,3 y cuyo centro se encuentra en C(0,0)
ECUACIÓN DE LA CIRCUNFERENCIA CON
CENTRO (H,K)
En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (h, k) distinto del origen y
radio r consta de todos los puntos (x, y) que satisfacen la ecuación.
(x-h)² + (y-k)² =r², donde (h,k) es el centro y r es el radio.
Para determinar la ecuación ordinaria de a circunferencia se necesita las coordenadas del centro y la medida del
radio.
ECUACIÓN GENERAL DE LA CIRCUNFERENCIA.
Si conocemos el centro y el radio de una
circunferencia, podemos construir su
ecuación ordinaria, y si operamos los
cuadrados, obtenemos la forma general
de la ecuación de la circunferencia, así:
PARÁBOLAS
Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija
llamada directriz .
Ecuación analítica de la parábola: Supongamos que el foco esté situado en el punto (0,c) y la directriz es la recta y =
– c, por lo tanto el vértice está en su punto medio (0,0), si tomamos un punto cualquiera P = (x , y) de la parábola y un
punto Q = (x, – c) de la recta debe de cumplirse que: PF = PQ
Elevando al cuadrado ambos miembros: x2 = 4cy
Si la parábola no tiene su vértice en (0,0) si no en (p, q) entonces la ecuación sería: (x– p)2 = 4c(y – q)
desarrollando la ecuación tendremos: x2 + p2 – 2xp – 4cy + 4cq = 0
Si hacemos D = – 2p
E = – 4c
F = p2 + 4cq
obtendremos que es: x2 + Dx + Ey + F = 0, en la que podemos observar que falta el término de y2.
ELIPSES
Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante. Estos dos
puntos fijos se llaman focos de la elipse.
Ecuación analítica de la elipse: para simplificar la explicación ubiquemos a los focos sobre el eje de las x, situados
en los puntos F (c,0) y F' (– c,0). Tomemos un punto cualquiera P de la elipse cuyas coordenadas son (x, y). En el
caso de la elipse la suma de las distancias entre PF y PF' es igual al doble del radio sobre el eje x. Entonces: PF +
PF' = 2a. Aplicando Pitágoras tenemos que:
Elevamos al cuadrado ambos miembros para sacar las raíces y desarrollamos los cuadrados (ver operación) queda
finalmente:
HIPÉRBOLA
Es el lugar geométrico de los puntos del plano cuya diferencia de distancias entre dos puntos fijos es constante.
Estos dos puntos fijos se llaman focos de la hipérbola .
Ecuación analítica de la hipérbola: nuevamente ubiquemos los focos sobre el eje x, F = (c,0) y F' = (– c,0), y
tomemos un punto cualquiera P = (x, y) de la hipérbola. En este caso, la diferencia de las distancias entre PF y PF'
es igual al doble de la distancia que hay entre el centro de coordenadas y la intersección de la hipérbola con el eje
x. Entonces tendremos que: PF – PF' = 2a
Elevando al cuadrado ambos miembros y procediendo matemáticamente podemos llegar a esta expresión: (c2 – a2).
x2 – a2y2 – (c2 – a2) a2 = 0 (los cálculos los dejo por tu cuenta pero puedes guiarte con el desarrollo que hicimos
para la elipse). Nuevamente a partir del dibujo y aplicando Pitágoras podemos obtener que c2 = a2 + b2 y por lo
tanto la ecuación nos queda: b2x2 – a2y2 = a2b2. Dividiendo cada término por a2b2 obtenemos:

Más contenido relacionado

La actualidad más candente

Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)
Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)
Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)Juan Falquez Arosemena
 
1.2 division de un segmento de recta en una razon dada
1.2 division de un segmento de recta en una razon dada1.2 division de un segmento de recta en una razon dada
1.2 division de un segmento de recta en una razon dadaxiom20mat
 
Ecuación de la parábola
Ecuación de la parábola Ecuación de la parábola
Ecuación de la parábola victorvo
 
Funciones y gráficas
Funciones y gráficasFunciones y gráficas
Funciones y gráficashugocpd
 
Conicas, Ecuaciones parametricas y Coordenadas polares
Conicas, Ecuaciones parametricas y Coordenadas polaresConicas, Ecuaciones parametricas y Coordenadas polares
Conicas, Ecuaciones parametricas y Coordenadas polaresSarahy Mejias
 
Ecuaciones de la parabola
Ecuaciones de la parabolaEcuaciones de la parabola
Ecuaciones de la parabolajorgeortiz973
 
Ecuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosEcuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosJUANCA
 
Crónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polaresCrónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polaresLuis Vargas
 
Secciones cónicas hipérbola
Secciones cónicas hipérbolaSecciones cónicas hipérbola
Secciones cónicas hipérbolaBartoluco
 
Deducción de la ecuación de la parábola con vértice en (h,k)
Deducción de la ecuación de la parábola con vértice en (h,k)Deducción de la ecuación de la parábola con vértice en (h,k)
Deducción de la ecuación de la parábola con vértice en (h,k)Gabriela Román
 

La actualidad más candente (20)

Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)
Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)
Cónicas: Hipérbola, Elipse, Parábola (Proyecto de Aula Matemáticas)
 
La elipse
La elipseLa elipse
La elipse
 
1.2 division de un segmento de recta en una razon dada
1.2 division de un segmento de recta en una razon dada1.2 division de un segmento de recta en una razon dada
1.2 division de un segmento de recta en una razon dada
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Ecuaciones de la circunferencia y parabola.
Ecuaciones de la circunferencia y parabola.Ecuaciones de la circunferencia y parabola.
Ecuaciones de la circunferencia y parabola.
 
Plano Numerico
Plano NumericoPlano Numerico
Plano Numerico
 
Parabola
ParabolaParabola
Parabola
 
Ecuación de la parábola
Ecuación de la parábola Ecuación de la parábola
Ecuación de la parábola
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Conicas
ConicasConicas
Conicas
 
PARÁBOLA
PARÁBOLAPARÁBOLA
PARÁBOLA
 
Funciones y gráficas
Funciones y gráficasFunciones y gráficas
Funciones y gráficas
 
Conicas, Ecuaciones parametricas y Coordenadas polares
Conicas, Ecuaciones parametricas y Coordenadas polaresConicas, Ecuaciones parametricas y Coordenadas polares
Conicas, Ecuaciones parametricas y Coordenadas polares
 
Ecuaciones de la parabola
Ecuaciones de la parabolaEcuaciones de la parabola
Ecuaciones de la parabola
 
Lugares Geométricos.
Lugares Geométricos.Lugares Geométricos.
Lugares Geométricos.
 
Ecuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionadosEcuación de la hipérbola Problemas solucionados
Ecuación de la hipérbola Problemas solucionados
 
Crónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polaresCrónicas, ecuaciones paramétricas y Coordenadas polares
Crónicas, ecuaciones paramétricas y Coordenadas polares
 
Secciones cónicas hipérbola
Secciones cónicas hipérbolaSecciones cónicas hipérbola
Secciones cónicas hipérbola
 
Lugares geometricos
Lugares geometricosLugares geometricos
Lugares geometricos
 
Deducción de la ecuación de la parábola con vértice en (h,k)
Deducción de la ecuación de la parábola con vértice en (h,k)Deducción de la ecuación de la parábola con vértice en (h,k)
Deducción de la ecuación de la parábola con vértice en (h,k)
 

Similar a Plano numerico

Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Dennisse Pérez
 
Calculo camila convertido
Calculo camila convertidoCalculo camila convertido
Calculo camila convertidoCamilaAnzola3
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2joan cortez
 
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfPLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfyannetthha
 
Plano Numerico Montero Yhon.pptx
Plano Numerico Montero Yhon.pptxPlano Numerico Montero Yhon.pptx
Plano Numerico Montero Yhon.pptxYhonMontero
 
Plano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfPlano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfJsMguelCM
 
Plano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxJsMguelCM
 
Plano numerico - Eislerth Aaguilar.pdf
Plano numerico - Eislerth Aaguilar.pdfPlano numerico - Eislerth Aaguilar.pdf
Plano numerico - Eislerth Aaguilar.pdfDayindrisRodriguez1
 

Similar a Plano numerico (20)

Plano Numerico.pdf
Plano Numerico.pdfPlano Numerico.pdf
Plano Numerico.pdf
 
plano numerico.pptx
plano numerico.pptxplano numerico.pptx
plano numerico.pptx
 
Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)Plano numerico (dennisse_perez)
Plano numerico (dennisse_perez)
 
PLANO NUMERICO.pdf
PLANO NUMERICO.pdfPLANO NUMERICO.pdf
PLANO NUMERICO.pdf
 
Calculo camila convertido
Calculo camila convertidoCalculo camila convertido
Calculo camila convertido
 
Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2Plano numerico de joan cortez. unidad 2
Plano numerico de joan cortez. unidad 2
 
Plano numérico.pptx
Plano numérico.pptxPlano numérico.pptx
Plano numérico.pptx
 
PLAN NUMERICO.pdf
PLAN NUMERICO.pdfPLAN NUMERICO.pdf
PLAN NUMERICO.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdfPLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
PLANO NUMERICO MIRYELIS ARAQUE YANETH PORTILLO EDICTH MENCIAS DL0402-1.pdf
 
Plano Numerico.docx
Plano Numerico.docxPlano Numerico.docx
Plano Numerico.docx
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Joel Rodriguez 24417637.pptx
Joel Rodriguez 24417637.pptxJoel Rodriguez 24417637.pptx
Joel Rodriguez 24417637.pptx
 
Plano Numerico Montero Yhon.pptx
Plano Numerico Montero Yhon.pptxPlano Numerico Montero Yhon.pptx
Plano Numerico Montero Yhon.pptx
 
Plano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdfPlano Numerico Miguel Colombo.pdf
Plano Numerico Miguel Colombo.pdf
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano numerico
Plano numericoPlano numerico
Plano numerico
 
Plano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptxPlano Numerico Jose Colombo..pptx
Plano Numerico Jose Colombo..pptx
 
Plano numerico - Eislerth Aaguilar.pdf
Plano numerico - Eislerth Aaguilar.pdfPlano numerico - Eislerth Aaguilar.pdf
Plano numerico - Eislerth Aaguilar.pdf
 
PLANO NUMERICO.pdf
PLANO NUMERICO.pdfPLANO NUMERICO.pdf
PLANO NUMERICO.pdf
 

Último

3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsxJuanpm27
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTESaraNolasco4
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivosOrdinolaSernaquIrene
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAJesus Gonzalez Losada
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...GIANCARLOORDINOLAORD
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docxMagalyDacostaPea
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 

Último (20)

3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
3. Pedagogía de la Educación: Como objeto de la didáctica.ppsx
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Tema 7.- Imagen posicionamiento de marcas.pdf
Tema 7.- Imagen posicionamiento de marcas.pdfTema 7.- Imagen posicionamiento de marcas.pdf
Tema 7.- Imagen posicionamiento de marcas.pdf
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE4º SOY LECTOR PART2- MD  EDUCATIVO.p df PARTE
4º SOY LECTOR PART2- MD EDUCATIVO.p df PARTE
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
los cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivoslos cinco reinos biologicos 0 de los seres vivos
los cinco reinos biologicos 0 de los seres vivos
 
El Bullying.
El Bullying.El Bullying.
El Bullying.
 
VISITA À PROTEÇÃO CIVIL _
VISITA À PROTEÇÃO CIVIL                  _VISITA À PROTEÇÃO CIVIL                  _
VISITA À PROTEÇÃO CIVIL _
 
HISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICAHISPANIDAD - La cultura común de la HISPANOAMERICA
HISPANIDAD - La cultura común de la HISPANOAMERICA
 
PPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptxPPTX: La luz brilla en la oscuridad.pptx
PPTX: La luz brilla en la oscuridad.pptx
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
SESIÓN DE APRENDIZAJE Leemos un texto para identificar los sinónimos y los an...
 
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE     9-4-24 (1).docx
4° SES MATE DESCOMP. ADIT. DE NUMEROS SOBRE CASOS DE DENGUE 9-4-24 (1).docx
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 

Plano numerico

  • 1. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN UNIVERSIDAD POLITECNICA TERRITORIAL ANDRÉS ELOY BLANCO BARQUISIMETO – ESTADO LARA MARÍA GIL SECCIÓN: AD0105 PLANO NÚMERICO
  • 2. PLANO NUMÉRICO El plano numérico, llamado cartesiano está formado por dos rectas numéricas, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada eje de las abscisas o de las equis (x), y la vertical, eje de las ordenadas o de las yes, (y); el punto donde se cortan recibe el nombre de origen. El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. Las coordenadas se forman asociando un valor del eje de las "X" y uno de las "Y", respectivamente, esto indica que un punto se puede ubicar en el plano cartesiano con base en sus coordenadas, lo cual se representa como: P (x, y) Para localizar puntos en el plano cartesiano se debe llevar a cabo el siguiente procedimiento: 1. Para localizar la abscisa o valor de x, se cuentan las unidades correspondientes hacia la derecha si son positivas o hacia a izquierda si son negativas, a partir del punto de origen, en este caso el cero. 2. Desde donde se localiza el valor de x, se cuentan las unidades correspondientes hacia arriba si son positivas o hacia abajo, si son negativas y de esta forma se localiza cualquier punto dadas sus coordenadas.
  • 3. EJEMPLOS: Localizar el punto A ( -4, 5 ) en el plano cartesiano. Este procedimiento también se emplea cuando se requiere determinar las coordenadas de cualquier punto que esté en el plano cartesiano. Determinar las coordenadas del punto M. Las coordenadas del punto M son (3,-5).
  • 4. DISTANCIA ¿Qué es la distancia entre dos puntos sobre un plano? Es simplemente la distancia mínima que hay entre ambas posiciones, las cuales vienen determinadas por las sus coordenadas en el eje de las X y en el eje de las Y. La distancia mínima es sinónimo del camino más corto que separa a ambas singularidades. EJEMPLO
  • 5. PUNTO MEDIO Punto medio en matemática, es el punto que se encuentra a la misma distancia de otros dos puntos cualquiera o extremos de un segmento. Más generalmente punto equidistante en matemática, es el punto que se encuentra a la misma distancia de dos elementos geométricos, ya sean puntos, segmentos, rectas.
  • 6. EJEMPLOS PARA HALLAR EL PUNTO MEDIO DE UN SEGMENTO
  • 7. EJEMPLOS PARA HALLAR EL PUNTO MEDIO DE UN SEGMENTO
  • 8. ECUACIONES Y TRAZADO DE CIRCUNFERENCIAS La circunferencia se define como el lugar geométrico de los puntos del plano que equidistan de un punto fijo C (a, b) que llamamos centro.
  • 9. ELEMENTOS DE LAS CIRCUNFERENCIAS •Centro, el punto interior equidistante de todos los puntos de la circunferencia. •Radio, el segmento que une el centro con un punto cualquiera de la circunferencia; •Diámetro, el mayor segmento que une dos puntos de la circunferencia •Cuerda, el segmento que une dos puntos de la circunferencia •Recta secante, la que corta a la circunferencia en dos puntos; •Recta tangente, la que toca a la circunferencia en un sólo punto; •Punto de tangencia, el de contacto de la recta tangente con la circunferencia; •Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;
  • 10. ECUACIÓN DE LA CIRCUNFERENCIA CON CENTRO EN (0,0) Cuando el centro está en el origen (0, 0), la ecuación de una circunferencia se simplifica a: A está ecuación se le conoce como ecuación canónica y se da cuando el centro de la circunferencia es el punto C(0,0), por lo que la expresión ordinaria queda reducida a:
  • 11. EJEMPLO: Determinar la ecuación de la circunferencia que pasa por el punto 6,3 y cuyo centro se encuentra en C(0,0)
  • 12. ECUACIÓN DE LA CIRCUNFERENCIA CON CENTRO (H,K) En un sistema de coordenadas cartesianas x-y, la circunferencia con centro en el punto (h, k) distinto del origen y radio r consta de todos los puntos (x, y) que satisfacen la ecuación. (x-h)² + (y-k)² =r², donde (h,k) es el centro y r es el radio. Para determinar la ecuación ordinaria de a circunferencia se necesita las coordenadas del centro y la medida del radio.
  • 13. ECUACIÓN GENERAL DE LA CIRCUNFERENCIA. Si conocemos el centro y el radio de una circunferencia, podemos construir su ecuación ordinaria, y si operamos los cuadrados, obtenemos la forma general de la ecuación de la circunferencia, así:
  • 14. PARÁBOLAS Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz . Ecuación analítica de la parábola: Supongamos que el foco esté situado en el punto (0,c) y la directriz es la recta y = – c, por lo tanto el vértice está en su punto medio (0,0), si tomamos un punto cualquiera P = (x , y) de la parábola y un punto Q = (x, – c) de la recta debe de cumplirse que: PF = PQ Elevando al cuadrado ambos miembros: x2 = 4cy Si la parábola no tiene su vértice en (0,0) si no en (p, q) entonces la ecuación sería: (x– p)2 = 4c(y – q) desarrollando la ecuación tendremos: x2 + p2 – 2xp – 4cy + 4cq = 0 Si hacemos D = – 2p E = – 4c F = p2 + 4cq obtendremos que es: x2 + Dx + Ey + F = 0, en la que podemos observar que falta el término de y2.
  • 15. ELIPSES Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la elipse. Ecuación analítica de la elipse: para simplificar la explicación ubiquemos a los focos sobre el eje de las x, situados en los puntos F (c,0) y F' (– c,0). Tomemos un punto cualquiera P de la elipse cuyas coordenadas son (x, y). En el caso de la elipse la suma de las distancias entre PF y PF' es igual al doble del radio sobre el eje x. Entonces: PF + PF' = 2a. Aplicando Pitágoras tenemos que: Elevamos al cuadrado ambos miembros para sacar las raíces y desarrollamos los cuadrados (ver operación) queda finalmente:
  • 16. HIPÉRBOLA Es el lugar geométrico de los puntos del plano cuya diferencia de distancias entre dos puntos fijos es constante. Estos dos puntos fijos se llaman focos de la hipérbola . Ecuación analítica de la hipérbola: nuevamente ubiquemos los focos sobre el eje x, F = (c,0) y F' = (– c,0), y tomemos un punto cualquiera P = (x, y) de la hipérbola. En este caso, la diferencia de las distancias entre PF y PF' es igual al doble de la distancia que hay entre el centro de coordenadas y la intersección de la hipérbola con el eje x. Entonces tendremos que: PF – PF' = 2a Elevando al cuadrado ambos miembros y procediendo matemáticamente podemos llegar a esta expresión: (c2 – a2). x2 – a2y2 – (c2 – a2) a2 = 0 (los cálculos los dejo por tu cuenta pero puedes guiarte con el desarrollo que hicimos para la elipse). Nuevamente a partir del dibujo y aplicando Pitágoras podemos obtener que c2 = a2 + b2 y por lo tanto la ecuación nos queda: b2x2 – a2y2 = a2b2. Dividiendo cada término por a2b2 obtenemos: