Data Warehouse with Fabric on data lakehouse

Marco Pozzan
Marco PozzanMicrosoft MVP 2015 for Data Platform en Bi Consultant
Sabato 30 settembre 2023
Marco Pozzan
• Consulente e formatore in ambito business intelligence
• Nel 2020 Fondatore e CTO start-up per analisi dati e per
insurance data analytics per le compagnie assicurative
Dal 2017 mi occupo di architetture big Data e in generale di tutta
la proposizione data platform di Microsoft.
• Docente all'Università di Pordenone per i corsi IFTS di analisi
Big Data
• Community Lead di 1nn0va (www.innovazionefvg.net)
• MCP,MCSA,MCSE dal 2017 MCT e dal 2014 MVP per SQL Server e
relatore in diverse conferenze sul tema.
• marco.pozzan@regolofarm.com
• @marcopozzan.it
• www.marcopozzan.it
• http://www.scoop.it/u/marco-pozzan
• http://paper.li/marcopozzan/1422524394
Data Warehouse with Fabric
on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Data Warehouse with Fabric on data lakehouse
Databricks recommends taking a layered approach to creating a single
source of truth for enterprise data products.
This architecture ensures atomicity, consistency, isolation, and durability
as data passes through multiple levels of validations and transformations
before being stored in a layout optimized for efficient analysis.
It is important to note that this medallion architecture is not a
substitute for other dimensional modeling techniques.The schemas and
tables within each tier can take a variety of forms and degrees of
normalization depending on the frequency and nature of data updates and
downstream use cases for the data.
Medallion Architecture
Medallion Architecture
I termini bronzo (grezzo), argento (convalidato) e oro (arricchito) descrivono la qualità
dei dati in ciascuno di questi livelli.
Demo
Demo – token SAS generation
?sv=2020-02-10&st=2023-09-29T04%3A46%3A14Z&se=2023-10-
29T05%3A46%3A00Z&sr=c&sp=rle&sig=uds%2BXKBHBBkelOkOFjeOblWlxQ5vPWBk0unBtysXgeY%3D
Demo – Shortcut configuration for bronze layer (part 1)
https://dataengineerrowdata.dfs.core.windows.net
/1nn0vasat
Demo – Shortcut configuration for bronze layer (part 2)
• https://dataengineerrowdata.dfs.core.windows.net/1nn0vasat
• LinkEsternoWWI
Demo – Shortcut configuration for bronze layer (part 3)
• Ext_raw_data_WWI
• /1nn0vasat/Files/
Demo – Load silver layer with Notebook
Demo – Load silver layer with Notebook
Demo – Test table
SELECT YEAR(SO.OrderDate) AS OrderDateYear,
COUNT(SO.OrderDate) AS TotalOrderCount
FROM [DWH].[dbo].[silver_salesorder] SO
GROUP BY YEAR(SO.OrderDate);
SELECT ISNULL(C.ColorName,'No Colour') AS ColourName,
SUM(cast(SOL.Quantity as int)) AS TotalOrderLineQuantity,
SUM(cast(SOL.UnitPrice as numeric)) AS TotalOrderLineUnitPrice
FROM [DWH].[dbo].[silver_salesorderline] SOL
INNER JOIN [DWH].[dbo].[silver_stockitems] SI ON SI.StockItemID = SOL.StockItemID
LEFT JOIN [DWH].[dbo].[silver_colors] C ON C.ColorID = SI.ColorID
GROUP BY ISNULL(C.ColorName,'No Colour’);
SELECT
YEAR(SO.OrderDate) AS OrderDateYear,
SC.SupplierCategoryName,
SUM(cast(SOL.Quantity as int)) AS TotalOrderLineQuantity,
SUM(cast(SOL.UnitPrice as numeric)) AS TotalOrderLineUnitPrice
FROM [DWH].[dbo].[silver_salesorderline] SOL
INNER JOIN [DWH].[dbo].[silver_salesorder] SO ON SO.OrderID = SOL.OrderID
INNER JOIN [DWH].[dbo].[silver_stockitems] SI ON SI.StockItemID = SOL.StockItemID
INNER JOIN [DWH].[dbo].[silver_suppliers] S ON SI.SupplierID = S.SupplierID
INNER JOIN [DWH].[dbo].[silver_categories] SC ON SC.SupplierCategoryID = S.SupplierCategoryID
GROUP BY YEAR(SO.OrderDate),
SC.SupplierCategoryName;
Demo – Load silver layer with DataFlow (Part 1)
Demo – Load silver layer with DataFlow (Part 1)
For each table i can set sink into deltalake
Demo – Load silver layer with Pipeline (Part 1 define variables)
["Countries","DeliveryMethods","People","StateProvince
s","SupplierCategories","Suppliers","BuyingGroups","Cu
stomerCategories","Customers","Colors","PackageTypes",
"StockItems","Cities","Date"]
Set variables with this array
Demo – Load silver layer with Pipeline (Part 2 copy activity source)
@variables('FileName')
@concat(item(),'.csv')
Demo – Load silver layer with Pipeline (Part 3 copy activity sink)
@concat('silver_' ,item())
Demo – Load silver layer with Pipeline (Part 4 copy activity source)
Ext_raw_data_WWI/SalesOrder/*
Demo – Load silver layer with Pipeline (Part 5 copy activity sink)
Demo – Load silver layer with Pipeline (Part 6 copy activity source)
Ext_raw_data_WWI/SalesOrderLine/*
Demo – Load silver layer with Pipeline (Part 7 copy activity sink)
Demo – Load gold layer with sql queries
Demo – Load gold layer with sql queries
Demo – Create Serving Layer
1 de 33

Recomendados

NoSql por
NoSqlNoSql
NoSqlAnitaSenthilkumar
555 vistas45 diapositivas
NoSQL databases por
NoSQL databasesNoSQL databases
NoSQL databasesMarin Dimitrov
20.5K vistas60 diapositivas
NoSQL databases - An introduction por
NoSQL databases - An introductionNoSQL databases - An introduction
NoSQL databases - An introductionPooyan Mehrparvar
4.9K vistas53 diapositivas
Intro To MongoDB por
Intro To MongoDBIntro To MongoDB
Intro To MongoDBAlex Sharp
93.1K vistas66 diapositivas
Introduction SQL Analytics on Lakehouse Architecture por
Introduction SQL Analytics on Lakehouse ArchitectureIntroduction SQL Analytics on Lakehouse Architecture
Introduction SQL Analytics on Lakehouse ArchitectureDatabricks
5.8K vistas52 diapositivas
Nosql databases por
Nosql databasesNosql databases
Nosql databasesFayez Shayeb
1.3K vistas85 diapositivas

Más contenido relacionado

La actualidad más candente

Introduction to Cassandra Architecture por
Introduction to Cassandra ArchitectureIntroduction to Cassandra Architecture
Introduction to Cassandra Architecturenickmbailey
1.7K vistas43 diapositivas
Free Training: How to Build a Lakehouse por
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a LakehouseDatabricks
3.4K vistas42 diapositivas
Agile Data Engineering - Intro to Data Vault Modeling (2016) por
Agile Data Engineering - Intro to Data Vault Modeling (2016)Agile Data Engineering - Intro to Data Vault Modeling (2016)
Agile Data Engineering - Intro to Data Vault Modeling (2016)Kent Graziano
2.8K vistas39 diapositivas
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database por
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL databaseHBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL databaseEdureka!
104.5K vistas24 diapositivas
Modern data warehouse por
Modern data warehouseModern data warehouse
Modern data warehouseRakesh Jayaram
241 vistas24 diapositivas
Data Vault and DW2.0 por
Data Vault and DW2.0Data Vault and DW2.0
Data Vault and DW2.0Empowered Holdings, LLC
5.3K vistas25 diapositivas

La actualidad más candente(20)

Introduction to Cassandra Architecture por nickmbailey
Introduction to Cassandra ArchitectureIntroduction to Cassandra Architecture
Introduction to Cassandra Architecture
nickmbailey1.7K vistas
Free Training: How to Build a Lakehouse por Databricks
Free Training: How to Build a LakehouseFree Training: How to Build a Lakehouse
Free Training: How to Build a Lakehouse
Databricks3.4K vistas
Agile Data Engineering - Intro to Data Vault Modeling (2016) por Kent Graziano
Agile Data Engineering - Intro to Data Vault Modeling (2016)Agile Data Engineering - Intro to Data Vault Modeling (2016)
Agile Data Engineering - Intro to Data Vault Modeling (2016)
Kent Graziano2.8K vistas
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database por Edureka!
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL databaseHBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
HBase Vs Cassandra Vs MongoDB - Choosing the right NoSQL database
Edureka!104.5K vistas
Deep Dive Amazon Redshift for Big Data Analytics - September Webinar Series por Amazon Web Services
Deep Dive Amazon Redshift for Big Data Analytics - September Webinar SeriesDeep Dive Amazon Redshift for Big Data Analytics - September Webinar Series
Deep Dive Amazon Redshift for Big Data Analytics - September Webinar Series
Amazon Web Services4.5K vistas
Large Scale Lakehouse Implementation Using Structured Streaming por Databricks
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
Databricks490 vistas
Optimize the performance, cost, and value of databases.pptx por IDERA Software
Optimize the performance, cost, and value of databases.pptxOptimize the performance, cost, and value of databases.pptx
Optimize the performance, cost, and value of databases.pptx
IDERA Software233 vistas
Apache HBase - Just the Basics por HBaseCon
Apache HBase - Just the BasicsApache HBase - Just the Basics
Apache HBase - Just the Basics
HBaseCon4.6K vistas
Designing modern dw and data lake por punedevscom
Designing modern dw and data lakeDesigning modern dw and data lake
Designing modern dw and data lake
punedevscom1K vistas
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard por Paris Data Engineers !
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardDelta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Delta Lake OSS: Create reliable and performant Data Lake by Quentin Ambard
Deep Dive into Cassandra por Brent Theisen
Deep Dive into CassandraDeep Dive into Cassandra
Deep Dive into Cassandra
Brent Theisen1.5K vistas
Database-Migration and -Upgrade with Transportable Tablespaces por Markus Flechtner
Database-Migration and -Upgrade with Transportable TablespacesDatabase-Migration and -Upgrade with Transportable Tablespaces
Database-Migration and -Upgrade with Transportable Tablespaces
Markus Flechtner1.3K vistas
Should I move my database to the cloud? por James Serra
Should I move my database to the cloud?Should I move my database to the cloud?
Should I move my database to the cloud?
James Serra9.2K vistas
Couchdb + Membase = Couchbase por iammutex
Couchdb + Membase = CouchbaseCouchdb + Membase = Couchbase
Couchdb + Membase = Couchbase
iammutex6.2K vistas

Similar a Data Warehouse with Fabric on data lakehouse

LoQutus: A deep-dive into Microsoft Power BI por
LoQutus: A deep-dive into Microsoft Power BILoQutus: A deep-dive into Microsoft Power BI
LoQutus: A deep-dive into Microsoft Power BILoQutus
831 vistas43 diapositivas
SQL Server Reporting Services Training por
SQL Server Reporting Services TrainingSQL Server Reporting Services Training
SQL Server Reporting Services TrainingRainer Stropek
2K vistas92 diapositivas
Uncovering SQL Server query problems with execution plans - Tony Davis por
Uncovering SQL Server query problems with execution plans - Tony DavisUncovering SQL Server query problems with execution plans - Tony Davis
Uncovering SQL Server query problems with execution plans - Tony DavisRed Gate Software
962 vistas63 diapositivas
Date dimension table - part II por
Date dimension table - part IIDate dimension table - part II
Date dimension table - part IIDirk Cludts
667 vistas15 diapositivas
Freeing Yourself from an RDBMS Architecture por
Freeing Yourself from an RDBMS ArchitectureFreeing Yourself from an RDBMS Architecture
Freeing Yourself from an RDBMS ArchitectureDavid Hoerster
998 vistas30 diapositivas
Introduction to PolyBase por
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBaseJames Serra
5K vistas24 diapositivas

Similar a Data Warehouse with Fabric on data lakehouse(20)

LoQutus: A deep-dive into Microsoft Power BI por LoQutus
LoQutus: A deep-dive into Microsoft Power BILoQutus: A deep-dive into Microsoft Power BI
LoQutus: A deep-dive into Microsoft Power BI
LoQutus831 vistas
SQL Server Reporting Services Training por Rainer Stropek
SQL Server Reporting Services TrainingSQL Server Reporting Services Training
SQL Server Reporting Services Training
Rainer Stropek2K vistas
Uncovering SQL Server query problems with execution plans - Tony Davis por Red Gate Software
Uncovering SQL Server query problems with execution plans - Tony DavisUncovering SQL Server query problems with execution plans - Tony Davis
Uncovering SQL Server query problems with execution plans - Tony Davis
Red Gate Software962 vistas
Date dimension table - part II por Dirk Cludts
Date dimension table - part IIDate dimension table - part II
Date dimension table - part II
Dirk Cludts667 vistas
Freeing Yourself from an RDBMS Architecture por David Hoerster
Freeing Yourself from an RDBMS ArchitectureFreeing Yourself from an RDBMS Architecture
Freeing Yourself from an RDBMS Architecture
David Hoerster998 vistas
Introduction to PolyBase por James Serra
Introduction to PolyBaseIntroduction to PolyBase
Introduction to PolyBase
James Serra5K vistas
Trivadis TechEvent 2016 Introduction to DataStax Enterprise (DSE) Graph by Gu... por Trivadis
Trivadis TechEvent 2016 Introduction to DataStax Enterprise (DSE) Graph by Gu...Trivadis TechEvent 2016 Introduction to DataStax Enterprise (DSE) Graph by Gu...
Trivadis TechEvent 2016 Introduction to DataStax Enterprise (DSE) Graph by Gu...
Trivadis644 vistas
Extreme Salesforce Data Volumes Webinar (with Speaker Notes) por Salesforce Developers
Extreme Salesforce Data Volumes Webinar (with Speaker Notes)Extreme Salesforce Data Volumes Webinar (with Speaker Notes)
Extreme Salesforce Data Volumes Webinar (with Speaker Notes)
Salesforce Developers2.5K vistas
[MongoDB.local Bengaluru 2018] Keynote por MongoDB
[MongoDB.local Bengaluru 2018] Keynote[MongoDB.local Bengaluru 2018] Keynote
[MongoDB.local Bengaluru 2018] Keynote
MongoDB347 vistas
Moving from SQL Server to MongoDB por Nick Court
Moving from SQL Server to MongoDBMoving from SQL Server to MongoDB
Moving from SQL Server to MongoDB
Nick Court14.4K vistas
Neo4j GraphTour New York_EY Presentation_Michael Moore por Neo4j
Neo4j GraphTour New York_EY Presentation_Michael MooreNeo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j348 vistas
Kevin Bengtson Portfolio por Kbengt521
Kevin Bengtson PortfolioKevin Bengtson Portfolio
Kevin Bengtson Portfolio
Kbengt521466 vistas
Your Roadmap for An Enterprise Graph Strategy por Neo4j
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j1.2K vistas
Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction por Mark Ginnebaugh
Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction
Microsoft SQL Server Analysis Services (SSAS) - A Practical Introduction
Mark Ginnebaugh4.3K vistas
Data science guide for PASS Summit 2014 por Mark Tabladillo
Data science guide for PASS Summit 2014Data science guide for PASS Summit 2014
Data science guide for PASS Summit 2014
Mark Tabladillo1.6K vistas
Creating a Single View Part 1: Overview and Data Analysis por MongoDB
Creating a Single View Part 1: Overview and Data AnalysisCreating a Single View Part 1: Overview and Data Analysis
Creating a Single View Part 1: Overview and Data Analysis
MongoDB2.2K vistas
Creating a Single View: Overview and Analysis por MongoDB
Creating a Single View: Overview and AnalysisCreating a Single View: Overview and Analysis
Creating a Single View: Overview and Analysis
MongoDB1.4K vistas
ADL/U-SQL Introduction (SQLBits 2016) por Michael Rys
ADL/U-SQL Introduction (SQLBits 2016)ADL/U-SQL Introduction (SQLBits 2016)
ADL/U-SQL Introduction (SQLBits 2016)
Michael Rys1.2K vistas

Más de Marco Pozzan

Data modelling for Power BI por
Data modelling for Power BIData modelling for Power BI
Data modelling for Power BIMarco Pozzan
16 vistas53 diapositivas
SlideModellingDataSat.pdf por
SlideModellingDataSat.pdfSlideModellingDataSat.pdf
SlideModellingDataSat.pdfMarco Pozzan
93 vistas51 diapositivas
Datamart.pdf por
Datamart.pdfDatamart.pdf
Datamart.pdfMarco Pozzan
23 vistas16 diapositivas
Datamart.pptx por
Datamart.pptxDatamart.pptx
Datamart.pptxMarco Pozzan
268 vistas15 diapositivas
Quanto mi costa SQL Pool Serverless Synapse por
Quanto mi costa SQL Pool Serverless SynapseQuanto mi costa SQL Pool Serverless Synapse
Quanto mi costa SQL Pool Serverless SynapseMarco Pozzan
110 vistas21 diapositivas
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-service por
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-servicePower BI: Introduzione ai dataflow e alla preparazione dei dati self-service
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-serviceMarco Pozzan
160 vistas42 diapositivas

Más de Marco Pozzan(20)

Data modelling for Power BI por Marco Pozzan
Data modelling for Power BIData modelling for Power BI
Data modelling for Power BI
Marco Pozzan16 vistas
SlideModellingDataSat.pdf por Marco Pozzan
SlideModellingDataSat.pdfSlideModellingDataSat.pdf
SlideModellingDataSat.pdf
Marco Pozzan93 vistas
Quanto mi costa SQL Pool Serverless Synapse por Marco Pozzan
Quanto mi costa SQL Pool Serverless SynapseQuanto mi costa SQL Pool Serverless Synapse
Quanto mi costa SQL Pool Serverless Synapse
Marco Pozzan110 vistas
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-service por Marco Pozzan
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-servicePower BI: Introduzione ai dataflow e alla preparazione dei dati self-service
Power BI: Introduzione ai dataflow e alla preparazione dei dati self-service
Marco Pozzan160 vistas
Microsoft Power BI fast with aggregation and composite model por Marco Pozzan
Microsoft Power BI fast with aggregation and composite modelMicrosoft Power BI fast with aggregation and composite model
Microsoft Power BI fast with aggregation and composite model
Marco Pozzan118 vistas
REAL TIME ANALYTICS INFRASTRUCTURE WITH AZURE por Marco Pozzan
REAL TIME ANALYTICS INFRASTRUCTURE WITH AZUREREAL TIME ANALYTICS INFRASTRUCTURE WITH AZURE
REAL TIME ANALYTICS INFRASTRUCTURE WITH AZURE
Marco Pozzan153 vistas
Big data analytics quanto vale e come sfruttarlo con stream analytics e power bi por Marco Pozzan
Big data analytics quanto vale e come sfruttarlo con stream analytics e power biBig data analytics quanto vale e come sfruttarlo con stream analytics e power bi
Big data analytics quanto vale e come sfruttarlo con stream analytics e power bi
Marco Pozzan182 vistas
What is in reality a DAX filter context por Marco Pozzan
What is in reality a DAX filter contextWhat is in reality a DAX filter context
What is in reality a DAX filter context
Marco Pozzan1.8K vistas
Azure saturday pn 2018 por Marco Pozzan
Azure saturday pn 2018Azure saturday pn 2018
Azure saturday pn 2018
Marco Pozzan122 vistas
Power B: Cleaning data por Marco Pozzan
Power B: Cleaning dataPower B: Cleaning data
Power B: Cleaning data
Marco Pozzan94 vistas
Power bi Clean and Modelling (SQL Saturday #675) por Marco Pozzan
Power bi Clean and Modelling  (SQL Saturday #675)Power bi Clean and Modelling  (SQL Saturday #675)
Power bi Clean and Modelling (SQL Saturday #675)
Marco Pozzan123 vistas
Power BI and business application platform por Marco Pozzan
Power BI and business application platformPower BI and business application platform
Power BI and business application platform
Marco Pozzan231 vistas

Último

Chapter 3b- Process Communication (1) (1)(1) (1).pptx por
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxayeshabaig2004
8 vistas30 diapositivas
Lack of communication among family.pptx por
Lack of communication among family.pptxLack of communication among family.pptx
Lack of communication among family.pptxahmed164023
14 vistas10 diapositivas
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf por
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdfDataScienceConferenc1
5 vistas54 diapositivas
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an... por
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...StatsCommunications
7 vistas26 diapositivas
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ... por
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...DataScienceConferenc1
10 vistas18 diapositivas
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx por
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptxDataScienceConferenc1
5 vistas15 diapositivas

Último(20)

Chapter 3b- Process Communication (1) (1)(1) (1).pptx por ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
ayeshabaig20048 vistas
Lack of communication among family.pptx por ahmed164023
Lack of communication among family.pptxLack of communication among family.pptx
Lack of communication among family.pptx
ahmed16402314 vistas
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf por DataScienceConferenc1
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf
[DSC Europe 23] Ales Gros - Quantum and Today s security with Quantum.pdf
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an... por StatsCommunications
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ... por DataScienceConferenc1
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Predrag Ilic & Simeon Rilling - From Data Lakes to Data Mesh ...
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx por DataScienceConferenc1
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx
[DSC Europe 23] Ivana Sesic - Use of AI in Public Health.pptx
Ukraine Infographic_22NOV2023_v2.pdf por AnastosiyaGurin
Ukraine Infographic_22NOV2023_v2.pdfUkraine Infographic_22NOV2023_v2.pdf
Ukraine Infographic_22NOV2023_v2.pdf
AnastosiyaGurin1.4K vistas
CRM stick or twist workshop por info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821714 vistas
Short Story Assignment by Kelly Nguyen por kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0120 vistas
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo... por DataScienceConferenc1
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
[DSC Europe 23][DigiHealth] Muthu Ramachandran AI and Blockchain Framework fo...
LIVE OAK MEMORIAL PARK.pptx por ms2332always
LIVE OAK MEMORIAL PARK.pptxLIVE OAK MEMORIAL PARK.pptx
LIVE OAK MEMORIAL PARK.pptx
ms2332always7 vistas
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ... por DataScienceConferenc1
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx por DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx por DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf por 10urkyr34
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
6498-Butun_Beyinli_Cocuq-Daniel_J.Siegel-Tina_Payne_Bryson-2011-259s.pdf
10urkyr347 vistas
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... por DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
Best Home Security Systems.pptx por mogalang
Best Home Security Systems.pptxBest Home Security Systems.pptx
Best Home Security Systems.pptx
mogalang9 vistas

Data Warehouse with Fabric on data lakehouse

  • 2. Marco Pozzan • Consulente e formatore in ambito business intelligence • Nel 2020 Fondatore e CTO start-up per analisi dati e per insurance data analytics per le compagnie assicurative Dal 2017 mi occupo di architetture big Data e in generale di tutta la proposizione data platform di Microsoft. • Docente all'Università di Pordenone per i corsi IFTS di analisi Big Data • Community Lead di 1nn0va (www.innovazionefvg.net) • MCP,MCSA,MCSE dal 2017 MCT e dal 2014 MVP per SQL Server e relatore in diverse conferenze sul tema. • marco.pozzan@regolofarm.com • @marcopozzan.it • www.marcopozzan.it • http://www.scoop.it/u/marco-pozzan • http://paper.li/marcopozzan/1422524394
  • 3. Data Warehouse with Fabric on data lakehouse
  • 12. Databricks recommends taking a layered approach to creating a single source of truth for enterprise data products. This architecture ensures atomicity, consistency, isolation, and durability as data passes through multiple levels of validations and transformations before being stored in a layout optimized for efficient analysis. It is important to note that this medallion architecture is not a substitute for other dimensional modeling techniques.The schemas and tables within each tier can take a variety of forms and degrees of normalization depending on the frequency and nature of data updates and downstream use cases for the data. Medallion Architecture
  • 13. Medallion Architecture I termini bronzo (grezzo), argento (convalidato) e oro (arricchito) descrivono la qualità dei dati in ciascuno di questi livelli.
  • 14. Demo
  • 15. Demo – token SAS generation ?sv=2020-02-10&st=2023-09-29T04%3A46%3A14Z&se=2023-10- 29T05%3A46%3A00Z&sr=c&sp=rle&sig=uds%2BXKBHBBkelOkOFjeOblWlxQ5vPWBk0unBtysXgeY%3D
  • 16. Demo – Shortcut configuration for bronze layer (part 1) https://dataengineerrowdata.dfs.core.windows.net /1nn0vasat
  • 17. Demo – Shortcut configuration for bronze layer (part 2) • https://dataengineerrowdata.dfs.core.windows.net/1nn0vasat • LinkEsternoWWI
  • 18. Demo – Shortcut configuration for bronze layer (part 3) • Ext_raw_data_WWI • /1nn0vasat/Files/
  • 19. Demo – Load silver layer with Notebook
  • 20. Demo – Load silver layer with Notebook
  • 21. Demo – Test table SELECT YEAR(SO.OrderDate) AS OrderDateYear, COUNT(SO.OrderDate) AS TotalOrderCount FROM [DWH].[dbo].[silver_salesorder] SO GROUP BY YEAR(SO.OrderDate); SELECT ISNULL(C.ColorName,'No Colour') AS ColourName, SUM(cast(SOL.Quantity as int)) AS TotalOrderLineQuantity, SUM(cast(SOL.UnitPrice as numeric)) AS TotalOrderLineUnitPrice FROM [DWH].[dbo].[silver_salesorderline] SOL INNER JOIN [DWH].[dbo].[silver_stockitems] SI ON SI.StockItemID = SOL.StockItemID LEFT JOIN [DWH].[dbo].[silver_colors] C ON C.ColorID = SI.ColorID GROUP BY ISNULL(C.ColorName,'No Colour’); SELECT YEAR(SO.OrderDate) AS OrderDateYear, SC.SupplierCategoryName, SUM(cast(SOL.Quantity as int)) AS TotalOrderLineQuantity, SUM(cast(SOL.UnitPrice as numeric)) AS TotalOrderLineUnitPrice FROM [DWH].[dbo].[silver_salesorderline] SOL INNER JOIN [DWH].[dbo].[silver_salesorder] SO ON SO.OrderID = SOL.OrderID INNER JOIN [DWH].[dbo].[silver_stockitems] SI ON SI.StockItemID = SOL.StockItemID INNER JOIN [DWH].[dbo].[silver_suppliers] S ON SI.SupplierID = S.SupplierID INNER JOIN [DWH].[dbo].[silver_categories] SC ON SC.SupplierCategoryID = S.SupplierCategoryID GROUP BY YEAR(SO.OrderDate), SC.SupplierCategoryName;
  • 22. Demo – Load silver layer with DataFlow (Part 1)
  • 23. Demo – Load silver layer with DataFlow (Part 1) For each table i can set sink into deltalake
  • 24. Demo – Load silver layer with Pipeline (Part 1 define variables) ["Countries","DeliveryMethods","People","StateProvince s","SupplierCategories","Suppliers","BuyingGroups","Cu stomerCategories","Customers","Colors","PackageTypes", "StockItems","Cities","Date"] Set variables with this array
  • 25. Demo – Load silver layer with Pipeline (Part 2 copy activity source) @variables('FileName') @concat(item(),'.csv')
  • 26. Demo – Load silver layer with Pipeline (Part 3 copy activity sink) @concat('silver_' ,item())
  • 27. Demo – Load silver layer with Pipeline (Part 4 copy activity source) Ext_raw_data_WWI/SalesOrder/*
  • 28. Demo – Load silver layer with Pipeline (Part 5 copy activity sink)
  • 29. Demo – Load silver layer with Pipeline (Part 6 copy activity source) Ext_raw_data_WWI/SalesOrderLine/*
  • 30. Demo – Load silver layer with Pipeline (Part 7 copy activity sink)
  • 31. Demo – Load gold layer with sql queries
  • 32. Demo – Load gold layer with sql queries
  • 33. Demo – Create Serving Layer