SlideShare una empresa de Scribd logo
1 de 7
LA GRAVEDAD EN BOGOTÁ
Murcia Laura, Malagon Angye, Camargo Maryury, Quilaguy Wilmer
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS
Facultad de ingeniería
facingenieria@udistrital.edu.co
Bogotá D.C Colombia
Resumen
En este trabajo queremos hallar la gravedad en nuestra ciudad (Bogotá), para esto
utilizamos una esfera que por medio de un hilo logra oscilar armónicamente con
características similares a las de un péndulo; respecto a esto tomamos ciertos datos con
el fin de calcular el periodo de oscilación para llegar a determinar la gravedad; siguiendo
los pasos puntualmente logramos llegar al siguiente margen de error: 0.13%, de manera
que logramos acercarnos mucho al valor general de la gravedad en la tierra que es de
9.81
𝑚
𝑠𝑒𝑔2
.
I. Introducción
Se denomina péndulo simple (o péndulo matemático) a un punto material
suspendido de un hilo inextensible y sin peso, que puede oscilar en torno a una
posición de equilibrio. La distancia del punto pesado al punto de suspensión se
denomina longitud del péndulo simple. En la práctica se considera un péndulo
simple un cuerpo de reducidas dimensiones suspendido de un hilo y de masa
despreciable comparada con la del cuerpo. El péndulo matemático describe un
movimiento armónico simple en torno a su posición de equilibrio, y su periodo de
oscilación alrededor de dicha posición está dado por la siguiente ecuación: [1]
T = 2 π √
𝑳
𝒈
Podemos definir a la gravedad como la Fuerza que sobre todos los cuerpos
ejerce la tierra hacia su centro cuyo valor normal es de 9.81, pero esta definición
no nos satisface de una manera completa, por ello buscamos la teoría general de
la relatividad, que fue desarrollada por el Físico Alemán (nacionalizado
Estadounidense), Albert Einstein, en donde se dio respuesta a la pregunta el por
qué se involucran dos conceptos por completo diferentes: Una fuerza de atracción
gravitacional mutua entre dos masas y la resistencia de una sola masa a ser
acelerada. Esta pregunta desconcertó a Newton y a muchos otros científicos,
hasta en 1916 cuando Einstein publico su teoría. [2]
Desde el punto de vista de Einstein, el comportamiento doble de la masa era
evidencia de una muy íntima y básica conexión entre los dos comportamientos.
Los dos postulados de la teoría general de la relatividad de Einstein son:
1. Todas las leyes de la naturaleza tienen la misma forma para observadores en
cualquier marco de referencia acelerados o no.
2. En la cercanía de cualquier punto, un campo gravitacional es equivalente a un
marco de referencia acelerado en ausencia de efectos gravitacionales.
Un interesante efecto pronosticado por la teoría general es que el tiempo es
alterado por la gravedad. Un reloj en presencia de gravedad funciona más
lentamente que uno colocado donde la gravedad es insignificante. [3]
El segundo postulado sugiere que un campo gravitacional puede ser
“transformado” en cualquier punto si se escoge un apropiado marco de referencia
acelerado: uno en caída libre. Einstein ideo un ingenioso método para descubrir la
aceleración necesaria para hacer “desaparecer” el campo gravitacional. Especifico
un concepto, la curvatura del espacio-tiempo, que describe el efecto gravitacional
de todo punto. De hecho, la curvatura del espacio-tiempo sustituye por completo la
teoría gravitacional de Newton. Según Einstein, no hay nada como la fuerza
gravitacional. Mas bien, la presencia de una masa produce alrededor de ella una
curvatura espacio-tiempo, y esta curvatura dicta la trayectoria del espacio-tiempo
que deben seguir todos los cuerpos en caída libre. [4]
II. Método Experimental
Materiales necesarios:
 Soporte universal
 Pelota
 Cuerda
 Metro
 Cronometro
Luego de obtener los materiales que nombramos anteriormente, realizamos los siguientes
pasos:
 Se amarra un extremo de la cuerda a la pelota, y el otro extremo a la parte
superior del soporte.
 Se mide el largo de la cuerda o hilo.
 Se sujeta la pelota desde un punto cercano al soporte de manera que quede
alineado respecto al hilo y se suelta, en este instante otra persona con el
cronometro lleva el tiempo que tarda la pelota en realizar 10 oscilaciones.
 Se repiten los anteriores pasos (10 veces) cada vez acortando un poco más la
cuerda.
 Se realiza una tabla de datos y se organiza de la siguiente manera:
x y
Dato1
(Longitud)
Dato2
(periodo)
En este caso el periodo es la variable Y, ya que depende de la longitud quien en este
caso será la variable X.
 A continuación en una hoja de papel milimetrado se ubican los puntos resultantes
(que se pueden observar en la tabla) en los ejes “x” y “y” respectivamente y se
traza una línea (lo más recta posible) sobre los puntos de extremo a extremo.
 Por último se procede a tomar dos puntos sobre la recta para hallar la respectiva
pendiente con la fórmula:
T = 2 π √
𝑳
𝒈
Despejando la anterior formula nos queda:
G = 4 π * L
T2
Con el resultado de esta operación se halla el porcentaje de error de la actividad de la
siguiente manera:
Valor real (π) - Valor experimental x 100 = % de error
Valor real (π)
Según este porcentaje de error se logra verificar la veracidad de la actividad, este
resultado será satisfactorio si y solo si el resultado es menor a un 5 %.
9.790
III. Cálculos y resultados
Siguiendo las indicaciones mencionadas en el método experimental llegamos a los
siguientes resultados:
1. Tabla de valores
Longitud ( m ) Periodo (m/seg2
)
1.02 2.028
0.947 1.953
0.86 1.882
0.774 1.819
0.70 1.7
0.61 1.581
0.525 1.527
0.40 1.266
0.34 1.244
0.245 1.010
2. Grafica (Anexo)
3. Pendiente
 Tomamos el punto
(1.02, 2.028)
G = 4 π * L
T2
G= 4(π2
)*1.02
2.0282
G =
4. Margen de error
9.803 - 9.790 x 100 %
9.803
0.13 %Obtuvimos:
IV. Análisis de resultadosy discusión
Respecto al margen de error en este caso ha resultado ser del 0.13 %; teniendo
en cuenta lo que se mostró en el método experimental ya que ha sido menor a un
5%; demostramos que la actividad se llevó a cabo satisfactoriamente.
En la gráfica que se encuentra anexa a este trabajo se logra ver que la resultante
se aproximó a una línea recta lo que nos indica que los datos de la longitud y del
periodo, llevan una relación, y al realizar los procedimientos correspondientes
obtenemos la gravedad de nuestra ciudad.
V. Conclusiones
Se le llama fuerza de gravedad a aquella fuerza con que la tierra atrae a cierto
cuerpo cuando este cae; en este experimento logramos deducir a partir de
materiales muy sencillos la estrecha relación que tienen aspectos como la masa,
el peso y la longitud en el momento de realizar los cálculos que llevan a encontrar
el valor de la gravedad; como por ejemplo:
 El tiempo de oscilación depende de la longitud del péndulo y de la gravedad
del lugar.
 A mayor longitud mayor es el periodo de oscilación.
Finalmente llegamos a que la gravedad en la ciudad de Bogotá es
aproximadamente de 9.790 m/seg2.
Bibliografía
[1] Ortega, Manuel R. (1989-2006) (en español). Lecciones de Física (4
volúmenes). Monytex.
[2] Misner, Thorne and Wheeler, Gravitation, Freeman, (1973)
[3] Raymond A. Serway y Jhon W. Jewett, Jr. Física para ciencias e ingeniería
con Física Moderna
[4] Robert M. Wald, General Relativity, Chicago University Press

Más contenido relacionado

La actualidad más candente

Laboratorio De Instrumentos De Medida 1
Laboratorio De Instrumentos De Medida 1Laboratorio De Instrumentos De Medida 1
Laboratorio De Instrumentos De Medida 1rkysein
 
Sesión de Laboratorio 1: Oscilaciones
Sesión de Laboratorio 1: OscilacionesSesión de Laboratorio 1: Oscilaciones
Sesión de Laboratorio 1: OscilacionesJavier García Molleja
 
Practica Maquina de Atwood
Practica Maquina de AtwoodPractica Maquina de Atwood
Practica Maquina de AtwoodRodolfo Alvarez
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerdaguest9ba94
 
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaMovimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaJezus Infante
 
Laboratorio pendulo simple
Laboratorio pendulo simpleLaboratorio pendulo simple
Laboratorio pendulo simpleCesar Lagos
 
incertidumbre en las mediciones
incertidumbre en las  medicionesincertidumbre en las  mediciones
incertidumbre en las medicionesMeli Aguilera
 
Laboratorio dilatacion termica
Laboratorio dilatacion termicaLaboratorio dilatacion termica
Laboratorio dilatacion termicaCarlos Altamar
 
Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Alejo Lerma
 
Periodo del pendulo simple
Periodo del pendulo simplePeriodo del pendulo simple
Periodo del pendulo simplemavictorayo
 
Pendulo fisico y torsion
Pendulo fisico y torsionPendulo fisico y torsion
Pendulo fisico y torsionDavidBarrios66
 

La actualidad más candente (20)

Laboratorio De Instrumentos De Medida 1
Laboratorio De Instrumentos De Medida 1Laboratorio De Instrumentos De Medida 1
Laboratorio De Instrumentos De Medida 1
 
Sesión de Laboratorio 1: Oscilaciones
Sesión de Laboratorio 1: OscilacionesSesión de Laboratorio 1: Oscilaciones
Sesión de Laboratorio 1: Oscilaciones
 
Informe péndulo simple fisica ondulatoria
Informe péndulo simple fisica ondulatoriaInforme péndulo simple fisica ondulatoria
Informe péndulo simple fisica ondulatoria
 
Practica Maquina de Atwood
Practica Maquina de AtwoodPractica Maquina de Atwood
Practica Maquina de Atwood
 
Informe Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una CuerdaInforme Ondas Estacionarias En Una Cuerda
Informe Ondas Estacionarias En Una Cuerda
 
MOMENTO DE INERCIA
MOMENTO DE INERCIAMOMENTO DE INERCIA
MOMENTO DE INERCIA
 
Informede nº 02 de fisica ii
Informede nº 02 de fisica iiInformede nº 02 de fisica ii
Informede nº 02 de fisica ii
 
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámicaMovimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
Movimiento rectilíneo uniformemente acelerado practica 1 cinemática y dinámica
 
Laboratorio pendulo simple
Laboratorio pendulo simpleLaboratorio pendulo simple
Laboratorio pendulo simple
 
incertidumbre en las mediciones
incertidumbre en las  medicionesincertidumbre en las  mediciones
incertidumbre en las mediciones
 
Laboratorio dilatacion termica
Laboratorio dilatacion termicaLaboratorio dilatacion termica
Laboratorio dilatacion termica
 
Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.Informe de laboratorio: Movimiento parabólico.
Informe de laboratorio: Movimiento parabólico.
 
Periodo del pendulo simple
Periodo del pendulo simplePeriodo del pendulo simple
Periodo del pendulo simple
 
Reporte 6 Laboratorio de Estática FI
Reporte 6 Laboratorio de Estática FIReporte 6 Laboratorio de Estática FI
Reporte 6 Laboratorio de Estática FI
 
Dinámica de fluidos
Dinámica de fluidosDinámica de fluidos
Dinámica de fluidos
 
1 laboratorio de fisica i caida libre
1  laboratorio de fisica i   caida libre1  laboratorio de fisica i   caida libre
1 laboratorio de fisica i caida libre
 
Pendulo fisico y torsion
Pendulo fisico y torsionPendulo fisico y torsion
Pendulo fisico y torsion
 
Tubos Pitot
Tubos PitotTubos Pitot
Tubos Pitot
 
Periodo de oscilacion acabado
Periodo de oscilacion acabadoPeriodo de oscilacion acabado
Periodo de oscilacion acabado
 
Informe mrua
Informe  mruaInforme  mrua
Informe mrua
 

Destacado

Destacado (20)

Gravedad en los polos
Gravedad en los polosGravedad en los polos
Gravedad en los polos
 
Caida libre cuatro
Caida libre  cuatroCaida libre  cuatro
Caida libre cuatro
 
Aceleracion gravedad
Aceleracion gravedadAceleracion gravedad
Aceleracion gravedad
 
Pendulo simple y masa resorte
Pendulo simple y masa resortePendulo simple y masa resorte
Pendulo simple y masa resorte
 
AnáLisis Grafico Del Movimiento
AnáLisis  Grafico  Del  MovimientoAnáLisis  Grafico  Del  Movimiento
AnáLisis Grafico Del Movimiento
 
Caida libre de los cuerpos
Caida libre de los cuerposCaida libre de los cuerpos
Caida libre de los cuerpos
 
Informe Pendulo Fisico
Informe Pendulo FisicoInforme Pendulo Fisico
Informe Pendulo Fisico
 
Laboratorio péndulo simple física III
Laboratorio péndulo simple física IIILaboratorio péndulo simple física III
Laboratorio péndulo simple física III
 
Caida Libre
Caida LibreCaida Libre
Caida Libre
 
Densidad y Peso Especifico
Densidad y Peso EspecificoDensidad y Peso Especifico
Densidad y Peso Especifico
 
ejercicios resueltos de fisica movimiento parabolico
ejercicios resueltos de fisica movimiento parabolico ejercicios resueltos de fisica movimiento parabolico
ejercicios resueltos de fisica movimiento parabolico
 
Caida libre y gravedad
Caida libre y gravedadCaida libre y gravedad
Caida libre y gravedad
 
La gravedad
La  gravedadLa  gravedad
La gravedad
 
Caída Libre de los Cuerpos
Caída Libre de los CuerposCaída Libre de los Cuerpos
Caída Libre de los Cuerpos
 
Problemas de caida libre
Problemas de caida libreProblemas de caida libre
Problemas de caida libre
 
Cinematica de una particula
Cinematica de una particulaCinematica de una particula
Cinematica de una particula
 
HidrostáTica
HidrostáTicaHidrostáTica
HidrostáTica
 
Tablas de funciones trigonométricas con excel
Tablas de funciones trigonométricas con excelTablas de funciones trigonométricas con excel
Tablas de funciones trigonométricas con excel
 
Gravedad de galileo galilei (1)
Gravedad de galileo galilei (1)Gravedad de galileo galilei (1)
Gravedad de galileo galilei (1)
 
Experimento Doble Rendija
Experimento Doble RendijaExperimento Doble Rendija
Experimento Doble Rendija
 

Similar a La gravedad en bogotá

ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUIL
ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUILACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUIL
ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUILAlumic S.A
 
3er informe de laboratorio hhh
3er informe de laboratorio hhh3er informe de laboratorio hhh
3er informe de laboratorio hhhjuan navarro
 
Aceleración gravitacional
Aceleración gravitacional Aceleración gravitacional
Aceleración gravitacional Davix Ramirez
 
trabajo+fisica+consolidado.pdf
trabajo+fisica+consolidado.pdftrabajo+fisica+consolidado.pdf
trabajo+fisica+consolidado.pdfDiana Serrano
 
Trabajo de-física (1)
Trabajo de-física (1)Trabajo de-física (1)
Trabajo de-física (1)kelvin
 
Fisica karla a
Fisica karla aFisica karla a
Fisica karla akarla_9798
 
Movimiento rectilíneo uniformemente variado
Movimiento rectilíneo uniformemente variadoMovimiento rectilíneo uniformemente variado
Movimiento rectilíneo uniformemente variadoYuri_luis
 
Lina maria gutierrez aceleracion gravitacional
Lina maria gutierrez aceleracion gravitacionalLina maria gutierrez aceleracion gravitacional
Lina maria gutierrez aceleracion gravitacionallinitha09
 
Lab 01 fisica reat
Lab 01 fisica reatLab 01 fisica reat
Lab 01 fisica reatEdwin Alegre
 
Movimientos ejemplos
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplosmariela_16
 
Movimientos ejemplos
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplosmariela_16
 
Tippens fisica 7e_diapositivas_38a
Tippens fisica 7e_diapositivas_38aTippens fisica 7e_diapositivas_38a
Tippens fisica 7e_diapositivas_38aRobert
 

Similar a La gravedad en bogotá (20)

ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUIL
ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUILACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUIL
ACELERACION GRAVITACIONAL EN LA CIUDAD DE GUAYAQUIL
 
3er informe de laboratorio hhh
3er informe de laboratorio hhh3er informe de laboratorio hhh
3er informe de laboratorio hhh
 
Fisica
FisicaFisica
Fisica
 
Aceleración gravitacional
Aceleración gravitacional Aceleración gravitacional
Aceleración gravitacional
 
trabajo+fisica+consolidado.pdf
trabajo+fisica+consolidado.pdftrabajo+fisica+consolidado.pdf
trabajo+fisica+consolidado.pdf
 
Pendulo de torsion_fhg
Pendulo de torsion_fhgPendulo de torsion_fhg
Pendulo de torsion_fhg
 
Trabajo de-física (1)
Trabajo de-física (1)Trabajo de-física (1)
Trabajo de-física (1)
 
Practica 4 (pendulo simple)
Practica 4      (pendulo simple)Practica 4      (pendulo simple)
Practica 4 (pendulo simple)
 
Lab. 2 sistema masa-resorte
Lab. 2   sistema masa-resorteLab. 2   sistema masa-resorte
Lab. 2 sistema masa-resorte
 
90 aniversario rg
90 aniversario rg90 aniversario rg
90 aniversario rg
 
Fisica karla a
Fisica karla aFisica karla a
Fisica karla a
 
Practica #3 caida libre
Practica #3 caida librePractica #3 caida libre
Practica #3 caida libre
 
Movimiento rectilíneo uniformemente variado
Movimiento rectilíneo uniformemente variadoMovimiento rectilíneo uniformemente variado
Movimiento rectilíneo uniformemente variado
 
Relatividad
RelatividadRelatividad
Relatividad
 
Relatividad
RelatividadRelatividad
Relatividad
 
Lina maria gutierrez aceleracion gravitacional
Lina maria gutierrez aceleracion gravitacionalLina maria gutierrez aceleracion gravitacional
Lina maria gutierrez aceleracion gravitacional
 
Lab 01 fisica reat
Lab 01 fisica reatLab 01 fisica reat
Lab 01 fisica reat
 
Movimientos ejemplos
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplos
 
Movimientos ejemplos
Movimientos ejemplosMovimientos ejemplos
Movimientos ejemplos
 
Tippens fisica 7e_diapositivas_38a
Tippens fisica 7e_diapositivas_38aTippens fisica 7e_diapositivas_38a
Tippens fisica 7e_diapositivas_38a
 

Último

Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesRaquel Martín Contreras
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIA
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIAGUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIA
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIAELIASPELAEZSARMIENTO1
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxEribertoPerezRamirez
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfSarayLuciaSnchezFigu
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOEveliaHernandez8
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxMartín Ramírez
 

Último (20)

Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materiales
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIA
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIAGUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIA
GUIA DE TEXTOS EDUCATIVOS SANTILLANA PARA SECUNDARIA
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docxPROGRAMACION ANUAL DE MATEMATICA 2024.docx
PROGRAMACION ANUAL DE MATEMATICA 2024.docx
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
 
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADOCUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
CUADERNILLO DE EJERCICIOS PARA EL TERCER TRIMESTRE, SEXTO GRADO
 
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptxc3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
c3.hu3.p1.p2.El ser humano y el sentido de su existencia.pptx
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Sesión La luz brilla en la oscuridad.pdf
Sesión  La luz brilla en la oscuridad.pdfSesión  La luz brilla en la oscuridad.pdf
Sesión La luz brilla en la oscuridad.pdf
 

La gravedad en bogotá

  • 1. LA GRAVEDAD EN BOGOTÁ Murcia Laura, Malagon Angye, Camargo Maryury, Quilaguy Wilmer UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de ingeniería facingenieria@udistrital.edu.co Bogotá D.C Colombia Resumen En este trabajo queremos hallar la gravedad en nuestra ciudad (Bogotá), para esto utilizamos una esfera que por medio de un hilo logra oscilar armónicamente con características similares a las de un péndulo; respecto a esto tomamos ciertos datos con el fin de calcular el periodo de oscilación para llegar a determinar la gravedad; siguiendo los pasos puntualmente logramos llegar al siguiente margen de error: 0.13%, de manera que logramos acercarnos mucho al valor general de la gravedad en la tierra que es de 9.81 𝑚 𝑠𝑒𝑔2 . I. Introducción Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que puede oscilar en torno a una posición de equilibrio. La distancia del punto pesado al punto de suspensión se denomina longitud del péndulo simple. En la práctica se considera un péndulo simple un cuerpo de reducidas dimensiones suspendido de un hilo y de masa despreciable comparada con la del cuerpo. El péndulo matemático describe un movimiento armónico simple en torno a su posición de equilibrio, y su periodo de oscilación alrededor de dicha posición está dado por la siguiente ecuación: [1] T = 2 π √ 𝑳 𝒈 Podemos definir a la gravedad como la Fuerza que sobre todos los cuerpos ejerce la tierra hacia su centro cuyo valor normal es de 9.81, pero esta definición no nos satisface de una manera completa, por ello buscamos la teoría general de la relatividad, que fue desarrollada por el Físico Alemán (nacionalizado Estadounidense), Albert Einstein, en donde se dio respuesta a la pregunta el por qué se involucran dos conceptos por completo diferentes: Una fuerza de atracción gravitacional mutua entre dos masas y la resistencia de una sola masa a ser acelerada. Esta pregunta desconcertó a Newton y a muchos otros científicos, hasta en 1916 cuando Einstein publico su teoría. [2]
  • 2. Desde el punto de vista de Einstein, el comportamiento doble de la masa era evidencia de una muy íntima y básica conexión entre los dos comportamientos. Los dos postulados de la teoría general de la relatividad de Einstein son: 1. Todas las leyes de la naturaleza tienen la misma forma para observadores en cualquier marco de referencia acelerados o no. 2. En la cercanía de cualquier punto, un campo gravitacional es equivalente a un marco de referencia acelerado en ausencia de efectos gravitacionales. Un interesante efecto pronosticado por la teoría general es que el tiempo es alterado por la gravedad. Un reloj en presencia de gravedad funciona más lentamente que uno colocado donde la gravedad es insignificante. [3] El segundo postulado sugiere que un campo gravitacional puede ser “transformado” en cualquier punto si se escoge un apropiado marco de referencia acelerado: uno en caída libre. Einstein ideo un ingenioso método para descubrir la aceleración necesaria para hacer “desaparecer” el campo gravitacional. Especifico un concepto, la curvatura del espacio-tiempo, que describe el efecto gravitacional de todo punto. De hecho, la curvatura del espacio-tiempo sustituye por completo la teoría gravitacional de Newton. Según Einstein, no hay nada como la fuerza gravitacional. Mas bien, la presencia de una masa produce alrededor de ella una curvatura espacio-tiempo, y esta curvatura dicta la trayectoria del espacio-tiempo que deben seguir todos los cuerpos en caída libre. [4] II. Método Experimental Materiales necesarios:  Soporte universal
  • 3.  Pelota  Cuerda  Metro  Cronometro Luego de obtener los materiales que nombramos anteriormente, realizamos los siguientes pasos:  Se amarra un extremo de la cuerda a la pelota, y el otro extremo a la parte superior del soporte.
  • 4.  Se mide el largo de la cuerda o hilo.  Se sujeta la pelota desde un punto cercano al soporte de manera que quede alineado respecto al hilo y se suelta, en este instante otra persona con el cronometro lleva el tiempo que tarda la pelota en realizar 10 oscilaciones.  Se repiten los anteriores pasos (10 veces) cada vez acortando un poco más la cuerda.  Se realiza una tabla de datos y se organiza de la siguiente manera: x y Dato1 (Longitud) Dato2 (periodo) En este caso el periodo es la variable Y, ya que depende de la longitud quien en este caso será la variable X.  A continuación en una hoja de papel milimetrado se ubican los puntos resultantes (que se pueden observar en la tabla) en los ejes “x” y “y” respectivamente y se traza una línea (lo más recta posible) sobre los puntos de extremo a extremo.  Por último se procede a tomar dos puntos sobre la recta para hallar la respectiva pendiente con la fórmula: T = 2 π √ 𝑳 𝒈 Despejando la anterior formula nos queda: G = 4 π * L T2 Con el resultado de esta operación se halla el porcentaje de error de la actividad de la siguiente manera: Valor real (π) - Valor experimental x 100 = % de error Valor real (π) Según este porcentaje de error se logra verificar la veracidad de la actividad, este resultado será satisfactorio si y solo si el resultado es menor a un 5 %.
  • 5. 9.790 III. Cálculos y resultados Siguiendo las indicaciones mencionadas en el método experimental llegamos a los siguientes resultados: 1. Tabla de valores Longitud ( m ) Periodo (m/seg2 ) 1.02 2.028 0.947 1.953 0.86 1.882 0.774 1.819 0.70 1.7 0.61 1.581 0.525 1.527 0.40 1.266 0.34 1.244 0.245 1.010 2. Grafica (Anexo) 3. Pendiente  Tomamos el punto (1.02, 2.028) G = 4 π * L T2 G= 4(π2 )*1.02 2.0282 G = 4. Margen de error 9.803 - 9.790 x 100 % 9.803
  • 6. 0.13 %Obtuvimos: IV. Análisis de resultadosy discusión Respecto al margen de error en este caso ha resultado ser del 0.13 %; teniendo en cuenta lo que se mostró en el método experimental ya que ha sido menor a un 5%; demostramos que la actividad se llevó a cabo satisfactoriamente. En la gráfica que se encuentra anexa a este trabajo se logra ver que la resultante se aproximó a una línea recta lo que nos indica que los datos de la longitud y del periodo, llevan una relación, y al realizar los procedimientos correspondientes obtenemos la gravedad de nuestra ciudad. V. Conclusiones Se le llama fuerza de gravedad a aquella fuerza con que la tierra atrae a cierto cuerpo cuando este cae; en este experimento logramos deducir a partir de materiales muy sencillos la estrecha relación que tienen aspectos como la masa, el peso y la longitud en el momento de realizar los cálculos que llevan a encontrar el valor de la gravedad; como por ejemplo:  El tiempo de oscilación depende de la longitud del péndulo y de la gravedad del lugar.  A mayor longitud mayor es el periodo de oscilación. Finalmente llegamos a que la gravedad en la ciudad de Bogotá es aproximadamente de 9.790 m/seg2.
  • 7. Bibliografía [1] Ortega, Manuel R. (1989-2006) (en español). Lecciones de Física (4 volúmenes). Monytex. [2] Misner, Thorne and Wheeler, Gravitation, Freeman, (1973) [3] Raymond A. Serway y Jhon W. Jewett, Jr. Física para ciencias e ingeniería con Física Moderna [4] Robert M. Wald, General Relativity, Chicago University Press