SlideShare una empresa de Scribd logo
1 de 7
Descargar para leer sin conexión
1
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID
PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
Curso 2012-2013 JUNIO
MATERIA: QUÍMICA
INSTRUCCIONES GENERALES Y VALORACIÓN
La prueba consta de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones
y los dos problemas planteados en ella, sin que pueda elegir cuestiones o problemas de diferentes opciones. Cada
cuestión o problema puntuará sobre un máximo de dos puntos. No se contestará ninguna pregunta en este impreso.
TIEMPO: una hora y treinta minutos.
OPCIÓN A
Pregunta 1A.- Considere los elementos de números atómicos 9 y 11:
a) Identifíquelos con nombre y símbolo, y escriba sus configuraciones electrónicas.
b) Justifique cuál tiene mayor el segundo potencial de ionización.
c) Justifique cuál es más electronegativo.
d) Justifique qué tipo de enlace presentaría el compuesto formado por estos dos elementos.
Puntuación máxima por apartado: 0,5 puntos.
Solución.
a. Z = 9 ≡ Flúor. 522
p2s2;s1F =
Z = 11 ≡ Sodio. 1622
s3;p2s2;s1Na =
b. 2º Potencial de ionización del sodio > 2º Potencial de ionización del F:
i. El Na+
tiene configuración de gas noble, configuración que no pose el F+
.
ii. Para ionizar el F+
o el Na+
, se debe arrancar un electrón del mismo nivel (2º), y el núcleo del Na, formado
por 11 protones, genera un campo eléctrico mayor que el formado por los 9 protones del F, por lo tanto los
electrones del Na+
, son atraídos con mayor fuerza que los del F+
.
c. El más electronegativo es el F, por tener mayor potencial de ionización y mayor afinidad electrónica que el
sodio. Los no-metales, tienen mayor electronegatividad que los metales.
d. Iónico. Metal(Na) / No-Metal(F)
Pregunta 2A.- Justifique si son verdaderas o falsas las siguientes afirmaciones:
a) Una mezcla formada por volúmenes iguales de disoluciones de igual concentración de un ácido y una base
débiles siempre tiene pH neutro.
b) Una mezcla formada por disoluciones diluidas de ácido clorhídrico y cloruro de calcio tiene pH ácido.
c) El ión hidróxido (OH−
) se comporta como un electrolito anfótero.
d) La constante de solubilidad de una sal poco soluble aumenta por efecto ión común.
Puntuación máxima por apartado: 0,5 puntos.
Solución.
a. Falso. Dependerá de las constantes de ionización del ácido y de la base, si los dos tienen igual constante de
ionización, el pH será prácticamente neutro, si Ka > Kb será ácido y si Ka < Kb será básico, en definitiva, dependerá de la
fortaleza del ácido y de la base, ya que dentro de la debilidad de estos, existen diferentes grados de fortaleza.
b. Verdadero. Una mezcla de un ácido fuerte y una sal neutra produce un pH ácido.
( ) ( )
( )ácido7pH
aqClaqCaCaCl
OHClOHHCl
2OH
2
32
2
<⇒




+ →
+→+
−+
+−
c. Falso. Una sustancia anfótera debe tener posibilidad de actuar como ácido o como base, en el caso del ión OH‒
,
solo tiene carácter básico (OH‒
+ H+
→ H2O)
d. Falso. El efecto ión común, influye en la solubilidad de la sal, pero no influye en la constante, la cual solo es
función de la temperatura.
2
Pregunta 3A.- Cuando se introduce una barra de Zn en una disolución acuosa de HCl se observa la disolución de la
barra y el desprendimiento de burbujas de gas. En cambio, cuando se introduce una barra de plata en una disolución de
HCl no se observa ninguna reacción. A partir de estas observaciones:
a) Razone qué gas se está desprendiendo en el primer experimento.
b) Justifique qué signo tendrán los potenciales Eº (Zn2+
/Zn) y Eº (Ag+
/Ag).
c) Justifique si se produce reacción cuando se introduce una barra de Zn en una disolución acuosa de AgCl.
Puntuación máxima por apartado: 0,5 puntos apartados a) y c); 1 punto apartado b).
Solución.
a. Algunos metales se disuelven en disoluciones ácidas desprendiendo hidrógeno y formando la sal del metal.
22 HZnClHCl2Zn +→+
2
2
2
2
HZnH2ZnglobaliónicaReacción
He22HreduccióndeónSemireacci
e2ZnZnoxidacióndeónSemireacci
+→+
→+
+→
++
−+
−+
En el proceso se desprende hidrógeno
b. Si una reacción redox es espontánea, su potencial es positivo, en caso contrario será negativo. El potencial de un
proceso redox es el la resta del potencial de reducción del cátodo (semireacción de reducción) menos el potencial de
reducción del ánodo (semireacción de oxidación) y, teniendo en cuenta que el potencial de reducción del electrodo
normal de hidrógeno es cero, por tratarse del electrodo de referencia ( ) 0HHºE 2 =+
:
• 22 HZnClHCl2Zn +→+ Espontánea Eº > 0
( ) ( ) 0ZnZnºEHHºEºE 2
2 >−= ++
( ) 0ZnZnºE0 2
>− +
⇒ ( ) 0ZnZnºE 2
<+
• 2HAgCl2HCl2Ag2 +→+ No espontánea Eº < 0
( ) ( ) 0AgAgºEHHºEºE 2 <−= ++
( ) 0AgAgºE0 <− +
⇒ ( ) 0AgAgºE >+
c. 2ZnClAg2ZnAgCl2 +→+
( )
Ag2ZnAg2ZnglobaliónicaReacción
2AgeAgreduccióndeónSemireacci
e2ZnZnoxidacióndeónSemireacci
2
2
+→+
×→+
+→
++
−+
−+
( ) ( ) ( )
( ) 0
0ZnZnºE
0AgAgºE
ZnZnºEAgAgºEºE 2
2
>








<
>
=−= +
+
++
⇒ ESPONTÁNEO
Pregunta 4A.- El propano es uno de los combustibles fósiles más utilizados.
a) Formule y ajuste su reacción de combustión.
b) Calcule la entalpía estándar de combustión e indique si el proceso es exotérmico o endotérmico.
c) Calcule los litros de dióxido de carbono que se obtienen, medidos a 25 ºC y 760 mm de Hg, si la energía
intercambiada ha sido de 5990 kJ.
Datos. R = 0,082 atm·L·mol–1
·K–1
.
Energías medias de enlace (kJ·mol–1
): (C–C) = 347; (C–H) = 415; (O–H) = 460; (O=O) = 494 y (C=O) = 730.
Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c)
Solución.
a. OH4CO3O5HC 22283 +→+
b. Para calcular la entalpia de reacción por entalpia de enlace, es conveniente escribir las estructuras de los
compuestos que interviene de forma desarrollada ya que:
( ) ( )∑∑ ∆−∆=∆ FormadosHRotosHH o
E
o
E
o
R
3
( ) ( ) ( ) ( ) ( )[ ]HOH24OCH23OOH5HCH8CCH2H o
E
o
E
o
E
o
E
o
E
o
R −∆⋅+=∆⋅−=∆+−∆+−∆=∆
[ ] 1o
R molkJ157646087306494541583472H −
⋅−=⋅+⋅−⋅+⋅+⋅=∆
Reacción exotérmica
c. Un mol en condiciones estándar ocupa L44,24
atm1
K298
Kmol
Latm
082,0mol1
V =
⋅
⋅
⋅
⋅
=
Por factores de conversión:
( ) 2
2
2
83
283
2 COL6,278
COmol1
COL44,22
HCmol1
COmol3
kJ1576
HCmol1
kJ5990COV =⋅⋅⋅=
Pregunta 5A.- El valor de la constante de equilibrio Kc para la reacción H2 (g) + F2 (g) 2HF (g), es 6,6×10–4
a
25 ºC. Si en un recipiente de 10 L se introduce 1 mol de H2 y 1 mol de F2, y se mantiene a 25 ºC hasta alcanzar el
equilibrio, calcule:
a) Los moles de H2 que quedan sin reaccionar una vez que se ha alcanzado el equilibrio.
b) La presión parcial de cada uno de los compuestos en el equilibrio.
c) El valor de Kp a 25 ºC.
Dato. R = 0,082 atm·L·mol−1
·K−1
.
Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).
Solución.
a. Si se denomina por x al número de moles que reaccionan de hidrógeno y fluor, el cuadro de reacción en función
de x queda de la siguiente forma:
( ) ( ) ( )
( )
( ) x2x1x1mol.Eq.C
11mol.I.C
gHF2gFgH 22
−−
−
⇔+
El número de moles de cada componente en el equilibrio se obtiene calculando x a partir del valor de la
constante de equilibrio.
[ ]
[ ] [ ]
( )
( ) ( )
( )( )
( ) ( )
( )
( ) ( )
( )
( )2
22
22
2
22
2
22
2
c
x1
x2
x1x1
x2
FnHn
HFn
V
Fn
V
Hn
V
HFn
FH
HF
K
−
=
−⋅−
=
⋅
=
⋅






=
⋅
=
2
c
x1
x2
K 





−
= cK
x1
x2
=
−
mol1027,1
106,62
106,6
K2
K
x 2
4
4
c
c −
−
−
×=
×+
×
=
+
=
( ) mol987,01027,11x1Hn 2
Eq2 =×−=−= −
b. La presión parcial de un componente de una mezcla gaseosa es
V
RTn
P i
i
⋅
=
( ) atm4,2
10
298082,0987,0
V
RTHn
PP 2
FH 22
=
⋅⋅
=
⋅
==
( ) atm062,0
10
298082,01027,12
V
RTHFn
P
2
HF =
⋅⋅×⋅
=
⋅
=
−
c. ( ) ( ) ( ) c
0
c
gn
cp KRTKRTKK =⋅=⋅= ∆
4
OPCIÓN B
Pregunta 1B.- Dadas las moléculas HCl, KF, CF4 y CH2Cl2:
a) Razone el tipo de enlace presente en cada una de ellas.
b) Escriba la estructura de Lewis y justifique la geometría de las moléculas que tienen enlaces covalentes.
c) Justifique cuáles de ellas son solubles en agua.
Puntuación máxima por apartado: 0,5 puntos apartado a) y 0,75 puntos apartados b) y c).
Solución.
a. HCl: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad)
KF: Enlace iónico (Metal/No-metal)
CF4: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad). Molécula Apolar
CH2Cl2: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad)
b. Las moléculas covalentes son HCl, CF4 y CH2Cl2
• CF4: El carbono se encuentra rodeado por cuatro nubes electrónicas y se une con cuatro núcleos, la geometría es
tetraédrica, ocupando el carbono el centro del tetraedro y siendo los ángulos de enlace de 109º
• CH2Cl2: El carbono se encuentra rodeado por cuatro nubes electrónicas, pero a diferencia de la anterior, se une a
cuatro núcleos iguales dos a dos, la geometría también es tetraédrica, pero los ángulos están distorsionados en
torno al valor de 109º
c. Teniendo en cuenta que el agua es un disolvente polar, son solubles en agua, las sustancias iónicas (KF) y las
covalentes polares (HCl y CH2Cl2).
Pregunta 2B.- La siguiente reacción, no ajustada: CH3OH (l) + O2 (g) H2O (l) + CO2 (g) es exotérmica a 25 ºC.
a) Escriba la expresión para la constante de equilibrio Kp de la reacción indicada.
b) Razone cómo afecta al equilibrio un aumento de la temperatura.
c) Razone cómo afecta a la cantidad de CO2 desprendido un aumento de la cantidad de CH3OH (l).
d) Justifique cómo se modifica el equilibrio si se elimina CO2 del reactor.
Puntuación máxima por apartado: 0,5 puntos.
Solución.
NOTA: Por lo general, las reacciones de combustión son irreversibles, por lo tanto no tiene sentido hablar de equilibrio
en una reacción de combustión. En cualquier caso, como se propone como equilibrio, lo trataremos como tal.
a. Por ser un equilibrio heterogéneo líquido/gas, las constantes de equilibrio solo serán función de las especies que
estén en el estado de agregación de mayor libertad (gas).
( ) ( ) ( ) ( )gCO2lOH4gO3lOHCH2 2223 +↔+
3
O
2
CO
p
2
2
P
P
K =
b. Según el principio de Le Châtelier, al producir una perturbación en un sistema en equilibrio, este evoluciona en
contra de la perturbación de forma que reestablezca el equilibrio. Si se aumenta la temperatura, el sistema tiende a
desplazarse en el sentido endotérmico (absorbiendo calor), y de esa forma restablecer el equilibrio. Teniendo en cuenta
que la reacción es exotérmica, tal y como dice el enunciado, el sentido endotérmico será hacia la izquierda, por lo tanto,
al aumentar la temperatura, el equilibrio se desplaza hacia los reactivos.
c. Por encontrarse el metanol en estado líquido y ser un equilibrio heterogéneo líquido/gas, la concentración de
etanol no influye en el equilibrio, y por tanto, no influye en la cantidad de CO2 desprendida.
d. Al eliminar CO2, el sistema se desplaza hacia la derecha, generando más CO2, y oponiéndose a la perturbación.
5
Pregunta 3B.- Formule las reacciones orgánicas de los siguientes apartados, indicando el tipo de reacción:
a) Formación de 1−buteno a partir de 1−butanol.
b) Obtención de propanoato de metilo a partir de ácido propanoico y metanol.
c) Obtención de propano a partir de propino.
d) Obtención de metanol a partir de clorometano.
Puntuación máxima por apartado: 0,5 puntos.
Solución.
a. Reacción de obtención de alquenos a partir de alcoholes.
322
SOH
3222 CHCHCHCHQCHCHCHOHCH 42
−−= →+−−−
Reacción de eliminación.
b. Reacción de obtención de un éster a partir de ácido y un alcohol, se denominan reacciones de esterificación.
OHCHCOOCHCHOHCHCOOHCHCH 2323323 +−−−↔+−−
Reacción de adición con eliminación.
c. Reacción de hidrogenación de hidrocarburos insaturados
323
Pt
23 CHCHCHH2CHCCH −−→+−≡
Reacción de adición electrófila
d. Reacción de obtención de alcoholes primarios.
KClOHCHKOHClCH 3
etanólico
Medio3 + →+
Reacción de sustitución.
Pregunta 4B.- El sulfuro de cobre (II) reacciona con ácido nítrico, en un proceso en el que se obtiene azufre sólido,
monóxido de nitrógeno, nitrato de cobre (II) y agua.
a) Formule y ajuste las semirreacciones de oxidación y reducción, indicando cuáles son los reactivos oxidante y
reductor.
b) Formule y ajuste la reacción molecular global.
c) Calcule la molaridad de una disolución de ácido nítrico del 65% de riqueza en peso y densidad 1,4 g·cm–3
.
d) Calcule qué masa de sulfuro de cobre (II) se necesitará para que reaccione completamente con 90 mL de la
disolución de ácido nítrico del apartado anterior.
Datos. Masas atómicas: H =1,0; N = 14,0; O = 16,0; S = 32,0 y Cu = 63,5.
Puntuación máxima por apartado: 0,5 puntos.
Solución
a. Reacción sin ajustar: ( ) OHNOCuNOSHNOCuS 2233 +++→+
Elementos que cambian de valencia:
( ) ( )



 →
 →
−
−
+
−−
IINVN
SS
e3
0e22
Semireacciones iónicas sin ajustar:
NONO:reduccióndeónSemireacci
SS:oxidacióndeónSemireacci
3
2
→
→
−
−
Se ajusta en medio ácido:
OH2NOe3H4NO:reduccióndeónSemireacci
e2SS:oxidacióndeónSemireacci
23
2
+→++
+→
−+−
−−
Reductor ≡ CuS Oxidante ≡ HNO3
b. Para obtener la ecuación molecular ajustada, se combinan las semirreacciones iónicas eliminando entre las dos
los electrones y obteniendo la reacción iónica global
( )
( )
OH4NO2S3H8NO2S3
OH2NOe3H4NO2:reduccióndeónSemireacci
e2SS3:oxidacióndeónSemireacci
23
2
23
2
++→++
+→++×
+→×
+−−
−+−
−−
6
De la reacción iónica global, por tanteo, se obtiene la reacción molecular global.
( ) OH4NOCu3NO2S3HNO8CuS3 2233 +++→+
c. Por factores de conversión: Masa molecular HNO3 = 1 + 14 + 16×3 = 63 g/mol
[ ] ( )
( )
( )
( ) ( ) L
mol4,14
HNOg63
HNOmol1
sdg100
HNOg65
sdL1
sdcm1000
sdcm
sdg
4,1HNO
3
33
3
33 =⋅
+
⋅
+
+
⋅
+
+
=
d. Por factores de conversión: Masa molecular CuS = 63,5 + 32 = 95,5 g/mol
( ) CuSg4,46
CuSmol
CuSg5,95
HNOmol8
CuSmol3
L1
HNOmol4,14
mL1000
L1
mL90CuSm
3
3
=⋅⋅⋅⋅=
Pregunta 5B.- Una disolución 10−2
M de cianuro de hidrógeno (HCN) tiene un pH de 5,6. Calcule:
a) El grado de disociación del HCN.
b) La constante de disociación del ácido (Ka).
c) La constante de basicidad del ión CN−
(Kb).
d) El pH de la disolución resultante al mezclar 100 mL de esta disolución de HCN con 100 mL de una disolución
2×10−2
M de hidróxido de sodio.
Puntuación máxima por apartado: 0,5 puntos.
Solución.
a. Reacción de disociación de ácido débil. Si se denomina por α al grado de disociación del ácido, y co la
concentración inicial, el cuadro de reacción queda de la siguiente forma:
( )
( ) αcαcExcαccLmolEquilibrio.C
ExccLmolIniciales.C
OHCNOHHCN
oooo
o
32
−
−−
+↔+ +−
Conocida la concentración inicial y el pH, ase calcula a partir de la definición de pH el grado de disociación.
[ ]+
−= OHlogpH 3 ⇒ [ ] pH
3 10OH −+
=
Teniendo en cuenta a que es igual la concentración de hidronios según el cuadro de reacción:
[ ]
[ ]
46,3
2
6,5
o
pH
pH
o
o3
pH
3
105,210
10
10
c
10
α10αc:
αcOH
10OH
−−
−
−−
−
+
−+
×====⇒=






=
=
%025,0α =
b. Por definición, y teniendo en cuenta el cuadro de reacción, la constante de acidez del ácido cianhídrico es:
[ ] [ ]
[ ]
( ) 10
4
2422
o3
a 103,6
105,21
105,210
α1
αc
HCN
OHCN
K −
−
−−+−
×=
×−
×⋅
=
−
=
⋅
=
c. Teniendo en cuenta que entre las constantes de ionización de un ácido y su base conjugada existe la relación:
14
wba 10KKK −
==⋅ ⇒ 5
10
14
a
14
b 106,1
103,6
10
K
10
K −
−
−−
×=
×
==
d. Reacción entre un ácido débil y una base fuerte.
( ) mol101010100MVHCNn 323
o
−−−
=⋅×=⋅=
( ) mol10210210100MVNaOHn 323
o
−−−
×=×⋅×=⋅=
El cuadro de reacción en función de los moles iniciales de cada uno es:
( )
( ) Exc10100molinalesF.C
Exc10210molIniciales.C
OHNaCNNaOHHCN
33
33
2
−−
−−
−×
+↔+
La concentración de hidróxido sódico en exceso es:
7
[ ] Lmol105
10200
10
V
n
NaOH 3
3
3
−
−
−
×=
×
==
Por ser una base fuerte la concentración de oxidrilos coincide con la de la base.
[ ] [ ] Lmol105NaOHOH 3−−
×== ⇒ [ ] ( ) 3,2105logOHlogpOH 3
=×−=−= −−
7,113,214pOH14pH =−=−=

Más contenido relacionado

La actualidad más candente

Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...Triplenlace Química
 
Trabajo Practico 2 (2do Trimestre)
Trabajo Practico 2 (2do Trimestre)Trabajo Practico 2 (2do Trimestre)
Trabajo Practico 2 (2do Trimestre)Miica Dalul
 
Equilibrios ácido-base y equilibrio de solubilidad
Equilibrios ácido-base y equilibrio de solubilidad Equilibrios ácido-base y equilibrio de solubilidad
Equilibrios ácido-base y equilibrio de solubilidad Ângel Noguez
 
P disoluciones
P disolucionesP disoluciones
P disolucionesmariavarey
 
Alquenos
AlquenosAlquenos
Alquenoslfelix
 
CáLculos Estequiometricos
CáLculos EstequiometricosCáLculos Estequiometricos
CáLculos Estequiometricosmyselfsandra
 
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...Triplenlace Química
 
Ejercicios guia resueltos
Ejercicios guia resueltosEjercicios guia resueltos
Ejercicios guia resueltosGarci Crespo
 
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparación
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparaciónTema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparación
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparaciónGricela Lobo
 
tabla de cationes y aniones
tabla de cationes y anionestabla de cationes y aniones
tabla de cationes y anionesAyleen_barcenas
 

La actualidad más candente (20)

Cuestiones de p h
Cuestiones de p hCuestiones de p h
Cuestiones de p h
 
Sesion 9 esteres
Sesion 9 esteresSesion 9 esteres
Sesion 9 esteres
 
Ejercicios de Reacciones de Sustitución
Ejercicios de Reacciones de SustituciónEjercicios de Reacciones de Sustitución
Ejercicios de Reacciones de Sustitución
 
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
Ejercicios de Química Orgánica Básica - 3.Derivados halogenados y alcoholes -...
 
Ejercicios de coordinacion
Ejercicios de coordinacionEjercicios de coordinacion
Ejercicios de coordinacion
 
Trabajo Practico 2 (2do Trimestre)
Trabajo Practico 2 (2do Trimestre)Trabajo Practico 2 (2do Trimestre)
Trabajo Practico 2 (2do Trimestre)
 
Equilibrios ácido-base y equilibrio de solubilidad
Equilibrios ácido-base y equilibrio de solubilidad Equilibrios ácido-base y equilibrio de solubilidad
Equilibrios ácido-base y equilibrio de solubilidad
 
P disoluciones
P disolucionesP disoluciones
P disoluciones
 
Alquenos
AlquenosAlquenos
Alquenos
 
Unidad IV QOI Reacciones de oxidación
Unidad IV QOI Reacciones de oxidaciónUnidad IV QOI Reacciones de oxidación
Unidad IV QOI Reacciones de oxidación
 
CáLculos Estequiometricos
CáLculos EstequiometricosCáLculos Estequiometricos
CáLculos Estequiometricos
 
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...
Ejercicios de Química Orgánica Básica - 5.Aldehídos, cetonas, ácidos y deriva...
 
Oxidacion de jones
Oxidacion de jonesOxidacion de jones
Oxidacion de jones
 
Ejercicios guia resueltos
Ejercicios guia resueltosEjercicios guia resueltos
Ejercicios guia resueltos
 
ALCANOS
ALCANOSALCANOS
ALCANOS
 
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparación
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparaciónTema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparación
Tema 7. Haluros de alquilo. Nomenclatura, Propiedades y preparación
 
Aminas
AminasAminas
Aminas
 
Cinética química
Cinética químicaCinética química
Cinética química
 
tabla de cationes y aniones
tabla de cationes y anionestabla de cationes y aniones
tabla de cationes y aniones
 
Reacciones orgánicas
Reacciones orgánicas Reacciones orgánicas
Reacciones orgánicas
 

Destacado

Septiembre 2013
Septiembre 2013Septiembre 2013
Septiembre 2013mariavarey
 
Septiembre 2013 soluciones
Septiembre 2013 solucionesSeptiembre 2013 soluciones
Septiembre 2013 solucionesmariavarey
 
Q5 pau-equilibrio
Q5 pau-equilibrioQ5 pau-equilibrio
Q5 pau-equilibriomariavarey
 
Examen 3º evaluacion final
Examen 3º evaluacion finalExamen 3º evaluacion final
Examen 3º evaluacion finalmariavarey
 
Q0 pau-estequiometría-soluc
Q0 pau-estequiometría-solucQ0 pau-estequiometría-soluc
Q0 pau-estequiometría-solucmariavarey
 
Q5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucQ5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucmariavarey
 
Q3 pau-enlace quimicopropiedadessustancias
Q3 pau-enlace quimicopropiedadessustanciasQ3 pau-enlace quimicopropiedadessustancias
Q3 pau-enlace quimicopropiedadessustanciasmariavarey
 
Q3 pau-enlace quimicopropiedadessustancias-soluc
Q3 pau-enlace quimicopropiedadessustancias-solucQ3 pau-enlace quimicopropiedadessustancias-soluc
Q3 pau-enlace quimicopropiedadessustancias-solucmariavarey
 
Q4 pau-transformaciones energéticasespontaneidadreacciones-soluc
Q4 pau-transformaciones energéticasespontaneidadreacciones-solucQ4 pau-transformaciones energéticasespontaneidadreacciones-soluc
Q4 pau-transformaciones energéticasespontaneidadreacciones-solucmariavarey
 
Q4 pau-transformaciones energéticasespontaneidadreacciones
Q4 pau-transformaciones energéticasespontaneidadreaccionesQ4 pau-transformaciones energéticasespontaneidadreacciones
Q4 pau-transformaciones energéticasespontaneidadreaccionesmariavarey
 
Q2 pau-estructura atómicaclasificacionperiódicaelementos-soluc
Q2 pau-estructura atómicaclasificacionperiódicaelementos-solucQ2 pau-estructura atómicaclasificacionperiódicaelementos-soluc
Q2 pau-estructura atómicaclasificacionperiódicaelementos-solucmariavarey
 

Destacado (12)

Septiembre 2013
Septiembre 2013Septiembre 2013
Septiembre 2013
 
Septiembre 2013 soluciones
Septiembre 2013 solucionesSeptiembre 2013 soluciones
Septiembre 2013 soluciones
 
Q5 pau-equilibrio
Q5 pau-equilibrioQ5 pau-equilibrio
Q5 pau-equilibrio
 
Examen 3º evaluacion final
Examen 3º evaluacion finalExamen 3º evaluacion final
Examen 3º evaluacion final
 
Junio 2013
Junio 2013Junio 2013
Junio 2013
 
Q0 pau-estequiometría-soluc
Q0 pau-estequiometría-solucQ0 pau-estequiometría-soluc
Q0 pau-estequiometría-soluc
 
Q5 pau-equilibrio-soluc
Q5 pau-equilibrio-solucQ5 pau-equilibrio-soluc
Q5 pau-equilibrio-soluc
 
Q3 pau-enlace quimicopropiedadessustancias
Q3 pau-enlace quimicopropiedadessustanciasQ3 pau-enlace quimicopropiedadessustancias
Q3 pau-enlace quimicopropiedadessustancias
 
Q3 pau-enlace quimicopropiedadessustancias-soluc
Q3 pau-enlace quimicopropiedadessustancias-solucQ3 pau-enlace quimicopropiedadessustancias-soluc
Q3 pau-enlace quimicopropiedadessustancias-soluc
 
Q4 pau-transformaciones energéticasespontaneidadreacciones-soluc
Q4 pau-transformaciones energéticasespontaneidadreacciones-solucQ4 pau-transformaciones energéticasespontaneidadreacciones-soluc
Q4 pau-transformaciones energéticasespontaneidadreacciones-soluc
 
Q4 pau-transformaciones energéticasespontaneidadreacciones
Q4 pau-transformaciones energéticasespontaneidadreaccionesQ4 pau-transformaciones energéticasespontaneidadreacciones
Q4 pau-transformaciones energéticasespontaneidadreacciones
 
Q2 pau-estructura atómicaclasificacionperiódicaelementos-soluc
Q2 pau-estructura atómicaclasificacionperiódicaelementos-solucQ2 pau-estructura atómicaclasificacionperiódicaelementos-soluc
Q2 pau-estructura atómicaclasificacionperiódicaelementos-soluc
 

Similar a Universidades públicas de la Comunidad de Madrid: Química

Similar a Universidades públicas de la Comunidad de Madrid: Química (20)

Modelo 2014
Modelo 2014Modelo 2014
Modelo 2014
 
Coleccion de problemas de Quimica Juniembre
Coleccion de problemas de Quimica JuniembreColeccion de problemas de Quimica Juniembre
Coleccion de problemas de Quimica Juniembre
 
Olimpiada 2003
Olimpiada 2003Olimpiada 2003
Olimpiada 2003
 
Septiembre 2013 soluciones
Septiembre 2013 solucionesSeptiembre 2013 soluciones
Septiembre 2013 soluciones
 
Olimpiada 2004
Olimpiada 2004Olimpiada 2004
Olimpiada 2004
 
Modelo 2014 enunciados
Modelo 2014 enunciadosModelo 2014 enunciados
Modelo 2014 enunciados
 
Junio 2013
Junio 2013Junio 2013
Junio 2013
 
Madrid 1996 cuestiones
Madrid 1996 cuestionesMadrid 1996 cuestiones
Madrid 1996 cuestiones
 
Ciudad Real 1997 cuestiones
Ciudad Real 1997 cuestionesCiudad Real 1997 cuestiones
Ciudad Real 1997 cuestiones
 
Ciudad Real 1997 problemas
Ciudad Real 1997 problemasCiudad Real 1997 problemas
Ciudad Real 1997 problemas
 
Quimica 2012
Quimica 2012Quimica 2012
Quimica 2012
 
Quim2013juliol
Quim2013juliolQuim2013juliol
Quim2013juliol
 
Ejercicios resultos quimica
Ejercicios resultos quimicaEjercicios resultos quimica
Ejercicios resultos quimica
 
Ejercicios resultos quimica
Ejercicios resultos quimicaEjercicios resultos quimica
Ejercicios resultos quimica
 
Examen final químico mayo 2013
Examen final químico mayo 2013Examen final químico mayo 2013
Examen final químico mayo 2013
 
Almería 1999 cuestiones
Almería 1999 cuestionesAlmería 1999 cuestiones
Almería 1999 cuestiones
 
Recuperación 1ª eval química 2º bac 2013 2014
Recuperación 1ª eval  química 2º bac 2013 2014Recuperación 1ª eval  química 2º bac 2013 2014
Recuperación 1ª eval química 2º bac 2013 2014
 
Olimpiada local Madrid 2009
Olimpiada local Madrid 2009Olimpiada local Madrid 2009
Olimpiada local Madrid 2009
 
PROBLEMAS DE QUIMICA GENERAL
PROBLEMAS DE QUIMICA GENERALPROBLEMAS DE QUIMICA GENERAL
PROBLEMAS DE QUIMICA GENERAL
 
Recuperación 1ª eval química 2º bac 2014 2015
Recuperación 1ª eval  química 2º bac 2014 2015Recuperación 1ª eval  química 2º bac 2014 2015
Recuperación 1ª eval química 2º bac 2014 2015
 

Más de mariavarey

Recopilacion examenes
Recopilacion examenesRecopilacion examenes
Recopilacion examenesmariavarey
 
Parcial 2 3ev fy_q4
Parcial 2 3ev fy_q4Parcial 2 3ev fy_q4
Parcial 2 3ev fy_q4mariavarey
 
Trabajo verano 4 eso
Trabajo verano 4 esoTrabajo verano 4 eso
Trabajo verano 4 esomariavarey
 
Trabajo de verano 1 bachillerato
Trabajo de verano 1 bachilleratoTrabajo de verano 1 bachillerato
Trabajo de verano 1 bachilleratomariavarey
 
Examen recuperación 3º evaluación
Examen recuperación 3º evaluaciónExamen recuperación 3º evaluación
Examen recuperación 3º evaluaciónmariavarey
 
Examen final3º evaluación completo
Examen final3º evaluación completoExamen final3º evaluación completo
Examen final3º evaluación completomariavarey
 
Examen final3º evaluación completo
Examen final3º evaluación completoExamen final3º evaluación completo
Examen final3º evaluación completomariavarey
 
Trabajos electricidad
Trabajos electricidadTrabajos electricidad
Trabajos electricidadmariavarey
 
Repaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesRepaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesmariavarey
 
Repaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesRepaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesmariavarey
 
Examen recuperacion final
Examen recuperacion finalExamen recuperacion final
Examen recuperacion finalmariavarey
 
Junio 2013 soluciones
Junio 2013 solucionesJunio 2013 soluciones
Junio 2013 solucionesmariavarey
 
Modelo 2013 soluc
Modelo 2013 solucModelo 2013 soluc
Modelo 2013 solucmariavarey
 
Sept2013 soluc
Sept2013 solucSept2013 soluc
Sept2013 solucmariavarey
 
Problemas resueltos prisma óptico
Problemas resueltos prisma ópticoProblemas resueltos prisma óptico
Problemas resueltos prisma ópticomariavarey
 
Mini control de estequiometría
Mini control de estequiometríaMini control de estequiometría
Mini control de estequiometríamariavarey
 
Mini control de estequiometría
Mini control de estequiometríaMini control de estequiometría
Mini control de estequiometríamariavarey
 

Más de mariavarey (20)

Recopilacion examenes
Recopilacion examenesRecopilacion examenes
Recopilacion examenes
 
Parcial 2 3ev fy_q4
Parcial 2 3ev fy_q4Parcial 2 3ev fy_q4
Parcial 2 3ev fy_q4
 
Trabajo verano 4 eso
Trabajo verano 4 esoTrabajo verano 4 eso
Trabajo verano 4 eso
 
Trabajo de verano 1 bachillerato
Trabajo de verano 1 bachilleratoTrabajo de verano 1 bachillerato
Trabajo de verano 1 bachillerato
 
Examen recuperación 3º evaluación
Examen recuperación 3º evaluaciónExamen recuperación 3º evaluación
Examen recuperación 3º evaluación
 
Examen final3º evaluación completo
Examen final3º evaluación completoExamen final3º evaluación completo
Examen final3º evaluación completo
 
Examen final3º evaluación completo
Examen final3º evaluación completoExamen final3º evaluación completo
Examen final3º evaluación completo
 
Trabajos electricidad
Trabajos electricidadTrabajos electricidad
Trabajos electricidad
 
Repaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesRepaso final 3º evaluación soluciones
Repaso final 3º evaluación soluciones
 
Repaso final 3º evaluación soluciones
Repaso final 3º evaluación solucionesRepaso final 3º evaluación soluciones
Repaso final 3º evaluación soluciones
 
Examen recuperacion final
Examen recuperacion finalExamen recuperacion final
Examen recuperacion final
 
Junio 2013 soluciones
Junio 2013 solucionesJunio 2013 soluciones
Junio 2013 soluciones
 
Modelo 2013 soluc
Modelo 2013 solucModelo 2013 soluc
Modelo 2013 soluc
 
Modelo 2013
Modelo 2013Modelo 2013
Modelo 2013
 
Sept2013 soluc
Sept2013 solucSept2013 soluc
Sept2013 soluc
 
Sept2013
Sept2013Sept2013
Sept2013
 
Problemas resueltos prisma óptico
Problemas resueltos prisma ópticoProblemas resueltos prisma óptico
Problemas resueltos prisma óptico
 
Mini control de estequiometría
Mini control de estequiometríaMini control de estequiometría
Mini control de estequiometría
 
Problema mini
Problema miniProblema mini
Problema mini
 
Mini control de estequiometría
Mini control de estequiometríaMini control de estequiometría
Mini control de estequiometría
 

Universidades públicas de la Comunidad de Madrid: Química

  • 1. 1 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 JUNIO MATERIA: QUÍMICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consta de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin que pueda elegir cuestiones o problemas de diferentes opciones. Cada cuestión o problema puntuará sobre un máximo de dos puntos. No se contestará ninguna pregunta en este impreso. TIEMPO: una hora y treinta minutos. OPCIÓN A Pregunta 1A.- Considere los elementos de números atómicos 9 y 11: a) Identifíquelos con nombre y símbolo, y escriba sus configuraciones electrónicas. b) Justifique cuál tiene mayor el segundo potencial de ionización. c) Justifique cuál es más electronegativo. d) Justifique qué tipo de enlace presentaría el compuesto formado por estos dos elementos. Puntuación máxima por apartado: 0,5 puntos. Solución. a. Z = 9 ≡ Flúor. 522 p2s2;s1F = Z = 11 ≡ Sodio. 1622 s3;p2s2;s1Na = b. 2º Potencial de ionización del sodio > 2º Potencial de ionización del F: i. El Na+ tiene configuración de gas noble, configuración que no pose el F+ . ii. Para ionizar el F+ o el Na+ , se debe arrancar un electrón del mismo nivel (2º), y el núcleo del Na, formado por 11 protones, genera un campo eléctrico mayor que el formado por los 9 protones del F, por lo tanto los electrones del Na+ , son atraídos con mayor fuerza que los del F+ . c. El más electronegativo es el F, por tener mayor potencial de ionización y mayor afinidad electrónica que el sodio. Los no-metales, tienen mayor electronegatividad que los metales. d. Iónico. Metal(Na) / No-Metal(F) Pregunta 2A.- Justifique si son verdaderas o falsas las siguientes afirmaciones: a) Una mezcla formada por volúmenes iguales de disoluciones de igual concentración de un ácido y una base débiles siempre tiene pH neutro. b) Una mezcla formada por disoluciones diluidas de ácido clorhídrico y cloruro de calcio tiene pH ácido. c) El ión hidróxido (OH− ) se comporta como un electrolito anfótero. d) La constante de solubilidad de una sal poco soluble aumenta por efecto ión común. Puntuación máxima por apartado: 0,5 puntos. Solución. a. Falso. Dependerá de las constantes de ionización del ácido y de la base, si los dos tienen igual constante de ionización, el pH será prácticamente neutro, si Ka > Kb será ácido y si Ka < Kb será básico, en definitiva, dependerá de la fortaleza del ácido y de la base, ya que dentro de la debilidad de estos, existen diferentes grados de fortaleza. b. Verdadero. Una mezcla de un ácido fuerte y una sal neutra produce un pH ácido. ( ) ( ) ( )ácido7pH aqClaqCaCaCl OHClOHHCl 2OH 2 32 2 <⇒     + → +→+ −+ +− c. Falso. Una sustancia anfótera debe tener posibilidad de actuar como ácido o como base, en el caso del ión OH‒ , solo tiene carácter básico (OH‒ + H+ → H2O) d. Falso. El efecto ión común, influye en la solubilidad de la sal, pero no influye en la constante, la cual solo es función de la temperatura.
  • 2. 2 Pregunta 3A.- Cuando se introduce una barra de Zn en una disolución acuosa de HCl se observa la disolución de la barra y el desprendimiento de burbujas de gas. En cambio, cuando se introduce una barra de plata en una disolución de HCl no se observa ninguna reacción. A partir de estas observaciones: a) Razone qué gas se está desprendiendo en el primer experimento. b) Justifique qué signo tendrán los potenciales Eº (Zn2+ /Zn) y Eº (Ag+ /Ag). c) Justifique si se produce reacción cuando se introduce una barra de Zn en una disolución acuosa de AgCl. Puntuación máxima por apartado: 0,5 puntos apartados a) y c); 1 punto apartado b). Solución. a. Algunos metales se disuelven en disoluciones ácidas desprendiendo hidrógeno y formando la sal del metal. 22 HZnClHCl2Zn +→+ 2 2 2 2 HZnH2ZnglobaliónicaReacción He22HreduccióndeónSemireacci e2ZnZnoxidacióndeónSemireacci +→+ →+ +→ ++ −+ −+ En el proceso se desprende hidrógeno b. Si una reacción redox es espontánea, su potencial es positivo, en caso contrario será negativo. El potencial de un proceso redox es el la resta del potencial de reducción del cátodo (semireacción de reducción) menos el potencial de reducción del ánodo (semireacción de oxidación) y, teniendo en cuenta que el potencial de reducción del electrodo normal de hidrógeno es cero, por tratarse del electrodo de referencia ( ) 0HHºE 2 =+ : • 22 HZnClHCl2Zn +→+ Espontánea Eº > 0 ( ) ( ) 0ZnZnºEHHºEºE 2 2 >−= ++ ( ) 0ZnZnºE0 2 >− + ⇒ ( ) 0ZnZnºE 2 <+ • 2HAgCl2HCl2Ag2 +→+ No espontánea Eº < 0 ( ) ( ) 0AgAgºEHHºEºE 2 <−= ++ ( ) 0AgAgºE0 <− + ⇒ ( ) 0AgAgºE >+ c. 2ZnClAg2ZnAgCl2 +→+ ( ) Ag2ZnAg2ZnglobaliónicaReacción 2AgeAgreduccióndeónSemireacci e2ZnZnoxidacióndeónSemireacci 2 2 +→+ ×→+ +→ ++ −+ −+ ( ) ( ) ( ) ( ) 0 0ZnZnºE 0AgAgºE ZnZnºEAgAgºEºE 2 2 >         < > =−= + + ++ ⇒ ESPONTÁNEO Pregunta 4A.- El propano es uno de los combustibles fósiles más utilizados. a) Formule y ajuste su reacción de combustión. b) Calcule la entalpía estándar de combustión e indique si el proceso es exotérmico o endotérmico. c) Calcule los litros de dióxido de carbono que se obtienen, medidos a 25 ºC y 760 mm de Hg, si la energía intercambiada ha sido de 5990 kJ. Datos. R = 0,082 atm·L·mol–1 ·K–1 . Energías medias de enlace (kJ·mol–1 ): (C–C) = 347; (C–H) = 415; (O–H) = 460; (O=O) = 494 y (C=O) = 730. Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c) Solución. a. OH4CO3O5HC 22283 +→+ b. Para calcular la entalpia de reacción por entalpia de enlace, es conveniente escribir las estructuras de los compuestos que interviene de forma desarrollada ya que: ( ) ( )∑∑ ∆−∆=∆ FormadosHRotosHH o E o E o R
  • 3. 3 ( ) ( ) ( ) ( ) ( )[ ]HOH24OCH23OOH5HCH8CCH2H o E o E o E o E o E o R −∆⋅+=∆⋅−=∆+−∆+−∆=∆ [ ] 1o R molkJ157646087306494541583472H − ⋅−=⋅+⋅−⋅+⋅+⋅=∆ Reacción exotérmica c. Un mol en condiciones estándar ocupa L44,24 atm1 K298 Kmol Latm 082,0mol1 V = ⋅ ⋅ ⋅ ⋅ = Por factores de conversión: ( ) 2 2 2 83 283 2 COL6,278 COmol1 COL44,22 HCmol1 COmol3 kJ1576 HCmol1 kJ5990COV =⋅⋅⋅= Pregunta 5A.- El valor de la constante de equilibrio Kc para la reacción H2 (g) + F2 (g) 2HF (g), es 6,6×10–4 a 25 ºC. Si en un recipiente de 10 L se introduce 1 mol de H2 y 1 mol de F2, y se mantiene a 25 ºC hasta alcanzar el equilibrio, calcule: a) Los moles de H2 que quedan sin reaccionar una vez que se ha alcanzado el equilibrio. b) La presión parcial de cada uno de los compuestos en el equilibrio. c) El valor de Kp a 25 ºC. Dato. R = 0,082 atm·L·mol−1 ·K−1 . Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c). Solución. a. Si se denomina por x al número de moles que reaccionan de hidrógeno y fluor, el cuadro de reacción en función de x queda de la siguiente forma: ( ) ( ) ( ) ( ) ( ) x2x1x1mol.Eq.C 11mol.I.C gHF2gFgH 22 −− − ⇔+ El número de moles de cada componente en el equilibrio se obtiene calculando x a partir del valor de la constante de equilibrio. [ ] [ ] [ ] ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 22 22 2 22 2 22 2 c x1 x2 x1x1 x2 FnHn HFn V Fn V Hn V HFn FH HF K − = −⋅− = ⋅ = ⋅       = ⋅ = 2 c x1 x2 K       − = cK x1 x2 = − mol1027,1 106,62 106,6 K2 K x 2 4 4 c c − − − ×= ×+ × = + = ( ) mol987,01027,11x1Hn 2 Eq2 =×−=−= − b. La presión parcial de un componente de una mezcla gaseosa es V RTn P i i ⋅ = ( ) atm4,2 10 298082,0987,0 V RTHn PP 2 FH 22 = ⋅⋅ = ⋅ == ( ) atm062,0 10 298082,01027,12 V RTHFn P 2 HF = ⋅⋅×⋅ = ⋅ = − c. ( ) ( ) ( ) c 0 c gn cp KRTKRTKK =⋅=⋅= ∆
  • 4. 4 OPCIÓN B Pregunta 1B.- Dadas las moléculas HCl, KF, CF4 y CH2Cl2: a) Razone el tipo de enlace presente en cada una de ellas. b) Escriba la estructura de Lewis y justifique la geometría de las moléculas que tienen enlaces covalentes. c) Justifique cuáles de ellas son solubles en agua. Puntuación máxima por apartado: 0,5 puntos apartado a) y 0,75 puntos apartados b) y c). Solución. a. HCl: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad) KF: Enlace iónico (Metal/No-metal) CF4: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad). Molécula Apolar CH2Cl2: Enlace covalente polar (No-metal/No-metal con diferente electronegatividad) b. Las moléculas covalentes son HCl, CF4 y CH2Cl2 • CF4: El carbono se encuentra rodeado por cuatro nubes electrónicas y se une con cuatro núcleos, la geometría es tetraédrica, ocupando el carbono el centro del tetraedro y siendo los ángulos de enlace de 109º • CH2Cl2: El carbono se encuentra rodeado por cuatro nubes electrónicas, pero a diferencia de la anterior, se une a cuatro núcleos iguales dos a dos, la geometría también es tetraédrica, pero los ángulos están distorsionados en torno al valor de 109º c. Teniendo en cuenta que el agua es un disolvente polar, son solubles en agua, las sustancias iónicas (KF) y las covalentes polares (HCl y CH2Cl2). Pregunta 2B.- La siguiente reacción, no ajustada: CH3OH (l) + O2 (g) H2O (l) + CO2 (g) es exotérmica a 25 ºC. a) Escriba la expresión para la constante de equilibrio Kp de la reacción indicada. b) Razone cómo afecta al equilibrio un aumento de la temperatura. c) Razone cómo afecta a la cantidad de CO2 desprendido un aumento de la cantidad de CH3OH (l). d) Justifique cómo se modifica el equilibrio si se elimina CO2 del reactor. Puntuación máxima por apartado: 0,5 puntos. Solución. NOTA: Por lo general, las reacciones de combustión son irreversibles, por lo tanto no tiene sentido hablar de equilibrio en una reacción de combustión. En cualquier caso, como se propone como equilibrio, lo trataremos como tal. a. Por ser un equilibrio heterogéneo líquido/gas, las constantes de equilibrio solo serán función de las especies que estén en el estado de agregación de mayor libertad (gas). ( ) ( ) ( ) ( )gCO2lOH4gO3lOHCH2 2223 +↔+ 3 O 2 CO p 2 2 P P K = b. Según el principio de Le Châtelier, al producir una perturbación en un sistema en equilibrio, este evoluciona en contra de la perturbación de forma que reestablezca el equilibrio. Si se aumenta la temperatura, el sistema tiende a desplazarse en el sentido endotérmico (absorbiendo calor), y de esa forma restablecer el equilibrio. Teniendo en cuenta que la reacción es exotérmica, tal y como dice el enunciado, el sentido endotérmico será hacia la izquierda, por lo tanto, al aumentar la temperatura, el equilibrio se desplaza hacia los reactivos. c. Por encontrarse el metanol en estado líquido y ser un equilibrio heterogéneo líquido/gas, la concentración de etanol no influye en el equilibrio, y por tanto, no influye en la cantidad de CO2 desprendida. d. Al eliminar CO2, el sistema se desplaza hacia la derecha, generando más CO2, y oponiéndose a la perturbación.
  • 5. 5 Pregunta 3B.- Formule las reacciones orgánicas de los siguientes apartados, indicando el tipo de reacción: a) Formación de 1−buteno a partir de 1−butanol. b) Obtención de propanoato de metilo a partir de ácido propanoico y metanol. c) Obtención de propano a partir de propino. d) Obtención de metanol a partir de clorometano. Puntuación máxima por apartado: 0,5 puntos. Solución. a. Reacción de obtención de alquenos a partir de alcoholes. 322 SOH 3222 CHCHCHCHQCHCHCHOHCH 42 −−= →+−−− Reacción de eliminación. b. Reacción de obtención de un éster a partir de ácido y un alcohol, se denominan reacciones de esterificación. OHCHCOOCHCHOHCHCOOHCHCH 2323323 +−−−↔+−− Reacción de adición con eliminación. c. Reacción de hidrogenación de hidrocarburos insaturados 323 Pt 23 CHCHCHH2CHCCH −−→+−≡ Reacción de adición electrófila d. Reacción de obtención de alcoholes primarios. KClOHCHKOHClCH 3 etanólico Medio3 + →+ Reacción de sustitución. Pregunta 4B.- El sulfuro de cobre (II) reacciona con ácido nítrico, en un proceso en el que se obtiene azufre sólido, monóxido de nitrógeno, nitrato de cobre (II) y agua. a) Formule y ajuste las semirreacciones de oxidación y reducción, indicando cuáles son los reactivos oxidante y reductor. b) Formule y ajuste la reacción molecular global. c) Calcule la molaridad de una disolución de ácido nítrico del 65% de riqueza en peso y densidad 1,4 g·cm–3 . d) Calcule qué masa de sulfuro de cobre (II) se necesitará para que reaccione completamente con 90 mL de la disolución de ácido nítrico del apartado anterior. Datos. Masas atómicas: H =1,0; N = 14,0; O = 16,0; S = 32,0 y Cu = 63,5. Puntuación máxima por apartado: 0,5 puntos. Solución a. Reacción sin ajustar: ( ) OHNOCuNOSHNOCuS 2233 +++→+ Elementos que cambian de valencia: ( ) ( )     →  → − − + −− IINVN SS e3 0e22 Semireacciones iónicas sin ajustar: NONO:reduccióndeónSemireacci SS:oxidacióndeónSemireacci 3 2 → → − − Se ajusta en medio ácido: OH2NOe3H4NO:reduccióndeónSemireacci e2SS:oxidacióndeónSemireacci 23 2 +→++ +→ −+− −− Reductor ≡ CuS Oxidante ≡ HNO3 b. Para obtener la ecuación molecular ajustada, se combinan las semirreacciones iónicas eliminando entre las dos los electrones y obteniendo la reacción iónica global ( ) ( ) OH4NO2S3H8NO2S3 OH2NOe3H4NO2:reduccióndeónSemireacci e2SS3:oxidacióndeónSemireacci 23 2 23 2 ++→++ +→++× +→× +−− −+− −−
  • 6. 6 De la reacción iónica global, por tanteo, se obtiene la reacción molecular global. ( ) OH4NOCu3NO2S3HNO8CuS3 2233 +++→+ c. Por factores de conversión: Masa molecular HNO3 = 1 + 14 + 16×3 = 63 g/mol [ ] ( ) ( ) ( ) ( ) ( ) L mol4,14 HNOg63 HNOmol1 sdg100 HNOg65 sdL1 sdcm1000 sdcm sdg 4,1HNO 3 33 3 33 =⋅ + ⋅ + + ⋅ + + = d. Por factores de conversión: Masa molecular CuS = 63,5 + 32 = 95,5 g/mol ( ) CuSg4,46 CuSmol CuSg5,95 HNOmol8 CuSmol3 L1 HNOmol4,14 mL1000 L1 mL90CuSm 3 3 =⋅⋅⋅⋅= Pregunta 5B.- Una disolución 10−2 M de cianuro de hidrógeno (HCN) tiene un pH de 5,6. Calcule: a) El grado de disociación del HCN. b) La constante de disociación del ácido (Ka). c) La constante de basicidad del ión CN− (Kb). d) El pH de la disolución resultante al mezclar 100 mL de esta disolución de HCN con 100 mL de una disolución 2×10−2 M de hidróxido de sodio. Puntuación máxima por apartado: 0,5 puntos. Solución. a. Reacción de disociación de ácido débil. Si se denomina por α al grado de disociación del ácido, y co la concentración inicial, el cuadro de reacción queda de la siguiente forma: ( ) ( ) αcαcExcαccLmolEquilibrio.C ExccLmolIniciales.C OHCNOHHCN oooo o 32 − −− +↔+ +− Conocida la concentración inicial y el pH, ase calcula a partir de la definición de pH el grado de disociación. [ ]+ −= OHlogpH 3 ⇒ [ ] pH 3 10OH −+ = Teniendo en cuenta a que es igual la concentración de hidronios según el cuadro de reacción: [ ] [ ] 46,3 2 6,5 o pH pH o o3 pH 3 105,210 10 10 c 10 α10αc: αcOH 10OH −− − −− − + −+ ×====⇒=       = = %025,0α = b. Por definición, y teniendo en cuenta el cuadro de reacción, la constante de acidez del ácido cianhídrico es: [ ] [ ] [ ] ( ) 10 4 2422 o3 a 103,6 105,21 105,210 α1 αc HCN OHCN K − − −−+− ×= ×− ×⋅ = − = ⋅ = c. Teniendo en cuenta que entre las constantes de ionización de un ácido y su base conjugada existe la relación: 14 wba 10KKK − ==⋅ ⇒ 5 10 14 a 14 b 106,1 103,6 10 K 10 K − − −− ×= × == d. Reacción entre un ácido débil y una base fuerte. ( ) mol101010100MVHCNn 323 o −−− =⋅×=⋅= ( ) mol10210210100MVNaOHn 323 o −−− ×=×⋅×=⋅= El cuadro de reacción en función de los moles iniciales de cada uno es: ( ) ( ) Exc10100molinalesF.C Exc10210molIniciales.C OHNaCNNaOHHCN 33 33 2 −− −− −× +↔+ La concentración de hidróxido sódico en exceso es:
  • 7. 7 [ ] Lmol105 10200 10 V n NaOH 3 3 3 − − − ×= × == Por ser una base fuerte la concentración de oxidrilos coincide con la de la base. [ ] [ ] Lmol105NaOHOH 3−− ×== ⇒ [ ] ( ) 3,2105logOHlogpOH 3 =×−=−= −− 7,113,214pOH14pH =−=−=