SlideShare una empresa de Scribd logo

Ejercicios de Funcion Lineal.pdf

E
Educación

EJERCICIOS RESUELTOS

1 de 25
Descargar para leer sin conexión
1
FUNCIÓN LINEAL
Ejercicio nº 1.-
Representa estas rectas:
Ejercicio nº 2.-
Representa gráficamente estas rectas:
Ejercicio nº 3.-
Representa gráficamente las siguientes rectas:
Ejercicio nº 4.-
Representa gráficamente estas rectas:
Ejercicio nº 5.-
Representa las rectas:
a) 3
y x
 
2
b) 2
3
y x
 
c) 4
y 
a) 2 3
y x
 
3
b) 1
4
y x
 
c) 2
y  
a) 3 2
y x
 
3
b) 1
2
y x
  
c) 3
y  
a) 2 1
y x
  
3
b) 1
2
y x
 
c) 1
y  
a) 2 1
y x
 
1
b) 2
2
y x
  
c) 2
y 
2
Ejercicio nº 6.-
Representa las siguientes rectas:
Ejercicio nº 7.-
Representa las rectas:
Ejercicio nº 8.-
Representa las siguientes rectas:
Ejercicio nº 9.-
Representa gráficamente las rectas:
Ejercicio nº 10.-
Representa gráficamente:
a) 2 3 4
x y
 
b) 5 0
y  
a) 3 2 3
x y
 
b) 4 0
y  
a) 2 2 1 0
x y
  
b) 2 6
y 
a) 2 2
x y
 
b) 3 9
y 
a) 2 1 0
x y
  
b) 2 4
y 
3
EJERCICIOS DE PENDIENTES DE RECTAS
Ejercicio nº 11.-
Indica cuál es la pendiente de cada una de estas rectas:
a
b
d 3x  4y  1
Ejercicio nº 12.-
Indica cuál es la pendiente de cada una de las rectas:
a
b
d 4x  5y  2
2 1
c)
2
x
y


3 1
c)
2
x
y
 

4
Ejercicio nº 13.-
Averigua cuál es la pendiente de cada una de las siguientes rectas:
a
b
d 3x  2y  5
Ejercicio nº 14.-
Di cuál es la pendiente de cada una de estas rectas:
a
b
d 5x  4y  7
2 3
c)
5
x
y


4 3
c)
2
x
y
 

5
Ejercicio nº 15.-
Di cuál es la pendiente de cada una de estas rectas:
a
b
d 2x  3y  4
EJERCICIOS DE EXPRESIÓN ANALÍTICA
Ejercicio nº 16.-
Escribe la ecuación de cada una de las siguientes rectas:
a Pasa por los puntos A4, 7 y B5, 1.
b Es paralela a y  3x y pasa por el punto P2, 0.
Ejercicio nº 17.-
Obtén la ecuación de cada una de estas rectas:
a Pasa por los puntos P7, 5 y Q2, 3.
b Es paralela a y  5x y pasa por el punto A0, 6.
Ejercicio nº 18.-
Halla la ecuación de cada una de estas rectas:
a Pasa por los puntos A15, 10 y B8, 6.
b Paralela al eje X y que pasa por el punto P4, 5.
4 1
c)
2
x
y


6
Ejercicio nº 19.-
Halla la ecuación de cada una de estas rectas:
a Función de proporcionalidad que pasa por el punto 3, 2.
b Recta que pasa por los puntos P2, 1 y Q5, 2.
Ejercicio nº 20.-
Halla la ecuación de cada una de las siguientes rectas:
a Tiene pendiente 2 y corta al eje Y en el punto 0, 3.
b Pasa por los puntos M4, 5 y N2, 3.
Ejercicio nº 21.-
a Tres kilos de peras nos han costado 4,5 €; y, por siete kilos, habríamos pagado 10,5 €. Encuentra la ecuación de
la recta que nos da el precio total, y, en función de los kilos que compremos, x.
b Represéntala gráficamente.
c ¿Cuánto costarían 5 kg de peras?
Ejercicio nº 22.-
Un determinado día, Ana ha pagado 3,6 € por 3 dólares, y Álvaro ha pagado 8,4 € por
7 dólares.
a Halla la ecuación de la recta que nos da el precio en euros, y, de x dólares.
b Represéntala gráficamente.
c ¿Cuánto habríamos pagado por 15 dólares?
Ejercicio nº 23.-
Un técnico de reparaciones de electrodomésticos cobra 25 € por la visita, más 20 € por cada hora de trabajo.
a Escribe la ecuación de la recta que nos da el dinero que debemos pagar en total, y, en función del tiempo
que esté trabajando, x.
b Represéntala gráficamente.
c ¿Cuánto tendríamos que pagar si hubiera estado 3 horas?
Ejercicio nº 24.-
Rocío sale en bici desde la plaza hacia un pueblo cercano a una velocidad constante de 3 m/s. Sabiendo que la
plaza está a 6 m de su casa:
a Halla la ecuación de la recta que nos da la distancia, y, en metros, a la que está Rocío de su casa al cabo de
un tiempo x en segundos.
b Represéntala gráficamente.
c ¿Cuál sería la distancia al cabo de 10 segundos?

Recomendados

Ejercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesEjercicios propuestos operaciones con matrices
Ejercicios propuestos operaciones con matricesalgebra
 
Algebra.doc mc,m mcd- fracciones
Algebra.doc mc,m  mcd- fraccionesAlgebra.doc mc,m  mcd- fracciones
Algebra.doc mc,m mcd- fraccionesAndre Fernandez
 
Ejercicios resueltos radicales
Ejercicios resueltos radicalesEjercicios resueltos radicales
Ejercicios resueltos radicaleseloetes
 
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOSRAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOSEDWIN RONALD CRUZ RUIZ
 
Taller funcion cuadratica chircales
Taller funcion cuadratica chircalesTaller funcion cuadratica chircales
Taller funcion cuadratica chircalesCarlopto
 
Ejercicios productos notables
Ejercicios productos notablesEjercicios productos notables
Ejercicios productos notables1986cca
 

Más contenido relacionado

La actualidad más candente

Álgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosÁlgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosComputer Learning Centers
 
53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmica53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmicaMarcelo Calderón
 
Guía Álgebra octavo
Guía Álgebra octavo Guía Álgebra octavo
Guía Álgebra octavo sitayanis
 
Ejercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones linealesEjercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones linealescepa_los_llanos
 
Guia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesGuia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesJaimemorales62
 
Ejercicios logaritmos 1º bachillerato-css
Ejercicios logaritmos  1º bachillerato-cssEjercicios logaritmos  1º bachillerato-css
Ejercicios logaritmos 1º bachillerato-cssMatemolivares1
 
1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejerciciosAmigo VJ
 
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrrIii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrrfrancesca2009_10
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSCliffor Jerry Herrera Castrillo
 
Trigonometria y ejercicios de aplicacion
Trigonometria y ejercicios de aplicacionTrigonometria y ejercicios de aplicacion
Trigonometria y ejercicios de aplicacionElba Sepúlveda
 
Tema 3 ejercicios de numeros reales potencias-radicales
Tema 3   ejercicios de numeros reales potencias-radicalesTema 3   ejercicios de numeros reales potencias-radicales
Tema 3 ejercicios de numeros reales potencias-radicalesmgarmon965
 
Taller potenciación y radicación para la web
Taller potenciación y radicación para la webTaller potenciación y radicación para la web
Taller potenciación y radicación para la webdiomeposada
 
Funcion lineal y función afín
Funcion lineal y función afínFuncion lineal y función afín
Funcion lineal y función afínMaría Pizarro
 

La actualidad más candente (20)

Álgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosÁlgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de Polinomios
 
53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmica53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmica
 
Guía Álgebra octavo
Guía Álgebra octavo Guía Álgebra octavo
Guía Álgebra octavo
 
Ejercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones linealesEjercicios y soluciones de funciones lineales
Ejercicios y soluciones de funciones lineales
 
Guia de ejercicios de Inecuaciones
Guia de ejercicios de InecuacionesGuia de ejercicios de Inecuaciones
Guia de ejercicios de Inecuaciones
 
Ejercicios logaritmos 1º bachillerato-css
Ejercicios logaritmos  1º bachillerato-cssEjercicios logaritmos  1º bachillerato-css
Ejercicios logaritmos 1º bachillerato-css
 
05 prueba funcion cuadratica
05 prueba funcion cuadratica05 prueba funcion cuadratica
05 prueba funcion cuadratica
 
Taller de funcion cuadrática
Taller de funcion cuadráticaTaller de funcion cuadrática
Taller de funcion cuadrática
 
1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios1. teoremas de seno y del coseno trigonométricas ejercicios
1. teoremas de seno y del coseno trigonométricas ejercicios
 
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrrIii bim. 4to. año   geom. - guia nº 2 - proporcionalidadrr
Iii bim. 4to. año geom. - guia nº 2 - proporcionalidadrr
 
Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOSTEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
TEORIA DE EXPONENTES, POLINOMIOS, PRODUCTOS NOTABLES, DIVISIÓN DE POLINOMIOS
 
Trigonometria y ejercicios de aplicacion
Trigonometria y ejercicios de aplicacionTrigonometria y ejercicios de aplicacion
Trigonometria y ejercicios de aplicacion
 
COMPARACIÓN DE MAGNITUDES
COMPARACIÓN DE MAGNITUDESCOMPARACIÓN DE MAGNITUDES
COMPARACIÓN DE MAGNITUDES
 
Tema 3 ejercicios de numeros reales potencias-radicales
Tema 3   ejercicios de numeros reales potencias-radicalesTema 3   ejercicios de numeros reales potencias-radicales
Tema 3 ejercicios de numeros reales potencias-radicales
 
Metodo de Horner
Metodo de HornerMetodo de Horner
Metodo de Horner
 
Taller potenciación y radicación para la web
Taller potenciación y radicación para la webTaller potenciación y radicación para la web
Taller potenciación y radicación para la web
 
Funcion lineal y función afín
Funcion lineal y función afínFuncion lineal y función afín
Funcion lineal y función afín
 
1° practica matematica comercial
1° practica matematica comercial1° practica matematica comercial
1° practica matematica comercial
 
Ecuaciones
EcuacionesEcuaciones
Ecuaciones
 

Similar a Ejercicios de Funcion Lineal.pdf

Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2juan20132012
 
Ejercicios de funcion lineal
Ejercicios de funcion linealEjercicios de funcion lineal
Ejercicios de funcion linealanitamariarengifo
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesAlejandroMaldonadoLu1
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionestinardo
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesCarlos Cabrera
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesAnthonyGarca5
 
Ejercicios de sistemas de ecuaciones con soluciones
Ejercicios de sistemas de ecuaciones con solucionesEjercicios de sistemas de ecuaciones con soluciones
Ejercicios de sistemas de ecuaciones con solucionesmabr36
 
Ejercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEjercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEducación
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacioneskomeloonpasto
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesMartaG00
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesmaiden_nono
 
Ejercicios geometria analitica
Ejercicios geometria analiticaEjercicios geometria analitica
Ejercicios geometria analiticaolgaminguezdiez
 
Repaso Examen #3 - GEMA1200
Repaso Examen #3 - GEMA1200Repaso Examen #3 - GEMA1200
Repaso Examen #3 - GEMA1200Angel Carreras
 
Ejercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfEjercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfMaraCamilaOrtizPolan
 
Taller de matematicas grado 9
Taller de matematicas grado 9Taller de matematicas grado 9
Taller de matematicas grado 9juliocc1971
 
3 ejercicios de expresiones algebraicas
3  ejercicios de expresiones algebraicas3  ejercicios de expresiones algebraicas
3 ejercicios de expresiones algebraicasmowglys
 

Similar a Ejercicios de Funcion Lineal.pdf (20)

Funcion lineal
Funcion linealFuncion lineal
Funcion lineal
 
Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2Ejercicios de funcion lineal 2
Ejercicios de funcion lineal 2
 
Ejercicios de funcion lineal
Ejercicios de funcion linealEjercicios de funcion lineal
Ejercicios de funcion lineal
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones con soluciones
Ejercicios de sistemas de ecuaciones con solucionesEjercicios de sistemas de ecuaciones con soluciones
Ejercicios de sistemas de ecuaciones con soluciones
 
Ejercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdfEjercicios de sistemas de ecuaciones.pdf
Ejercicios de sistemas de ecuaciones.pdf
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Ejercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuacionesEjercicios de sistemas de ecuaciones
Ejercicios de sistemas de ecuaciones
 
Trabajo verano 2015
Trabajo verano 2015Trabajo verano 2015
Trabajo verano 2015
 
Ejercicios geometria analitica
Ejercicios geometria analiticaEjercicios geometria analitica
Ejercicios geometria analitica
 
Repaso Examen #3 - GEMA1200
Repaso Examen #3 - GEMA1200Repaso Examen #3 - GEMA1200
Repaso Examen #3 - GEMA1200
 
Ejercicios s7
Ejercicios s7Ejercicios s7
Ejercicios s7
 
Ejercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdfEjercicios de expresiones algebraicas.pdf
Ejercicios de expresiones algebraicas.pdf
 
Taller de matematicas grado 9
Taller de matematicas grado 9Taller de matematicas grado 9
Taller de matematicas grado 9
 
3 ejercicios de expresiones algebraicas
3  ejercicios de expresiones algebraicas3  ejercicios de expresiones algebraicas
3 ejercicios de expresiones algebraicas
 

Más de Educación

CONTROL FUNCIONES_B.pdf
CONTROL FUNCIONES_B.pdfCONTROL FUNCIONES_B.pdf
CONTROL FUNCIONES_B.pdfEducación
 
CONTROL FUNCIONES_A.pdf
CONTROL FUNCIONES_A.pdfCONTROL FUNCIONES_A.pdf
CONTROL FUNCIONES_A.pdfEducación
 
E4A V-6-5-22 Tipos de dominios de definición (II).pdf
E4A V-6-5-22 Tipos de dominios de definición (II).pdfE4A V-6-5-22 Tipos de dominios de definición (II).pdf
E4A V-6-5-22 Tipos de dominios de definición (II).pdfEducación
 
E4A X-4-5-22 Dominio de definición, tipos.pdf
E4A X-4-5-22 Dominio de definición, tipos.pdfE4A X-4-5-22 Dominio de definición, tipos.pdf
E4A X-4-5-22 Dominio de definición, tipos.pdfEducación
 
35-trigonometria-funciones-recta-parabola-1.pdf
35-trigonometria-funciones-recta-parabola-1.pdf35-trigonometria-funciones-recta-parabola-1.pdf
35-trigonometria-funciones-recta-parabola-1.pdfEducación
 
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdf
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdfIES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdf
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdfEducación
 
FUNCIÓN VALOR ABSOLUTO.pdf
FUNCIÓN VALOR ABSOLUTO.pdfFUNCIÓN VALOR ABSOLUTO.pdf
FUNCIÓN VALOR ABSOLUTO.pdfEducación
 
FUNCIONES DEFINIDAS A TROZOS.pdf
FUNCIONES DEFINIDAS A TROZOS.pdfFUNCIONES DEFINIDAS A TROZOS.pdf
FUNCIONES DEFINIDAS A TROZOS.pdfEducación
 
Ejemplos de la regla de Cramer.pdf
Ejemplos de la regla de Cramer.pdfEjemplos de la regla de Cramer.pdf
Ejemplos de la regla de Cramer.pdfEducación
 
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALESSISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALESEducación
 
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS FUNCIONES LINEALES, AFINES Y CUADRÁTICAS
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS Educación
 
Ecuaciones complicados
Ecuaciones complicadosEcuaciones complicados
Ecuaciones complicadosEducación
 
Problema mezclas
Problema mezclasProblema mezclas
Problema mezclasEducación
 
Problemas ecuaciones 2eso
Problemas ecuaciones 2esoProblemas ecuaciones 2eso
Problemas ecuaciones 2esoEducación
 
Ejercicios de ecuaciones
Ejercicios de ecuacionesEjercicios de ecuaciones
Ejercicios de ecuacionesEducación
 
Ejercicios de progresiones aritmeticas y geometricas
Ejercicios de progresiones aritmeticas y geometricasEjercicios de progresiones aritmeticas y geometricas
Ejercicios de progresiones aritmeticas y geometricasEducación
 
Radicales soluciones
Radicales solucionesRadicales soluciones
Radicales solucionesEducación
 
Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Educación
 

Más de Educación (20)

CONTROL FUNCIONES_B.pdf
CONTROL FUNCIONES_B.pdfCONTROL FUNCIONES_B.pdf
CONTROL FUNCIONES_B.pdf
 
CONTROL FUNCIONES_A.pdf
CONTROL FUNCIONES_A.pdfCONTROL FUNCIONES_A.pdf
CONTROL FUNCIONES_A.pdf
 
E4A V-6-5-22 Tipos de dominios de definición (II).pdf
E4A V-6-5-22 Tipos de dominios de definición (II).pdfE4A V-6-5-22 Tipos de dominios de definición (II).pdf
E4A V-6-5-22 Tipos de dominios de definición (II).pdf
 
E4A X-4-5-22 Dominio de definición, tipos.pdf
E4A X-4-5-22 Dominio de definición, tipos.pdfE4A X-4-5-22 Dominio de definición, tipos.pdf
E4A X-4-5-22 Dominio de definición, tipos.pdf
 
35-trigonometria-funciones-recta-parabola-1.pdf
35-trigonometria-funciones-recta-parabola-1.pdf35-trigonometria-funciones-recta-parabola-1.pdf
35-trigonometria-funciones-recta-parabola-1.pdf
 
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdf
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdfIES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdf
IES_IE.4eso_Ac.2eval.2ctrl.Fuciones_elementales.Solucion.2.22-23.pdf
 
DOMINIOS.pdf
DOMINIOS.pdfDOMINIOS.pdf
DOMINIOS.pdf
 
FUNCIÓN VALOR ABSOLUTO.pdf
FUNCIÓN VALOR ABSOLUTO.pdfFUNCIÓN VALOR ABSOLUTO.pdf
FUNCIÓN VALOR ABSOLUTO.pdf
 
FUNCIONES DEFINIDAS A TROZOS.pdf
FUNCIONES DEFINIDAS A TROZOS.pdfFUNCIONES DEFINIDAS A TROZOS.pdf
FUNCIONES DEFINIDAS A TROZOS.pdf
 
THALES.pdf
THALES.pdfTHALES.pdf
THALES.pdf
 
Ejemplos de la regla de Cramer.pdf
Ejemplos de la regla de Cramer.pdfEjemplos de la regla de Cramer.pdf
Ejemplos de la regla de Cramer.pdf
 
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALESSISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
SISTEMAS DE ECUACIONES LINEALES Y NO LINEALES
 
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS FUNCIONES LINEALES, AFINES Y CUADRÁTICAS
FUNCIONES LINEALES, AFINES Y CUADRÁTICAS
 
Ecuaciones complicados
Ecuaciones complicadosEcuaciones complicados
Ecuaciones complicados
 
Problema mezclas
Problema mezclasProblema mezclas
Problema mezclas
 
Problemas ecuaciones 2eso
Problemas ecuaciones 2esoProblemas ecuaciones 2eso
Problemas ecuaciones 2eso
 
Ejercicios de ecuaciones
Ejercicios de ecuacionesEjercicios de ecuaciones
Ejercicios de ecuaciones
 
Ejercicios de progresiones aritmeticas y geometricas
Ejercicios de progresiones aritmeticas y geometricasEjercicios de progresiones aritmeticas y geometricas
Ejercicios de progresiones aritmeticas y geometricas
 
Radicales soluciones
Radicales solucionesRadicales soluciones
Radicales soluciones
 
Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5Potencias y radicales resueltos 1-5
Potencias y radicales resueltos 1-5
 

Último

Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfAngelaCasco1
 
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"Tarea 1. Ensayo sobre "La sociedad de la ignorancia"
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"Oscar Tigasi
 
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfPresentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfJohnCarvajal23
 
Presentación sobre el Programa "Foro Nativos Digitales"
Presentación sobre el Programa "Foro Nativos Digitales"Presentación sobre el Programa "Foro Nativos Digitales"
Presentación sobre el Programa "Foro Nativos Digitales"gelisbeths
 
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignorancia
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignoranciaCoello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignorancia
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignoranciajc847153
 
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptx
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptxPRIMARIA Consejo Tecnico Escolar febrero 20245.pptx
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptxVíctor Hugo Ramírez
 
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...JavierGMonzn
 
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdf
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdfPROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdf
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdfLozanogalex
 
Proceso de matricula articulacioncimm.pdf
Proceso de matricula articulacioncimm.pdfProceso de matricula articulacioncimm.pdf
Proceso de matricula articulacioncimm.pdfJorgecego
 
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalus
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalustema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalus
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalusjosemariahermoso
 
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...Jose Ignacio Rivas Flores
 
Circular105_14 Secretaria General CEIP.pdf
Circular105_14 Secretaria General CEIP.pdfCircular105_14 Secretaria General CEIP.pdf
Circular105_14 Secretaria General CEIP.pdfgabitachica
 
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Heyssen Cordero Maraví
 
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en Problemas
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en ProblemasTRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en Problemas
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en ProblemasOscar Tigasi
 
Ecosistema componente El biotopo y sus características
Ecosistema  componente El biotopo y sus característicasEcosistema  componente El biotopo y sus características
Ecosistema componente El biotopo y sus característicasalisonguaman1rod
 
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQUNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQJAVIERMAURICIOCORREA1
 
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxBUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxDirectivosGanadores
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAngelaCasco1
 
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxnelsontobontrujillo
 
Infografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto DiocesanoInfografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto Diocesanomeizterz5353
 

Último (20)

Casco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdfCasco_Angela_Práctica_Infopedagogía4.pdf
Casco_Angela_Práctica_Infopedagogía4.pdf
 
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"Tarea 1. Ensayo sobre "La sociedad de la ignorancia"
Tarea 1. Ensayo sobre "La sociedad de la ignorancia"
 
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdfPresentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
Presentacion cuidado del medio ambiente collage scrapbook verde y blanco.pdf
 
Presentación sobre el Programa "Foro Nativos Digitales"
Presentación sobre el Programa "Foro Nativos Digitales"Presentación sobre el Programa "Foro Nativos Digitales"
Presentación sobre el Programa "Foro Nativos Digitales"
 
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignorancia
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignoranciaCoello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignorancia
Coello_Javier_Tarea1_ensayo_sobre_la_sociedad_de_la_ignorancia
 
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptx
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptxPRIMARIA Consejo Tecnico Escolar febrero 20245.pptx
PRIMARIA Consejo Tecnico Escolar febrero 20245.pptx
 
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...
La enseñanza de lenguas en la sociedad de la información y del conocimiento. ...
 
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdf
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdfPROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdf
PROGRAMA DE ESTUDIO 2022 FASE 2 PREESCOLAR.pdf
 
Proceso de matricula articulacioncimm.pdf
Proceso de matricula articulacioncimm.pdfProceso de matricula articulacioncimm.pdf
Proceso de matricula articulacioncimm.pdf
 
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalus
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalustema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalus
tema 4 al Ándalus 2023 2024 . Tema 4 (I) Al Andalus
 
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
¿Transiciones o transformaciones? Una mirada “otra” necesaria para el sistema...
 
Circular105_14 Secretaria General CEIP.pdf
Circular105_14 Secretaria General CEIP.pdfCircular105_14 Secretaria General CEIP.pdf
Circular105_14 Secretaria General CEIP.pdf
 
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
Proyecto 100. Guía práctica para instructores bíblicos. Vol. 2
 
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en Problemas
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en ProblemasTRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en Problemas
TRABAJO_FINAL_DE_INFO. Grupo N.1 Aprendizaje Basado en Problemas
 
Ecosistema componente El biotopo y sus características
Ecosistema  componente El biotopo y sus característicasEcosistema  componente El biotopo y sus características
Ecosistema componente El biotopo y sus características
 
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQUNIDAD 1 EA1  2 SEMESTRE VIRTUAL TICS UQ
UNIDAD 1 EA1 2 SEMESTRE VIRTUAL TICS UQ
 
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptxBUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
BUEN INICIO DEL AÑO ESCOLAR 2024 11098.pptx
 
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdfAuquilla_Paola_y_Casco_Angela_Tarea_2.pdf
Auquilla_Paola_y_Casco_Angela_Tarea_2.pdf
 
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docxEJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
EJERCICIO TOMÁS Y LA ENERGÍA ELÉCTRICA.docx
 
Infografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto DiocesanoInfografía sobre la historia del Instituto Diocesano
Infografía sobre la historia del Instituto Diocesano
 

Ejercicios de Funcion Lineal.pdf

  • 1. 1 FUNCIÓN LINEAL Ejercicio nº 1.- Representa estas rectas: Ejercicio nº 2.- Representa gráficamente estas rectas: Ejercicio nº 3.- Representa gráficamente las siguientes rectas: Ejercicio nº 4.- Representa gráficamente estas rectas: Ejercicio nº 5.- Representa las rectas: a) 3 y x   2 b) 2 3 y x   c) 4 y  a) 2 3 y x   3 b) 1 4 y x   c) 2 y   a) 3 2 y x   3 b) 1 2 y x    c) 3 y   a) 2 1 y x    3 b) 1 2 y x   c) 1 y   a) 2 1 y x   1 b) 2 2 y x    c) 2 y 
  • 2. 2 Ejercicio nº 6.- Representa las siguientes rectas: Ejercicio nº 7.- Representa las rectas: Ejercicio nº 8.- Representa las siguientes rectas: Ejercicio nº 9.- Representa gráficamente las rectas: Ejercicio nº 10.- Representa gráficamente: a) 2 3 4 x y   b) 5 0 y   a) 3 2 3 x y   b) 4 0 y   a) 2 2 1 0 x y    b) 2 6 y  a) 2 2 x y   b) 3 9 y  a) 2 1 0 x y    b) 2 4 y 
  • 3. 3 EJERCICIOS DE PENDIENTES DE RECTAS Ejercicio nº 11.- Indica cuál es la pendiente de cada una de estas rectas: a b d 3x  4y  1 Ejercicio nº 12.- Indica cuál es la pendiente de cada una de las rectas: a b d 4x  5y  2 2 1 c) 2 x y   3 1 c) 2 x y   
  • 4. 4 Ejercicio nº 13.- Averigua cuál es la pendiente de cada una de las siguientes rectas: a b d 3x  2y  5 Ejercicio nº 14.- Di cuál es la pendiente de cada una de estas rectas: a b d 5x  4y  7 2 3 c) 5 x y   4 3 c) 2 x y   
  • 5. 5 Ejercicio nº 15.- Di cuál es la pendiente de cada una de estas rectas: a b d 2x  3y  4 EJERCICIOS DE EXPRESIÓN ANALÍTICA Ejercicio nº 16.- Escribe la ecuación de cada una de las siguientes rectas: a Pasa por los puntos A4, 7 y B5, 1. b Es paralela a y  3x y pasa por el punto P2, 0. Ejercicio nº 17.- Obtén la ecuación de cada una de estas rectas: a Pasa por los puntos P7, 5 y Q2, 3. b Es paralela a y  5x y pasa por el punto A0, 6. Ejercicio nº 18.- Halla la ecuación de cada una de estas rectas: a Pasa por los puntos A15, 10 y B8, 6. b Paralela al eje X y que pasa por el punto P4, 5. 4 1 c) 2 x y  
  • 6. 6 Ejercicio nº 19.- Halla la ecuación de cada una de estas rectas: a Función de proporcionalidad que pasa por el punto 3, 2. b Recta que pasa por los puntos P2, 1 y Q5, 2. Ejercicio nº 20.- Halla la ecuación de cada una de las siguientes rectas: a Tiene pendiente 2 y corta al eje Y en el punto 0, 3. b Pasa por los puntos M4, 5 y N2, 3. Ejercicio nº 21.- a Tres kilos de peras nos han costado 4,5 €; y, por siete kilos, habríamos pagado 10,5 €. Encuentra la ecuación de la recta que nos da el precio total, y, en función de los kilos que compremos, x. b Represéntala gráficamente. c ¿Cuánto costarían 5 kg de peras? Ejercicio nº 22.- Un determinado día, Ana ha pagado 3,6 € por 3 dólares, y Álvaro ha pagado 8,4 € por 7 dólares. a Halla la ecuación de la recta que nos da el precio en euros, y, de x dólares. b Represéntala gráficamente. c ¿Cuánto habríamos pagado por 15 dólares? Ejercicio nº 23.- Un técnico de reparaciones de electrodomésticos cobra 25 € por la visita, más 20 € por cada hora de trabajo. a Escribe la ecuación de la recta que nos da el dinero que debemos pagar en total, y, en función del tiempo que esté trabajando, x. b Represéntala gráficamente. c ¿Cuánto tendríamos que pagar si hubiera estado 3 horas? Ejercicio nº 24.- Rocío sale en bici desde la plaza hacia un pueblo cercano a una velocidad constante de 3 m/s. Sabiendo que la plaza está a 6 m de su casa: a Halla la ecuación de la recta que nos da la distancia, y, en metros, a la que está Rocío de su casa al cabo de un tiempo x en segundos. b Represéntala gráficamente. c ¿Cuál sería la distancia al cabo de 10 segundos?
  • 7. 7 Ejercicio nº 25.- a Sabiendo que 0 C  32 Farenheit y que 10 C  50 F, halla la ecuación de la recta que nos da la transformación de grados centígrados a grados Farenheit y represéntala gráficamente. b ¿Cuántos grados Farenheit son 20 C?
  • 8. 8 SOLUCIONES EJERCICIOS DE FUNCIÓN LINEAL Ejercicio nº 1.- Representa estas rectas: Solución: a Pasa por 0, 0 y 1, 3. b Pasa por 0, 2 y 3, 4. c Es paralela al eje X. Ejercicio nº 2.- Representa gráficamente estas rectas: a) 3 y x   2 b) 2 3 y x   c) 4 y  a) 2 3 y x   3 b) 1 4 y x   c) 2 y  
  • 9. 9 Solución: a Pasa por 0, 3 y 1, 1. b Pasa por 0, 1 y 4, 2. c Es paralela al eje X. Ejercicio nº 3.- Representa gráficamente las siguientes rectas: Solución: a Pasa por 0, 2 y 1, 1. b Pasa por 0, 1 y 2, 2. a) 3 2 y x   3 b) 1 2 y x    c) 3 y  
  • 10. 10 c Es paralela al eje X. Ejercicio nº 4.- Representa gráficamente estas rectas: Solución: a Pasa por 0, 1 y 1, 1. b Pasa por 0, 1 y 2, 2. c Es paralela al eje X. a) 2 1 y x    3 b) 1 2 y x   c) 1 y  
  • 11. 11 Ejercicio nº 5.- Representa las rectas: Solución: a Pasa por 0, 1 y 1, 1. b Pasa por 0, 2 y 2, 1. c Es paralela al eje X. Ejercicio nº 6.- Representa las siguientes rectas: Solución: Pasa por 1, 2 y 2, 0. a) 2 1 y x   1 b) 2 2 y x    c) 2 y  a) 2 3 4 x y   b) 5 0 y   2 4 a) 3 x y   
  • 12. 12 b y  5. Su gráfica es una recta paralela al eje X. Ejercicio nº 7.- Representa las rectas: Solución: Pasa por 1, 0 y 3, 3. b y  4. Su gráfica es una recta paralela al eje X. a) 3 2 3 x y   b) 4 0 y   3 3 a) 2 x y   
  • 13. 13 Ejercicio nº 8.- Representa las siguientes rectas: Solución: b y  3. Su gráfica es una recta paralela al eje X. Ejercicio nº 9.- Representa gráficamente las rectas: Solución: Pasa por 2, 0 y 4, 1. a) 2 2 1 0 x y    b) 2 6 y  2 1 a) 2 x y    1 3 Pasa por 0, y 1 , . 2 2               a) 2 2 x y   b) 3 9 y  2 a) 2 x y  
  • 14. 14 b y  3. Su gráfica es una recta paralela al eje X. Ejercicio nº 10.- Representa gráficamente: Solución: Pasa por 1, 1 y 1, 0. b y  2. Su gráfica es una recta paralela al eje X. a) 2 1 0 x y    b) 2 4 y  1 a) 2 x y   
  • 15. 15 SOLUCIONES EJERCICIOS DE PENDIENTES DE RECTAS Ejercicio nº 11.- Indica cuál es la pendiente de cada una de estas rectas: a b d 3x  4y  1 Solución: a b 2 1 c) 2 x y   2 3 m 
  • 16. 16 Ejercicio nº 12.- Indica cuál es la pendiente de cada una de las rectas: a b d 4x  5y  2 Solución: a 1 3 m   2 1 1 c) 2 2 2 1 y x x m      3 1 3 1 d) 4 4 4 3 4 x y x m         3 1 c) 2 x y    1 1 1 m    
  • 17. 17 b Ejercicio nº 13.- Averigua cuál es la pendiente de cada una de las siguientes rectas: a b d 3x  2y  5 1 3 m  3 1 c) 2 2 3 2 y x m      4 2 4 2 d) 5 5 5 4 5 x y x m         2 3 c) 5 x y  
  • 18. 18 Solución: a b Ejercicio nº 14.- Di cuál es la pendiente de cada una de estas rectas: a 2 2 1 m     1 2 m  2 3 c) 5 5 2 5 y x m    3 5 3 5 d) 2 2 2 3 2 x y x m        
  • 19. 19 b d 5x  4y  7 Solución: a b 4 3 c) 2 x y    2 2 1 m   1 1 1 m   4 3 3 c) 2 2 2 2 2 y x x m         5 7 5 7 d) 4 4 4 5 4 x y x m        
  • 20. 20 Ejercicio nº 15.- Di cuál es la pendiente de cada una de estas rectas: a b d 2x  3y  4 Solución: a b 4 1 c) 2 x y   1 2 m  3 3 1 m     4 1 1 c) 2 2 2 2 2 y x x m     
  • 21. 21 SOLUCIONES EJERCICIOS DE EXPRESIÓN ANALÍTICA Ejercicio nº 16.- Escribe la ecuación de cada una de las siguientes rectas: a Pasa por los puntos A4, 7 y B5, 1. b Es paralela a y  3x y pasa por el punto P2, 0. Solución: Ecuación puntopendiente: b Paralela a y  3x  m  3 Ecuación puntopendiente: Ejercicio nº 17.- Obtén la ecuación de cada una de estas rectas: a Pasa por los puntos P7, 5 y Q2, 3. b Es paralela a y  5x y pasa por el punto A0, 6. Solución: Ecuación puntopendiente: b Paralela a y  5x  m  5 Ecuación: y  5x  6 2 4 2 4 d) 3 3 3 2 3 x y x m         1 7 8 a) 8 5 4 1 m           7 8 4 7 8 32 8 39 y x y x y x               0 3 2 3 6 y x y x        3 5 8 8 a) 2 7 5 5 m           8 5 7 5 25 8 56 8 5 31 5 y x y x x y           
  • 22. 22 Ejercicio nº 18.- Halla la ecuación de cada una de estas rectas: a Pasa por los puntos A15, 10 y B8, 6. b Paralela al eje X y que pasa por el punto P4, 5. Solución: Ecuación puntopendiente: b Paralela al eje X  tiene como ecuación y  k. En este caso, y  5. Ejercicio nº 19.- Halla la ecuación de cada una de estas rectas: a Función de proporcionalidad que pasa por el punto 3, 2. b Recta que pasa por los puntos P2, 1 y Q5, 2. Solución: Ecuación puntopendiente: Ejercicio nº 20.- Halla la ecuación de cada una de las siguientes rectas: a Tiene pendiente 2 y corta al eje Y en el punto 0, 3. b Pasa por los puntos M4, 5 y N2, 3. Solución: a y  2x  3 Ecuación puntopendiente: 6 10 16 16 a) 8 15 7 7 m           16 10 15 7 70 16 240 16 7 170 7 y x y x x y            2 a) 3 y x    2 1 2 1 3 b) 1 5 2 3 3 m           1 1 2 1 2 3 y x y x y x              3 5 8 b) 4 2 4 2 m           5 4 4 5 4 16 4 11 y x y x y x           
  • 23. 23 Ejercicio nº 21.- a Tres kilos de peras nos han costado 4,5 €; y, por siete kilos, habríamos pagado 10,5 €. Encuentra la ecuación de la recta que nos da el precio total, y, en función de los kilos que compremos, x. b Represéntala gráficamente. c ¿Cuánto costarían 5 kg de peras? Solución: a Buscamos la ecuación de la recta que pasa por los puntos 3; 4,5 y 7; 10,5: Ecuación puntopendiente: y  4,5  1,5 · x  3  y  1,5x b c Si x  5 kg  y  1,5 · 5  7,5 € Ejercicio nº 22.- Un determinado día, Ana ha pagado 3,6 € por 3 dólares, y Álvaro ha pagado 8,4 € por 7 dólares. a Halla la ecuación de la recta que nos da el precio en euros, y, de x dólares. b Represéntala gráficamente. c ¿Cuánto habríamos pagado por 15 dólares? Solución: a Buscamos la ecuación de la recta que pasa por los puntos 3; 3,6 y 7; 8,4. Ecuación: y  3,6  1,2x  3  y  1,2x 10,5 4,5 6 1 ,5 7 3 4 m      8,4 3,6 4,8 1 ,2 7 3 4 m     
  • 24. 24 b c Si x  15 dólares, y  1,2 · 15  18 €. Ejercicio nº 23.- Un técnico de reparaciones de electrodomésticos cobra 25 € por la visita, más 20 € por cada hora de trabajo. a Escribe la ecuación de la recta que nos da el dinero que debemos pagar en total, y, en función del tiempo que esté trabajando, x. b Represéntala gráficamente. c ¿Cuánto tendríamos que pagar si hubiera estado 3 horas? Solución: a y  25  20x b c Si x  3 horas: y  25  20 · 3  25  60  85 € Ejercicio nº 24.- Rocío sale en bici desde la plaza hacia un pueblo cercano a una velocidad constante de 3 m/s. Sabiendo que la plaza está a 6 m de su casa: a Halla la ecuación de la recta que nos da la distancia, y, en metros, a la que está Rocío de su casa al cabo de un tiempo x en segundos. b Represéntala gráficamente. c ¿Cuál sería la distancia al cabo de 10 segundos?
  • 25. 25 Solución: a y  6  3x b c Si x  10 segundos, y  6  3 · 10  6  30  36 m. Ejercicio nº 25.- a Sabiendo que 0 C  32 Farenheit y que 10 C  50 F, halla la ecuación de la recta que nos da la transformación de grados centígrados a grados Farenheit y represéntala gráficamente. b ¿Cuántos grados Farenheit son 20 C? Solución: a Buscamos la ecuación de la recta que pasa por los puntos 0, 32 y 10, 50. Ecuación: y  1,8x  32 b Si x  20 C  y  1,8 · 20  32  68 F 50 32 18 1 ,8 10 0 10 m     