CUERPOS  DE REVOLUCIÓN
Índice <ul><li>Concepto de cuerpo de revolución.
Tipos de cuerpos de revolución: </li></ul><ul><ul><li>CILINDROS.
CONOS.
ESFERAS.
OTROS. </li></ul></ul><ul><ul><ul><li>Toro
Tronco de cono </li></ul></ul></ul>r
I. Concepto de cuerpo de revolución Llamamos  cuerpo de revolución  a aquel que se obtiene al girar una figura plana alred...
II. Tipos de cuerpos de revolución Podemos obtener cuerpos de revolución de lo más variados. Simplemente basta con girar u...
CILINDRO El  cilindro  se obtiene al girar un  rectángulo  sobre uno de sus lados:
Desarrollo de un cilindro Si abrimos un cilindro, su desarrollo es el siguiente: h r h 2  π r r r
Cálculo de su área y volumen  Puesto que el lateral del cilindro es un rectángulo, y sus dos bases son círculos, obtenemos...
CONO El  cono  se obtiene al girar un  triángulo rectángulo  sobre uno de sus catetos:
Desarrollo de un cono Si abrimos un cono, su desarrollo es el siguiente:  g r 2 π r Donde:  h es la altura del cono   g es...
Cálculo de su área y volumen  Puesto que el lateral del cono es un sector circular y su  base es un círculo, obtenemos: Ár...
Próxima SlideShare
Cargando en…5
×

CUERPOS DE REVOLUCIÓN

95.832 visualizaciones

Publicado el

Presentación sobre cuerpos de revolución (cilindro, cono y esfera) dirigida a alumnos y alumnas de Educación Secundaria Obligatoria. (Con OpenOffice).

7 comentarios
13 recomendaciones
Estadísticas
Notas
Sin descargas
Visualizaciones
Visualizaciones totales
95.832
En SlideShare
0
De insertados
0
Número de insertados
3.273
Acciones
Compartido
0
Descargas
1.188
Comentarios
7
Recomendaciones
13
Insertados 0
No insertados

No hay notas en la diapositiva.

CUERPOS DE REVOLUCIÓN

  1. 1. CUERPOS DE REVOLUCIÓN
  2. 2. Índice <ul><li>Concepto de cuerpo de revolución.
  3. 3. Tipos de cuerpos de revolución: </li></ul><ul><ul><li>CILINDROS.
  4. 4. CONOS.
  5. 5. ESFERAS.
  6. 6. OTROS. </li></ul></ul><ul><ul><ul><li>Toro
  7. 7. Tronco de cono </li></ul></ul></ul>r
  8. 8. I. Concepto de cuerpo de revolución Llamamos cuerpo de revolución a aquel que se obtiene al girar una figura plana alrededor de un eje. Por ejemplo, si giramos la siguiente figura plana por el eje indicado, obtenemos el siguiente cuerpo:
  9. 9. II. Tipos de cuerpos de revolución Podemos obtener cuerpos de revolución de lo más variados. Simplemente basta con girar una figura plana sobre un eje. Los cuerpos de revolución más usuales son el cilindro , el cono , y la esfera , que estudiaremos a continuación.
  10. 10. CILINDRO El cilindro se obtiene al girar un rectángulo sobre uno de sus lados:
  11. 11. Desarrollo de un cilindro Si abrimos un cilindro, su desarrollo es el siguiente: h r h 2 π r r r
  12. 12. Cálculo de su área y volumen Puesto que el lateral del cilindro es un rectángulo, y sus dos bases son círculos, obtenemos: Área cilindro = Área lateral + 2 Área base = 2 π rh+2 π r 2 Problemas : Copia y realiza en tu cuaderno : 1º) Las paredes de un pozo de forma cilíndrica de 15 m. de profundidad y 1'6 m. de diámetro han sido repelladas a 30 € el metro cuadrado. ¿Cuánto ha costado?. 2º) ¿Cuántos litros de agua caben en el pozo del ejercicio anterior? ( Ten en cuenta que 1 litro es 1 dm 3 .) Volumen cilindro = Area base • altura = π r 2 h
  13. 13. CONO El cono se obtiene al girar un triángulo rectángulo sobre uno de sus catetos:
  14. 14. Desarrollo de un cono Si abrimos un cono, su desarrollo es el siguiente: g r 2 π r Donde: h es la altura del cono g es la generatriz r es el radio del círculo h r g
  15. 15. Cálculo de su área y volumen Puesto que el lateral del cono es un sector circular y su base es un círculo, obtenemos: Área cono = Área lateral + Área base = 2 π rg+ π r 2 Problemas : Copia y realiza en tu cuaderno : 1º) Un depósito tiene forma de cono. Si su altura mide 8 metros y su generatriz 10m., calcula su área y su volumen. ¿Cuántos litros de agua caben en él? ( Ten en cuenta que 1 litro es 1 dm 3 .) 2º) Halla la generatriz de un cono de 12 cm de altura y de 8 cm. de diámetro. Volumen cono = (1/3) • Area base • altura = (1/3) •π r 2 h
  16. 16. ESFERA Una esfera se obtiene de girar un semicírculo por el eje que pasa por su diámetro. r r
  17. 17. Cálculo del área y del volumen El área y el volumen de una esfera se obtienen al aplicar las fórmulas siguientes: Problema : Copia y realiza en tu cuaderno : 1º) ¿Cuántos litros de agua podríamos introducir en un balón de playa de 30 cm. de diámetro?. 2º) Si pretendemos envolver el balón del ejercicio anterior con papel, calcula el área de papel necesaria. Área esfera = 4 π r 2 Volumen esfera = ( 4/3) π r 3
  18. 18. OTROS - TORO. Se obtiene al girar un círculo sobre un eje que está fuera suyo. La figura obtenida se parece a una rosquilla. - TRONCO DE CONO. Es un cono al que se le ha dado un corte en el vértice. Se puede generar girando un trapecio sobre un eje perpendicular a sus vértices.
  19. 19. Resumen del cálculo de áreas y volúmenes de cuerpos geométricos NOTA: A l = área de la cara lateral A b = área de la base
  20. 20. Autor: Miguel Ángel Navarro Fernández, profesor de matemáticas del IES Carmen de Burgos (Huércal de Almería) Asignatura : Matemáticas (d irigido a alumnos de 2º de ESO)

×