SlideShare a Scribd company logo
1 of 70
The Exponential Functions
The Exponential Functions
The meaning positive integral exponents such as x2 is clear.
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
The Exponential Functions
K
N
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 =
8 =
The Exponential Functions
K
N
3
2
3
2
8 –2 =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 =
The Exponential Functions
K
N
3
2
3
2
8 –2 =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 =
82
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
8 –2 = =
8 = ( ) = 1/4
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
8 –2 = =
8 = ( ) = 1/4
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 =
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 =
3
2
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 =
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 = 10
61
50
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
b0 = 1 b–K =
b = ( b ) b = ( )
K
N
K N
bK
1
K
N
 b
1
Example A.
80 = 1
8 = (  8 ) = 4
3 2
82
1
3
2
 8
1
64
1
The Exponential Functions
K
N
3
2
3
2
Decimal exponents are well defined since decimals may be
represented as reduced fractions.
b. 101.22 = 10 = ( 10 )  16.59586….
61
50
50 61
8 –2 = =
8 = ( ) = 1/4
Example B.
a. 91.50 = 9 = (9 ) = 27
3
2
3
The meaning positive integral exponents such as x2 is clear.
Below are the rules for other special exponents:
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159..
10 
Example C.
The Exponential Functions
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10 
Example C.

The Exponential Functions
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10
Example C.
31
10

The Exponential Functions
≈1258.9..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10
Example C.
31
10
314
100

The Exponential Functions
≈1258.9.. ≈1380.3..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
The most used exponential functions are
y = 10x, y = ex and y = 2x.
For a real-number-exponent such as , we approximate the
real number with fractions then use the fractional powers to
approximate the result.
  3.14159.. 3.1 3.14 3.141 3.1415
10  10 10 10 10 10≈1385.45..
Example C.
31
10
314
100
3141
1000
31415
10000

The Exponential Functions
Hence exponential functions or functions of the form
f(x) = bx (b > 0 and b  1) are defined for all real numbers x.
≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
Exponential functions show up in finance, bio science,
computer science and physical sciences.
The most used exponential functions are
y = 10x, y = ex and y = 2x.
Let’s use $ growth as applications below.
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
Compound Interest
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01)
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
after 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01)
= 1000(1 + 0.01)4 = $1040.60
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Example D. We deposit $1,000 in an account that gives
1% interest compounded monthly. How much money is there
after 1 month? 2 months? 3 months? and after 4 months?
After 1 month: 1000(1 + 0.01) = $1010.
After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01)
= 1000(1 + 0.01)2 = $1020.10
After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01)
= 1000(1 + 0.01)3 = $1030.30
After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01)
= 1000(1 + 0.01)4 = $1040.60
Compound Interest
Let P = principal, i = (periodic) interest rate, A = accumulation.
After 1 period A = P(1 + i)
After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
Continue the pattern, after N periods, we obtain the
exponential periodic-compound formula (PINA): P(1 + i)N = A.
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
The PINA Formula (Periodic Interest)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
0 1 2 3 Nth periodN–1
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i)
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N =
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
so by PINA, there will be 1000(1 + 0.01) 720
Compound Interest
Let P = principal
i = (periodic) interest rate,
N = number of periods
A = accumulation
then P(1 + i) N = A
The PINA Formula (Periodic Interest)
We use the following time line to see what is happening.
P
0 1 2 3 Nth periodN–1
Rule: Multiply (1 + i) each period forward
P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
Example E. $1,000 is in an account that has a monthly interest
rate of 1%. How much will be there after 60 years?
We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
so by PINA, there will be 1000(1 + 0.01) 720 = $1,292,376.71
after 60 years.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year.
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12.
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000
Compound Interest
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,0000.09
12
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,0000.09
12 or
(1 + ) 480
P = 250,000
0.09
12
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
Example F. We open an account with annual rate r = 9%,
compounded monthly, i.e. 12 times a year. After 40 years the
total return is $250,000, what was the initial principal?
We have r = 9% = 0.09 for one year,
and f = 12 is the number of times of compounding in one year,
so the periodic or monthly rate i = 0.09/12. After 40 years, i.e.
N = 40(12) = 480 months the return A = 250,000, so by PINA:
Compound Interest
P (1 + ) 480 = 250,0000.09
12 or
(1 + ) 480
P = 250,000
0.09
12
P = $6,923.31
by calculator
Hence the initial deposit is $6,923.31.
In practice, compound interests are usually quoted in
annual interest rate r and the frequency f, the number of times
of compounding in one year, so the periodic rate i = .
r
f
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Here is a table of y = 2x for plotting its graph.
(0,1)
(1,2)
(2,4)
(3,8)
(-1,1/2)(-2,1/4)
y=2x
Graph of y = 2x
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Here is a table of y = 2x for plotting its graph.
(0,1)
(1,2)
(2,4)
(3,8)
(-1,1/2)(-2,1/4)
y=2x
Graph of y = 2x
x -4 -3 -2 -1 0 1 2 3 4
y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16
Graphs of the Exponential Functions
Graph of y = bx where b>1
Here is a table of y = 2x for plotting its graph.
This is the shape of the graphs of y = bx for b > 1.
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
(0,1)
(-1,2)
(-2,4)
(-3,8)
(1,1/2) (2,1/4)
y= (½)x
Graph of y = (½)x
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
(0,1)
(-1,2)
(-2,4)
(-3,8)
(1,1/2) (2,1/4)
y= (½)x
Graph of y = bx where 0<b<1Graph of y = (½)x
x -4 -3 -2 -1 0 1 2 3 4
y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16
Here is a table of y = (½)x for plotting its graph.
Graphs of the Exponential Functions
This is the shape of the graphs of y = bx for b < 1.
The graphs shown here are the different returns with r = 20%
with different compounding frequencies.
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
The graphs shown here are the different returns with r = 20%
with different compounding frequencies. We observe that
I. the more frequently we compound, the bigger the return
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
The graphs shown here are the different returns with r = 20%
with different compounding frequencies. We observe that
I. the more frequently we compound, the bigger the return
II. but the returns do not go above the blue-line
the continuous compound return, which is the next topic.
Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia)
Compound Interest
Compound Interest
B. Given the monthly compounded periodic rate i, find the
principal needed to obtain a return of $1,000 after the given
amount the time.
1. i = 1%, time = 60 months.
Exercise A. Given the monthly compounded periodic rate i and
the amount the time, find the return with a principal of $1,000.
2. i = 1%, time = 60 years.
3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months.
5. i = 1¼ %, time = 6 months. 6. i = 1¼ %, time = 5½ years.
.7. i = 3/8%, time = 52 months. 8. i = 2/3%, time = 27 months.
1. i = 1%, time = 60 months. 2. i = 1%, time = 60 years.
3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months.
5. i = 1¼ %, time = 60 months. 6. i = 1¼ %, time = 60 years.
7. i = 3/8%, time = 60 years 8. i = 2/3%, time = 60 months.
Compound Interest
D. Given the annual rate r, convert it into the monthly
compounded periodic rate i and find the principal needed to
obtain $1,000 after the given amount the time.
1. r = 1%, time = 60 months.
C. Given the annual rate r, convert it into the monthly
compounded periodic rate i and find the return with a principal
of $1,000 after the given amount the time.
2. r = 1%, time = 60 years.
3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months.
1. r = 1%, time = 60 months. 2. r = 1%, time = 60 years.
3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months.
5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years.
.7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years.
.7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
Exercise B.
1. 𝐴 ≈ 1816.7
(Answers to the odd problems) Exercise A.
3. 𝐴 ≈ 36271.41 5. 𝐴 ≈ 1077.39
7. 𝐴 ≈ 1214.87
1. P ≈ 550.45 3. P ≈ 27.57 5. P ≈ 474.57
7. P ≈ 67.55
1. 𝐴 ≈ 1051.25
Exercise C.
3. 𝐴 ≈ 6036.07 5. 𝐴 ≈ 1006.27
7. 𝐴 ≈ 1016.39
Exercise D.
1. 𝑃 ≈ 951.25 3. 𝑃 ≈ 165.67 5. 𝑃 ≈ 993.78
7. 𝑃 ≈ 983.88
Compound Interest

More Related Content

What's hot

4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and expmath260
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-xmath123b
 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equationsmath123c
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp xmath260
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equationsmath260
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functionsmath265
 
1 4 cancellation
1 4 cancellation1 4 cancellation
1 4 cancellationmath123b
 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulasmath123a
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations xmath260
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressionsalg1testreview
 
24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina xmath260
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functionsmath123c
 
4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina xmath260
 
4 6multiplication formulas
4 6multiplication formulas4 6multiplication formulas
4 6multiplication formulasmath123a
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressionsmath123a
 
0. exponents y
0. exponents y0. exponents y
0. exponents ymath123c
 

What's hot (20)

4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and exp
 
4 5 fractional exponents-x
4 5 fractional exponents-x4 5 fractional exponents-x
4 5 fractional exponents-x
 
3.2 more on log and exponential equations
3.2 more on log and exponential equations3.2 more on log and exponential equations
3.2 more on log and exponential equations
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
43literal equations
43literal equations43literal equations
43literal equations
 
27 calculation with log and exp x
27 calculation with log and exp x27 calculation with log and exp x
27 calculation with log and exp x
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
 
1 4 cancellation
1 4 cancellation1 4 cancellation
1 4 cancellation
 
5 6 substitution and factoring formulas
5 6 substitution and factoring formulas5 6 substitution and factoring formulas
5 6 substitution and factoring formulas
 
28 more on log and exponential equations x
28 more on log and exponential equations x28 more on log and exponential equations x
28 more on log and exponential equations x
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x24 exponential functions and periodic compound interests pina x
24 exponential functions and periodic compound interests pina x
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functions
 
4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x4.2 exponential functions and periodic compound interests pina x
4.2 exponential functions and periodic compound interests pina x
 
4 6multiplication formulas
4 6multiplication formulas4 6multiplication formulas
4 6multiplication formulas
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
 
43exponents
43exponents43exponents
43exponents
 
0. exponents y
0. exponents y0. exponents y
0. exponents y
 

Viewers also liked

Review Of Surface Area
Review Of Surface AreaReview Of Surface Area
Review Of Surface Areaetvwiki
 
Surface area
Surface areaSurface area
Surface areacesams
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volumeRoyB
 
Volumes And Surface Area
Volumes And Surface AreaVolumes And Surface Area
Volumes And Surface AreaSteve Bishop
 
61 exponential functions
61 exponential functions61 exponential functions
61 exponential functionsmath126
 
Exponential functions
Exponential functionsExponential functions
Exponential functionsomar_egypt
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functionsitutor
 
Surface area and volume for 9th class maths
Surface area and volume for 9th class mathsSurface area and volume for 9th class maths
Surface area and volume for 9th class mathsAyush Vashistha
 

Viewers also liked (10)

Review Of Surface Area
Review Of Surface AreaReview Of Surface Area
Review Of Surface Area
 
Surface area
Surface areaSurface area
Surface area
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volume
 
Shape & Space
Shape & SpaceShape & Space
Shape & Space
 
Volumes And Surface Area
Volumes And Surface AreaVolumes And Surface Area
Volumes And Surface Area
 
61 exponential functions
61 exponential functions61 exponential functions
61 exponential functions
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Exponential Functions
Exponential FunctionsExponential Functions
Exponential Functions
 
Exponential functions
Exponential functionsExponential functions
Exponential functions
 
Surface area and volume for 9th class maths
Surface area and volume for 9th class mathsSurface area and volume for 9th class maths
Surface area and volume for 9th class maths
 

Similar to 4.2 exponential functions and compound interests

6.1 Exponential Functions
6.1 Exponential Functions6.1 Exponential Functions
6.1 Exponential Functionssmiller5
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdfVanhoaTran2
 
4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina tmath260
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functionssmiller5
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfTGBSmile
 
8.2 Exploring exponential models
8.2 Exploring exponential models8.2 Exploring exponential models
8.2 Exploring exponential modelsswartzje
 
66 calculation with log and exp
66 calculation with log and exp66 calculation with log and exp
66 calculation with log and expmath126
 
MATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptxMATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptxJoelynRubio1
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptYohannesAndualem1
 
01.number systems
01.number systems01.number systems
01.number systemsrasha3
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdfIrfan Khan
 

Similar to 4.2 exponential functions and compound interests (20)

6.1 Exponential Functions
6.1 Exponential Functions6.1 Exponential Functions
6.1 Exponential Functions
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
maths_formula_sheet.pdf
maths_formula_sheet.pdfmaths_formula_sheet.pdf
maths_formula_sheet.pdf
 
4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t4.2 exponential functions and periodic compound interests pina t
4.2 exponential functions and periodic compound interests pina t
 
4.2 Exponential Functions
4.2 Exponential Functions4.2 Exponential Functions
4.2 Exponential Functions
 
P7
P7P7
P7
 
Determinants
DeterminantsDeterminants
Determinants
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
8.2 Exploring exponential models
8.2 Exploring exponential models8.2 Exploring exponential models
8.2 Exploring exponential models
 
66 calculation with log and exp
66 calculation with log and exp66 calculation with log and exp
66 calculation with log and exp
 
MATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptxMATH-412-TUMANDAY Report in Mat-Math.pptx
MATH-412-TUMANDAY Report in Mat-Math.pptx
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.ppt
 
Chapter002math
Chapter002mathChapter002math
Chapter002math
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
Takue
TakueTakue
Takue
 
Number system
Number systemNumber system
Number system
 
Vivek
VivekVivek
Vivek
 
01.number systems
01.number systems01.number systems
01.number systems
 
Curve_Fitting.pdf
Curve_Fitting.pdfCurve_Fitting.pdf
Curve_Fitting.pdf
 

More from math260

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptxmath260
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptxmath260
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptxmath260
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions xmath260
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yzmath260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions xmath260
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts xmath260
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas ymath260
 
19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) xmath260
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses xmath260
 
17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-xmath260
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient xmath260
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs xmath260
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions xmath260
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions xmath260
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions xmath260
 

More from math260 (20)

36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx36 Matrix Algebra-x.pptx
36 Matrix Algebra-x.pptx
 
35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx35 Special Cases System of Linear Equations-x.pptx
35 Special Cases System of Linear Equations-x.pptx
 
18Ellipses-x.pptx
18Ellipses-x.pptx18Ellipses-x.pptx
18Ellipses-x.pptx
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
10.5 more on language of functions x
10.5 more on language of functions x10.5 more on language of functions x
10.5 more on language of functions x
 
1 exponents yz
1 exponents yz1 exponents yz
1 exponents yz
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 
8 inequalities and sign charts x
8 inequalities and sign charts x8 inequalities and sign charts x
8 inequalities and sign charts x
 
7 sign charts of factorable formulas y
7 sign charts of factorable formulas y7 sign charts of factorable formulas y
7 sign charts of factorable formulas y
 
19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x19 more parabolas a&amp; hyperbolas (optional) x
19 more parabolas a&amp; hyperbolas (optional) x
 
18 ellipses x
18 ellipses x18 ellipses x
18 ellipses x
 
17 conic sections circles-x
17 conic sections circles-x17 conic sections circles-x
17 conic sections circles-x
 
16 slopes and difference quotient x
16 slopes and difference quotient x16 slopes and difference quotient x
16 slopes and difference quotient x
 
15 translations of graphs x
15 translations of graphs x15 translations of graphs x
15 translations of graphs x
 
14 graphs of factorable rational functions x
14 graphs of factorable rational functions x14 graphs of factorable rational functions x
14 graphs of factorable rational functions x
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
12 graphs of second degree functions x
12 graphs of second degree functions x12 graphs of second degree functions x
12 graphs of second degree functions x
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
9 the basic language of functions x
9 the basic language of functions x9 the basic language of functions x
9 the basic language of functions x
 

Recently uploaded

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 

Recently uploaded (20)

presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 

4.2 exponential functions and compound interests

  • 2. The Exponential Functions The meaning positive integral exponents such as x2 is clear.
  • 3. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 The Exponential Functions K N The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 4. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 8 = The Exponential Functions K N 3 2 3 2 8 –2 = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 5. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = The Exponential Functions K N 3 2 3 2 8 –2 = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 6. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = 82 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 7. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 8. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 8 –2 = = 8 = ( ) = 1/4 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 9. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. 8 –2 = = 8 = ( ) = 1/4 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 10. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 11. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = 3 2 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 12. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 13. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 10 61 50 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 14. b0 = 1 b–K = b = ( b ) b = ( ) K N K N bK 1 K N  b 1 Example A. 80 = 1 8 = (  8 ) = 4 3 2 82 1 3 2  8 1 64 1 The Exponential Functions K N 3 2 3 2 Decimal exponents are well defined since decimals may be represented as reduced fractions. b. 101.22 = 10 = ( 10 )  16.59586…. 61 50 50 61 8 –2 = = 8 = ( ) = 1/4 Example B. a. 91.50 = 9 = (9 ) = 27 3 2 3 The meaning positive integral exponents such as x2 is clear. Below are the rules for other special exponents:
  • 15. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 10  Example C. The Exponential Functions
  • 16. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  Example C.  The Exponential Functions
  • 17. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 Example C. 31 10  The Exponential Functions ≈1258.9..
  • 18. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 Example C. 31 10 314 100  The Exponential Functions ≈1258.9.. ≈1380.3..
  • 19. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 20. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 21. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1..
  • 22. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences.
  • 23. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences. The most used exponential functions are y = 10x, y = ex and y = 2x.
  • 24. For a real-number-exponent such as , we approximate the real number with fractions then use the fractional powers to approximate the result.   3.14159.. 3.1 3.14 3.141 3.1415 10  10 10 10 10 10≈1385.45.. Example C. 31 10 314 100 3141 1000 31415 10000  The Exponential Functions Hence exponential functions or functions of the form f(x) = bx (b > 0 and b  1) are defined for all real numbers x. ≈1258.9.. ≈1380.3.. ≈1383.5.. ≈1385.1.. Exponential functions show up in finance, bio science, computer science and physical sciences. The most used exponential functions are y = 10x, y = ex and y = 2x. Let’s use $ growth as applications below.
  • 25. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? Compound Interest
  • 26. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 27. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 28. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 29. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 30. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i)
  • 31. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) after 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
  • 32. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2
  • 33. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
  • 34. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01) = 1000(1 + 0.01)4 = $1040.60 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3
  • 35. Example D. We deposit $1,000 in an account that gives 1% interest compounded monthly. How much money is there after 1 month? 2 months? 3 months? and after 4 months? After 1 month: 1000(1 + 0.01) = $1010. After 2 months: 1010(1 + 0.01) = 1000(1 + 0.01)(1 + 0.01) = 1000(1 + 0.01)2 = $1020.10 After 3 months: 1020(1 + 0.01) = 1000(1 + 0.01)2(1 + 0.01) = 1000(1 + 0.01)3 = $1030.30 After 4 months: 1030(1 + 0.01) = 1000(1 + 0.01)3(1 + 0.01) = 1000(1 + 0.01)4 = $1040.60 Compound Interest Let P = principal, i = (periodic) interest rate, A = accumulation. After 1 period A = P(1 + i) After 2 periods A = P(1 + i)(1 + i) = P(1 + i)2 After 3 periods A = P(1 + i)2(1 + i) = P(1 + i)3 Continue the pattern, after N periods, we obtain the exponential periodic-compound formula (PINA): P(1 + i)N = A.
  • 36. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation The PINA Formula (Periodic Interest)
  • 37. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest)
  • 38. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. 0 1 2 3 Nth periodN–1
  • 39. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward
  • 40. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i)
  • 41. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2
  • 42. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3
  • 43. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1
  • 44. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N
  • 45. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years?
  • 46. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N =
  • 47. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months
  • 48. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months so by PINA, there will be 1000(1 + 0.01) 720
  • 49. Compound Interest Let P = principal i = (periodic) interest rate, N = number of periods A = accumulation then P(1 + i) N = A The PINA Formula (Periodic Interest) We use the following time line to see what is happening. P 0 1 2 3 Nth periodN–1 Rule: Multiply (1 + i) each period forward P(1 + i) P(1 + i) 2 P(1 + i) 3 P(1 + i) N - 1 P(1 + i) N Example E. $1,000 is in an account that has a monthly interest rate of 1%. How much will be there after 60 years? We have P = $1,000, i = 1% = 0.01, N = 60 *12 = 720 months so by PINA, there will be 1000(1 + 0.01) 720 = $1,292,376.71 after 60 years.
  • 50. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 51. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 52. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 53. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 54. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 55. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000 Compound Interest In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 56. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,0000.09 12 In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 57. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,0000.09 12 or (1 + ) 480 P = 250,000 0.09 12 In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 58. Example F. We open an account with annual rate r = 9%, compounded monthly, i.e. 12 times a year. After 40 years the total return is $250,000, what was the initial principal? We have r = 9% = 0.09 for one year, and f = 12 is the number of times of compounding in one year, so the periodic or monthly rate i = 0.09/12. After 40 years, i.e. N = 40(12) = 480 months the return A = 250,000, so by PINA: Compound Interest P (1 + ) 480 = 250,0000.09 12 or (1 + ) 480 P = 250,000 0.09 12 P = $6,923.31 by calculator Hence the initial deposit is $6,923.31. In practice, compound interests are usually quoted in annual interest rate r and the frequency f, the number of times of compounding in one year, so the periodic rate i = . r f
  • 59. x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Here is a table of y = 2x for plotting its graph.
  • 60. (0,1) (1,2) (2,4) (3,8) (-1,1/2)(-2,1/4) y=2x Graph of y = 2x x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Here is a table of y = 2x for plotting its graph.
  • 61. (0,1) (1,2) (2,4) (3,8) (-1,1/2)(-2,1/4) y=2x Graph of y = 2x x -4 -3 -2 -1 0 1 2 3 4 y=2x 1/16 1/8 1/4 1/2 1 2 4 8 16 Graphs of the Exponential Functions Graph of y = bx where b>1 Here is a table of y = 2x for plotting its graph. This is the shape of the graphs of y = bx for b > 1.
  • 62. x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions
  • 63. (0,1) (-1,2) (-2,4) (-3,8) (1,1/2) (2,1/4) y= (½)x Graph of y = (½)x x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions
  • 64. (0,1) (-1,2) (-2,4) (-3,8) (1,1/2) (2,1/4) y= (½)x Graph of y = bx where 0<b<1Graph of y = (½)x x -4 -3 -2 -1 0 1 2 3 4 y=(½)x 16 8 4 2 1 1/2 1/4 1/8 1/16 Here is a table of y = (½)x for plotting its graph. Graphs of the Exponential Functions This is the shape of the graphs of y = bx for b < 1.
  • 65. The graphs shown here are the different returns with r = 20% with different compounding frequencies. Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 66. The graphs shown here are the different returns with r = 20% with different compounding frequencies. We observe that I. the more frequently we compound, the bigger the return Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 67. The graphs shown here are the different returns with r = 20% with different compounding frequencies. We observe that I. the more frequently we compound, the bigger the return II. but the returns do not go above the blue-line the continuous compound return, which is the next topic. Compounded return on $1,000 with annual interest rate r = 20% (Wikipedia) Compound Interest
  • 68. Compound Interest B. Given the monthly compounded periodic rate i, find the principal needed to obtain a return of $1,000 after the given amount the time. 1. i = 1%, time = 60 months. Exercise A. Given the monthly compounded periodic rate i and the amount the time, find the return with a principal of $1,000. 2. i = 1%, time = 60 years. 3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months. 5. i = 1¼ %, time = 6 months. 6. i = 1¼ %, time = 5½ years. .7. i = 3/8%, time = 52 months. 8. i = 2/3%, time = 27 months. 1. i = 1%, time = 60 months. 2. i = 1%, time = 60 years. 3. i = ½ %, time = 60 years 4. i = ½ %, time = 60 months. 5. i = 1¼ %, time = 60 months. 6. i = 1¼ %, time = 60 years. 7. i = 3/8%, time = 60 years 8. i = 2/3%, time = 60 months.
  • 69. Compound Interest D. Given the annual rate r, convert it into the monthly compounded periodic rate i and find the principal needed to obtain $1,000 after the given amount the time. 1. r = 1%, time = 60 months. C. Given the annual rate r, convert it into the monthly compounded periodic rate i and find the return with a principal of $1,000 after the given amount the time. 2. r = 1%, time = 60 years. 3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months. 1. r = 1%, time = 60 months. 2. r = 1%, time = 60 years. 3. r = 3 %, time = 60 years 4. r = 3½ %, time = 60 months. 5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years. .7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months. 5. r = 1¼ %, time = 6 months. 6. r = 1¼ %, time = 5½ years. .7. r = 3/8%, time = 52 months. 8. r = 2/3%, time = 27 months.
  • 70. Exercise B. 1. 𝐴 ≈ 1816.7 (Answers to the odd problems) Exercise A. 3. 𝐴 ≈ 36271.41 5. 𝐴 ≈ 1077.39 7. 𝐴 ≈ 1214.87 1. P ≈ 550.45 3. P ≈ 27.57 5. P ≈ 474.57 7. P ≈ 67.55 1. 𝐴 ≈ 1051.25 Exercise C. 3. 𝐴 ≈ 6036.07 5. 𝐴 ≈ 1006.27 7. 𝐴 ≈ 1016.39 Exercise D. 1. 𝑃 ≈ 951.25 3. 𝑃 ≈ 165.67 5. 𝑃 ≈ 993.78 7. 𝑃 ≈ 983.88 Compound Interest