2 port network

M
mihir jainengineering student
1
TWO PORTTWO PORT
NETWORKSNETWORKS
2
SUB - TOPICSSUB - TOPICS
Z – PARAMETER
Y – PARAMETER
T (ABCD) – PARAMETER
TERMINATED TWO PORT NETWORKS
3
OBJECTIVESOBJECTIVES
• TO UNDERSTAND ABOUT TWO – PORT
NETWORKS AND ITS FUNTIONS.
• TO UNDERSTAND THE DIFFERENT
BETWEEN Z – PARAMETER, Y –
PARAMETER, T – PARAMETER AND
TERMINATED TWO PORT NETWORKS.
• TO INVERTIGATE AND ANALYSIS THE
BEHAVIOUR OF TWO – PORT NETWORKS.
4
TWO – PORT NETWORKSTWO – PORT NETWORKS
• A pair of terminals through which a
current may enter or leave a network is
known as a port.
• Two terminal devices or elements (such as
resistors, capacitors, and inductors)
results in one – port network.
• Most of the circuits we have dealt with so
far are two – terminal or one – port
circuits.
5
• A two – port network is an electrical
network with two separate ports for
input and output.
• It has two terminal pairs acting as
access points. The current entering
one terminal of a pair leaves the
other terminal in the pair.
6
Linear network
+
V
-
I
I
One – port network
Linear network
+
V1
-
I1
I1 I2
I2
+
V2
-
Two – port network
7
• Two (2) reason why to study two port –
network:
Such networks are useful in
communication, control system, power
systems and electronics.
Knowing the parameters of a two – port
network enables us to treat it as a
“black box” when embedded within a
larger network.
8
• From the network, we can observe that
there are 4 variables that is I1, I2, V1and V2,
which two are independent.
• The various term that relate these
voltages and currents are called
parameters.
9
Z – PARAMETERZ – PARAMETER
• Z – parameter also called as impedance
parameter and the units is ohm (Ω)
• Impedance parameters is commonly used
in the synthesis of filters and also useful in
the design and analysis of impedance
matching networks and power distribution
networks.
• The two – port network may be voltage –
driven or current – driven.
10
• Two – port network driven by
voltage source.
• Two – port network driven by current
sources.
Linear network
I1 I2
+
−
+
−
V1 V2
I1 I2
+
V1
-
Linear network
+
V2
-
11
• The “black box” is replace with Z-parameter
is as shown below.
• The terminal voltage can be related to the
terminal current as:
+
V1
-
I1
I2
+
V2
-
Z11
Z21
Z12
Z22
2221212
2121111
IzIzV
IzIzV
+=
+= (1)
(2)
12
• In matrix form as:
• The Z-parameter that we want to
determine are z11, z12, z21, z22.
• The value of the parameters can be
evaluated by setting:
1. I1= 0 (input port open – circuited)
2. I2= 0 (output port open – circuited)












=





2
1
2221
1211
2
1
I
I
zz
zz
V
V
13
• Thus,
01
2
21
01
1
11
2
2
=
=
=
=
I
I
I
V
z
I
V
z
02
2
22
02
1
12
1
1
=
=
=
=
I
I
I
V
z
I
V
z
14
• Where;
z11 = open – circuit input impedance.
z12 = open – circuit transfer impedance from
port 1 to port 2.
z21 = open – circuit transfer impedance from
port 2 to port 1.
z22 = open – circuit output impedance.
15
Example 1Example 1
Find the Z – parameter of the circuit below.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
I2
16
SolutionSolution
i) I2 = 0(open circuit port 2). Redraw the
circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
I1
Ia
Ib
17
Ω==∴
→
=
=
84
(2)(1)sub
)2......(
400
280
)1.......(120
1
1
11
1
1
I
V
Z
II
IV
b
b
Ω==∴
→
=
=
72
(3)(4)sub
)4.......(
400
120
.......(3)240
1
2
21
1
2
I
V
Z
II
IV
a
a
18
ii) I1 = 0 (open circuit port 1). Redraw the
circuit.
40Ω
240Ω
120Ω
+
V1
_
+
V2
_
Iy I2
Ix
19
Ω==∴
→
=
=
96Z
(2)(1)sub
)2.......(
400
160
)1.......(240
2
2
22
2
2
I
V
II
IV
x
x
Ω==∴
→
=
=
72
(3)(4)sub
)4.......(
400
240
)3.......(120
2
1
12
2
1
I
V
Z
II
IV
y
y
[ ] 





=
9672
7284
Z
In matrix form:
20
Example 2Example 2
Find the Z – parameter of the circuit below
+
_
+
V1
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
21
SolutionSolution
i) I2 = 0 (open circuit port 2). Redraw the circuit.
Ω=∴
=
Ω+==∴
+=
0Z
circuit)(short0V
j4)(2
I
V
Z
j4)(2IV
21
2
1
1
11
11
+
V1
_
j4Ω2ΩI1
+
V2
_
I2 = 0
22
ii) I1 = 0 (open circuit port 1). Redraw the circuit.
Ω==∴






+=
+
−
=
Ω==∴
=
j8)-(16
I
V
Z
10
1
20
j
V2I
10
10I-V
j20
V
I
10
I
V
Z
10IV
2
2
22
22
222
2
2
1
12
21
[ ] 




 +
=
j8)-(1610
0j4)(2
Z
form;matrixIn
+
_
+
V1
_
+
V2
_-j20Ω
10Ω
10I2
I2I1 = 0
23
Y - PARAMETERY - PARAMETER
• Y – parameter also called admittance
parameter and the units is siemens (S).
• The “black box” that we want to replace
with the Y-parameter is shown below.
+
V1
-
I1
I2
+
V2
-
Y11
Y21
Y12
Y22
24
• The terminal current can be expressed in
term of terminal voltage as:
• In matrix form:
2221212
2121111
VyVyI
VyVyI
+=
+= (1)
(2)












=





2
1
2221
1211
2
1
V
V
yy
yy
I
I
25
• The y-parameter that we want to determine
are Y11, Y12, Y21, Y22. The values of the
parameters can be evaluate by setting:
i) V1 = 0 (input port short – circuited).
ii) V2 = 0 (output port short – circuited).
• Thus;
01
2
21
01
1
11
2
2
=
=
=
=
V
V
V
I
Y
V
I
Y
02
2
22
02
1
12
1
1
=
=
=
=
V
V
V
I
Y
V
I
Y
26
Example 1Example 1
Find the Y – parameter of the circuit shown
below.
5Ω
15Ω20Ω
+
V1
_
+
V2
_
I1
I2
27
SolutionSolution
i) V2 = 0
5Ω
20Ω
+
V1
_
I1
I2
Ia
S
V
I
Y
II
IV
a
a
4
1
(2)(1)sub
)2.......(
25
5
)1.......(20
1
1
11
1
1
==∴
→
=
=
S
V
I
Y
IV
5
1
5
1
2
21
21
−==∴
−=
28
ii) V1 = 0
In matrix form;
5Ω
15Ω
+
V2
_
I1
I2
Ix
S
V
I
Y
II
IV
x
x
15
4
(4)(3)sub
)4.......(
25
5
)3.......(15
2
2
22
2
2
==∴
→
=
=
S
V
I
Y
IV
5
1
5
2
1
12
12
−==∴
−=
[ ] SY










−
−
=
15
4
5
1
5
1
4
1
29
Example 2 (circuit withExample 2 (circuit with
dependent source)dependent source)
Find the Y – parameters of the circuit
shown.
+
_
+
V1
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
30
SolutionSolution
i) V2 = 0 (short – circuit port 2). Redraw the circuit.
+
_
+
V1
_
10Ωj4Ω2Ω
10I2
I2
I1
S0
V
I
Y
Sj0.2)-(0.1
j42
1
V
I
Y
j4)I(2V
0I
1
2
21
1
1
11
11
==∴
=
+
==∴
+=
=
31
ii) V1 = 0 (short – circuit port 1). Redraw the circuit.
)2.......(
j20-
1
10
1
V2I
10
10I-V
j20-
V
I
)........(1
j42
10I-
I
22
222
2
2
1






+=
+=
+
=
+
_
+
V2
_-j20Ω
10Ωj4Ω2Ω
10I2
I2I1
[ ] S
j0.0250.050
j0.0751.0j0.20.1
Y
form;matrixIn
Sj0.075)(-0.1
V
I
Y
(1)(2)sub
Sj0.025)(0.05
V
I
Y
2
1
12
2
2
22






+
+−+
=∴
+==
→
+==∴
32
T (ABCD) PARAMETERT (ABCD) PARAMETER
• T – parameter or ABCD – parameter is a
another set of parameters relates the
variables at the input port to those at the
output port.
• T – parameter also called transmission
parameters because this parameter are
useful in the analysis of transmission lines
because they express sending – end
variables (V1 and I1) in terms of the
receiving – end variables (V2 and -I2).
33
• The “black box” that we want to replace with T –
parameter is as shown below.
• The equation is:
+
V1
-
I1
I2
+
V2
-
A11
C21
B12
D22
)2.......(
)1.......(
221
221
DICVI
BIAVV
−=
−=
34
• In matrix form is:
• The T – parameter that we want
determine are A, B, C and D where A and
D are dimensionless, B is in ohm (Ω) and
C is in siemens (S).
• The values can be evaluated by setting
i) I2 = 0 (input port open – circuit)
ii) V2 = 0 (output port short circuit)






−





=





2
2
1
1
I
V
DC
BA
I
V
35
• Thus;
• In term of the transmission parameter, a
network is reciprocal if;
02
1
02
1
2
2
=
=
=
=
I
I
V
I
C
V
V
A
02
1
02
1
2
2
=
=
=
=
V
V
I
I
D
I
V
B
1BC-AD =
36
ExampleExample
Find the ABCD – parameter of the circuit
shown below.
2Ω
10Ω
+
V2
_
I1 I2
+
V1
_
4Ω
37
SolutionSolution
i) I2 = 0,
2Ω
10Ω
+
V2
_
I1
+
V1
_
2.1
5
6
10
2
2
1.0
10
2
1
22
2
1
211
2
1
12
==∴
=+





=
+=
==∴
=
V
V
A
VV
V
V
VIV
S
V
I
C
IV
38
ii) V2 = 0,
( )
Ω=−=∴
+





−=
+=
++=
=−=∴
−=
8.6
10
10
14
12
1012
102
4.1
14
10
2
1
221
211
2111
2
1
12
I
V
B
IIV
IIV
IIIV
I
I
D
II
2Ω
10Ω
I1 I2
+
V1
_
4Ω
I1 + I2
[ ] 





=
4.11.0
8.62.1
T
39
TERMINATED TWO – PORTTERMINATED TWO – PORT
NETWORKSNETWORKS
• In typical application of two port network,
the circuit is driven at port 1 and loaded at
port 2.
• Figure below shows the typical terminated
2 port model.
+
V1
-
I1 I2
+
V2
-
+
−
Zg
ZLVg
Two – port
network
40
• Zg represents the internal impedance of
the source and Vg is the internal voltage of
the source and ZL is the load impedance.
• There are a few characteristics of the
terminated two-port network and some of
them are;
gV
V
V
V
I
I
I
V
I
V
2
g
1
2
v
1
2
i
2
2
o
1
1
i
Again,voltageoverallv)
Again,voltageiv)
Again,currentiii)
Zimpedance,outputii)
Zimpedance,inputi)
=
=
=
=
=
41
• The derivation of any one of the desired
expression involves the algebraic
manipulation of the two – port equation. The
equation are:
1) the two-port parameter equation either Z
or Y or ABCD.
For example, Z-parameter,
)2.......(IZIZV
)1.......(IZIV
2221212
2121111
+=
+= Z
42
2) KVL at input,
3) KVL at the output,
• From these equations, all the characteristic
can be obtained.
.......(3)ZIVV g1g1 −=
)4.......(ZIV L22 −=
43
Example 1Example 1
For the two-port shown below, obtain the
suitable value of Rs such that maximum
power is available at the input terminal. The
Z-parameter of the two-port network is given
as
With Rs = 5Ω,what would be the value of






=





44
26
2221
1211
ZZ
ZZ
s
2
V
V
+
V1
-
I1 I2
+
V2
-
+
−
Rs
4ΩVs
Z
44
SolutionSolution
1) Z-parameter equation becomes;
2) KVL at the output;
Subs. (3) into (2)
)2.......(44
)1.......(26
212
211
IIV
IIV
+=
+=
)3.......(4 22 IV −=
)4.......(
2
1
2
I
I −=
45
Subs. (4) into (1)
For the circuit to have maximum power,
)5.......(5 11 IV =
Ω==∴ 5
1
1
1
I
V
Z
Ω== 51ZRs
46
To find at max. power transfer, voltage
drop at Z1 is half of Vs
From equations (3), (4), (5) & (6)
Overall voltage gain,
s
2
V
V
)6.......(
2
1
sV
V =
5
12
==
s
g
V
V
A
47
Example 2Example 2
The ABCD parameter of two – port network shown
below are.
The output port is connected to a variable load for
a maximum power transfer. Find RL and the
maximum power transferred.





 Ω
20.1S
204
48
ABCD parameter equation becomes
V1 = 4V2 – 20I2
I1 = 0.1V2 – 2I2
At the input port, V1 = -10I
(1)
(2)
(3)
Solution
49
(3) Into (1)
-10I1 = 4V2 – 20I2
I1 = -0.4V2 2I2
(2) = (4)
0.1V2 – 2I2 = -0.4V2 + 2I2
0.5V2 = 4I2
From (5);
ZTH = V2/I2 = 8Ω
(4)
(5)
(6)
50
But from Figure (b), we know that
V1 = 50 – 10I1 and I2 =0
Sub. these into (1) and (2)
50 – 10I1 = 4V2
I1 = 0.1V2
(8)
(7)
51
Sub (8) into (7)
V2 = 10
Thus, VTH = V2 = 10V
RL for maximum power transfer,
RL = ZTH = 8Ω
The maximum power
P = I2
RL = (VTH/2RL)2
x RL = V2
TH/4RL = 3.125W
1 de 51

Recomendados

Two port networks por
Two port networksTwo port networks
Two port networksMohammed Waris Senan
3.1K vistas33 diapositivas
Two Port Network Parameters por
Two Port Network ParametersTwo Port Network Parameters
Two Port Network Parametersmmlodro
25.7K vistas24 diapositivas
Z parameters por
Z parametersZ parameters
Z parametersshubhajitCHATTERJEE2
1.1K vistas11 diapositivas
Two port network por
Two port networkTwo port network
Two port networkRajput Manthan
11.6K vistas32 diapositivas
NAS-Unit-5_Two Port Networks por
NAS-Unit-5_Two Port NetworksNAS-Unit-5_Two Port Networks
NAS-Unit-5_Two Port NetworksHussain K
602 vistas64 diapositivas
Two port networks (y parameters) por
Two port networks (y parameters)Two port networks (y parameters)
Two port networks (y parameters)bhupendra kumar
20.2K vistas9 diapositivas

Más contenido relacionado

La actualidad más candente

A presentation on inverter by manoj por
A presentation on inverter by manojA presentation on inverter by manoj
A presentation on inverter by manojIACM SmartLearn Ltd.
10.3K vistas76 diapositivas
Unit 4 twoportnetwork por
Unit 4 twoportnetworkUnit 4 twoportnetwork
Unit 4 twoportnetworkACE ENGINEERING COLLEGE
11.6K vistas74 diapositivas
Bipolar Junction Transistor (BJT) DC and AC Analysis por
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC AnalysisJess Rangcasajo
65.8K vistas213 diapositivas
operational amplifiers por
operational amplifiersoperational amplifiers
operational amplifiersPatel Jay
1.7K vistas32 diapositivas
Module4: opamp as a V-I & I-V Converter por
Module4:  opamp as a V-I & I-V ConverterModule4:  opamp as a V-I & I-V Converter
Module4: opamp as a V-I & I-V Converterchandrakant shinde
826 vistas15 diapositivas
kvl kcl- nodal analysis por
kvl  kcl- nodal analysiskvl  kcl- nodal analysis
kvl kcl- nodal analysisPdr Patnaik
6.7K vistas8 diapositivas

La actualidad más candente(20)

Bipolar Junction Transistor (BJT) DC and AC Analysis por Jess Rangcasajo
Bipolar Junction Transistor (BJT) DC and AC AnalysisBipolar Junction Transistor (BJT) DC and AC Analysis
Bipolar Junction Transistor (BJT) DC and AC Analysis
Jess Rangcasajo65.8K vistas
operational amplifiers por Patel Jay
operational amplifiersoperational amplifiers
operational amplifiers
Patel Jay1.7K vistas
kvl kcl- nodal analysis por Pdr Patnaik
kvl  kcl- nodal analysiskvl  kcl- nodal analysis
kvl kcl- nodal analysis
Pdr Patnaik6.7K vistas
Power electronics Phase Controlled Rectifiers - SCR por Burdwan University
Power electronics   Phase Controlled Rectifiers - SCRPower electronics   Phase Controlled Rectifiers - SCR
Power electronics Phase Controlled Rectifiers - SCR
Burdwan University20.4K vistas
Bipolar Junction Transistor por Prankit Mishra
Bipolar Junction TransistorBipolar Junction Transistor
Bipolar Junction Transistor
Prankit Mishra2.5K vistas
differential amplifier for electronic por Faiz Yun
differential amplifier for electronicdifferential amplifier for electronic
differential amplifier for electronic
Faiz Yun13K vistas
The operational amplifier (part 2) por Jamil Ahmed
The operational amplifier (part 2)The operational amplifier (part 2)
The operational amplifier (part 2)
Jamil Ahmed3K vistas
Operational amplifier por Unsa Shakir
Operational amplifierOperational amplifier
Operational amplifier
Unsa Shakir20.7K vistas
INVERTERS PRESENTATION por Rajesh V
INVERTERS PRESENTATIONINVERTERS PRESENTATION
INVERTERS PRESENTATION
Rajesh V3.3K vistas
operational amplifiers por Patel Jay
operational amplifiersoperational amplifiers
operational amplifiers
Patel Jay6.2K vistas
Polar Plot por Hussain K
Polar PlotPolar Plot
Polar Plot
Hussain K3.1K vistas
Mos transistor por Murali Rai
Mos transistorMos transistor
Mos transistor
Murali Rai6.5K vistas
Clamping Circuit and Clipping Circuit por Dr.Raja R
Clamping Circuit and Clipping CircuitClamping Circuit and Clipping Circuit
Clamping Circuit and Clipping Circuit
Dr.Raja R424 vistas

Destacado

Two port network por
Two port networkTwo port network
Two port networkkaushal boghani
15.7K vistas19 diapositivas
Two port networks unit ii por
Two port networks unit iiTwo port networks unit ii
Two port networks unit iimrecedu
8.4K vistas34 diapositivas
Two port network por
Two port networkTwo port network
Two port networkPinky Chaudhari
9.2K vistas20 diapositivas
DAC , Digital to analog Converter por
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog ConverterHossam Zein
13.8K vistas24 diapositivas
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER por
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERSripati Mahapatra
10.9K vistas10 diapositivas
DAC-digital to analog converter por
DAC-digital to analog converterDAC-digital to analog converter
DAC-digital to analog converterShazid Reaj
48K vistas31 diapositivas

Destacado(20)

Two port networks unit ii por mrecedu
Two port networks unit iiTwo port networks unit ii
Two port networks unit ii
mrecedu8.4K vistas
DAC , Digital to analog Converter por Hossam Zein
DAC , Digital to analog ConverterDAC , Digital to analog Converter
DAC , Digital to analog Converter
Hossam Zein13.8K vistas
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER por Sripati Mahapatra
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTERANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
ANALOG TO DIGITAL AND DIGITAL TO ANALOG CONVERTER
Sripati Mahapatra10.9K vistas
DAC-digital to analog converter por Shazid Reaj
DAC-digital to analog converterDAC-digital to analog converter
DAC-digital to analog converter
Shazid Reaj48K vistas
Interdental Wiring for Mandibular Fracture Repair por Brett Beckman
Interdental Wiring for Mandibular Fracture RepairInterdental Wiring for Mandibular Fracture Repair
Interdental Wiring for Mandibular Fracture Repair
Brett Beckman2.4K vistas
smith chart By Engr Mimkhan por Engr Mimkhan
smith chart By Engr Mimkhansmith chart By Engr Mimkhan
smith chart By Engr Mimkhan
Engr Mimkhan2.6K vistas
Transmission and Distribution. por PRABHAHARAN429
Transmission and Distribution.Transmission and Distribution.
Transmission and Distribution.
PRABHAHARAN4297.4K vistas
Smith chart:A graphical representation. por amitmeghanani
Smith chart:A graphical representation.Smith chart:A graphical representation.
Smith chart:A graphical representation.
amitmeghanani10.3K vistas
RF Circuit Design - [Ch2-2] Smith Chart por Simen Li
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
Simen Li8.3K vistas
Testing and trouble shooting of multivibrators por Sandeep Jamdar
Testing and trouble shooting of multivibratorsTesting and trouble shooting of multivibrators
Testing and trouble shooting of multivibrators
Sandeep Jamdar4.3K vistas
Transistor bias circuit por Adk Adool
Transistor bias circuitTransistor bias circuit
Transistor bias circuit
Adk Adool1.7K vistas
Transmission line analysis por Anurag Anupam
Transmission line analysisTransmission line analysis
Transmission line analysis
Anurag Anupam3.9K vistas
Ee2 chapter15 multivibrator por CK Yang
Ee2 chapter15 multivibratorEe2 chapter15 multivibrator
Ee2 chapter15 multivibrator
CK Yang4.4K vistas

Similar a 2 port network

Two port networks por
Two port networksTwo port networks
Two port networksJaved khan
2.9K vistas34 diapositivas
Hybrid Transistor Model with Two Port Network por
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port NetworkRidwanul Hoque
335 vistas23 diapositivas
2. Nodal Analysis Complete.pdf por
2. Nodal Analysis Complete.pdf2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdfNirmalCTEVT
9 vistas25 diapositivas
Use s parameters-determining_inductance_capacitance por
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitancePei-Che Chang
1.3K vistas11 diapositivas
LC2-EE3726-C16-Two-port_networks.pdf por
LC2-EE3726-C16-Two-port_networks.pdfLC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdfVQuangKhi
8 vistas20 diapositivas

Similar a 2 port network(20)

Two port networks por Javed khan
Two port networksTwo port networks
Two port networks
Javed khan2.9K vistas
Hybrid Transistor Model with Two Port Network por Ridwanul Hoque
Hybrid Transistor Model with Two Port NetworkHybrid Transistor Model with Two Port Network
Hybrid Transistor Model with Two Port Network
Ridwanul Hoque335 vistas
2. Nodal Analysis Complete.pdf por NirmalCTEVT
2. Nodal Analysis Complete.pdf2. Nodal Analysis Complete.pdf
2. Nodal Analysis Complete.pdf
NirmalCTEVT9 vistas
Use s parameters-determining_inductance_capacitance por Pei-Che Chang
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
Pei-Che Chang1.3K vistas
LC2-EE3726-C16-Two-port_networks.pdf por VQuangKhi
LC2-EE3726-C16-Two-port_networks.pdfLC2-EE3726-C16-Two-port_networks.pdf
LC2-EE3726-C16-Two-port_networks.pdf
VQuangKhi8 vistas
Chapter 2 Uncontrolled Rectifiers.pdf por LiewChiaPing
Chapter 2 Uncontrolled Rectifiers.pdfChapter 2 Uncontrolled Rectifiers.pdf
Chapter 2 Uncontrolled Rectifiers.pdf
LiewChiaPing47 vistas
Hardware combinational por Defri Tan
Hardware combinationalHardware combinational
Hardware combinational
Defri Tan851 vistas
Linear Algebra and Complex Variables por MahirHassan5
Linear Algebra and Complex VariablesLinear Algebra and Complex Variables
Linear Algebra and Complex Variables
MahirHassan5116 vistas
Coupled inductor boost integrated flyback converter with high-voltage gain-1 por Jeetendra Prasad
Coupled inductor boost integrated flyback converter with high-voltage gain-1Coupled inductor boost integrated flyback converter with high-voltage gain-1
Coupled inductor boost integrated flyback converter with high-voltage gain-1
Jeetendra Prasad606 vistas
Comm Engg mod & demod por rmkrva
Comm Engg mod & demod Comm Engg mod & demod
Comm Engg mod & demod
rmkrva107 vistas
BEEE-UNIT 1.pptx por Gigi203211
BEEE-UNIT 1.pptxBEEE-UNIT 1.pptx
BEEE-UNIT 1.pptx
Gigi203211233 vistas
Three State Switching Boost Converter ppt por Mamta Bagoria
Three State Switching Boost Converter pptThree State Switching Boost Converter ppt
Three State Switching Boost Converter ppt
Mamta Bagoria611 vistas
Chapter 03 por Tha Mike
Chapter 03Chapter 03
Chapter 03
Tha Mike921 vistas
W ee network_theory_10-06-17_ls2-sol por Ankit Chaurasia
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Ankit Chaurasia62 vistas
chapter_2 AC to DC Converter.pptx por LiewChiaPing
chapter_2 AC to DC Converter.pptxchapter_2 AC to DC Converter.pptx
chapter_2 AC to DC Converter.pptx
LiewChiaPing30 vistas

Más de mihir jain

Schering bridge por
Schering bridge Schering bridge
Schering bridge mihir jain
6.7K vistas6 diapositivas
signal & system inverse z-transform por
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transformmihir jain
4.2K vistas17 diapositivas
Types of system por
Types of system Types of system
Types of system mihir jain
18.1K vistas14 diapositivas
Pump theory por
Pump theory Pump theory
Pump theory mihir jain
824 vistas19 diapositivas
euler's theorem por
euler's theoremeuler's theorem
euler's theoremmihir jain
14.9K vistas11 diapositivas
Ozone layer por
Ozone layer Ozone layer
Ozone layer mihir jain
2.9K vistas16 diapositivas

Más de mihir jain(14)

Schering bridge por mihir jain
Schering bridge Schering bridge
Schering bridge
mihir jain6.7K vistas
signal & system inverse z-transform por mihir jain
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
mihir jain4.2K vistas
Types of system por mihir jain
Types of system Types of system
Types of system
mihir jain18.1K vistas
Pump theory por mihir jain
Pump theory Pump theory
Pump theory
mihir jain824 vistas
euler's theorem por mihir jain
euler's theoremeuler's theorem
euler's theorem
mihir jain14.9K vistas
Ozone layer por mihir jain
Ozone layer Ozone layer
Ozone layer
mihir jain2.9K vistas
Maths-double integrals por mihir jain
Maths-double integralsMaths-double integrals
Maths-double integrals
mihir jain3.9K vistas
inverse z-transform ppt por mihir jain
inverse z-transform pptinverse z-transform ppt
inverse z-transform ppt
mihir jain10.2K vistas
Ct signal operations por mihir jain
Ct signal operationsCt signal operations
Ct signal operations
mihir jain2.9K vistas
KARNAUGH MAP(K-MAP) por mihir jain
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
mihir jain8.9K vistas
SIGNAL OPERATIONS por mihir jain
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
mihir jain7.9K vistas
SPECIAL PURPOSE DIODE por mihir jain
SPECIAL PURPOSE DIODESPECIAL PURPOSE DIODE
SPECIAL PURPOSE DIODE
mihir jain18K vistas
Advance engineering mathematics por mihir jain
Advance engineering mathematicsAdvance engineering mathematics
Advance engineering mathematics
mihir jain4.8K vistas

Último

LFA-NPG-Paper.pdf por
LFA-NPG-Paper.pdfLFA-NPG-Paper.pdf
LFA-NPG-Paper.pdfharinsrikanth
40 vistas13 diapositivas
String.pptx por
String.pptxString.pptx
String.pptxAnanthi Palanisamy
47 vistas24 diapositivas
SNMPx por
SNMPxSNMPx
SNMPxAmatullahbutt
12 vistas12 diapositivas
Object Oriented Programming with JAVA por
Object Oriented Programming with JAVAObject Oriented Programming with JAVA
Object Oriented Programming with JAVADemian Antony D'Mello
64 vistas28 diapositivas
IWISS Catalog 2022 por
IWISS Catalog 2022IWISS Catalog 2022
IWISS Catalog 2022Iwiss Tools Co.,Ltd
24 vistas66 diapositivas
Deutsch Crimping por
Deutsch CrimpingDeutsch Crimping
Deutsch CrimpingIwiss Tools Co.,Ltd
19 vistas7 diapositivas

Último(20)

Dynamics of Hard-Magnetic Soft Materials por Shivendra Nandan
Dynamics of Hard-Magnetic Soft MaterialsDynamics of Hard-Magnetic Soft Materials
Dynamics of Hard-Magnetic Soft Materials
Shivendra Nandan13 vistas
Extensions of Time - Contract Management por brainquisitive
Extensions of Time - Contract ManagementExtensions of Time - Contract Management
Extensions of Time - Contract Management
brainquisitive15 vistas
Art of Writing Research article slide share.pptx por sureshc91
Art of Writing Research article slide share.pptxArt of Writing Research article slide share.pptx
Art of Writing Research article slide share.pptx
sureshc9114 vistas
13_DVD_Latch-up_prevention.pdf por Usha Mehta
13_DVD_Latch-up_prevention.pdf13_DVD_Latch-up_prevention.pdf
13_DVD_Latch-up_prevention.pdf
Usha Mehta9 vistas
Thermal aware task assignment for multicore processors using genetic algorithm por IJECEIAES
Thermal aware task assignment for multicore processors using genetic algorithm Thermal aware task assignment for multicore processors using genetic algorithm
Thermal aware task assignment for multicore processors using genetic algorithm
IJECEIAES29 vistas
MSA Website Slideshow (16).pdf por msaucla
MSA Website Slideshow (16).pdfMSA Website Slideshow (16).pdf
MSA Website Slideshow (16).pdf
msaucla39 vistas
A multi-microcontroller-based hardware for deploying Tiny machine learning mo... por IJECEIAES
A multi-microcontroller-based hardware for deploying Tiny machine learning mo...A multi-microcontroller-based hardware for deploying Tiny machine learning mo...
A multi-microcontroller-based hardware for deploying Tiny machine learning mo...
IJECEIAES10 vistas
Informed search algorithms.pptx por Dr.Shweta
Informed search algorithms.pptxInformed search algorithms.pptx
Informed search algorithms.pptx
Dr.Shweta12 vistas
An approach of ontology and knowledge base for railway maintenance por IJECEIAES
An approach of ontology and knowledge base for railway maintenanceAn approach of ontology and knowledge base for railway maintenance
An approach of ontology and knowledge base for railway maintenance
IJECEIAES12 vistas
Machine Element II Course outline.pdf por odatadese1
Machine Element II Course outline.pdfMachine Element II Course outline.pdf
Machine Element II Course outline.pdf
odatadese16 vistas

2 port network

  • 2. 2 SUB - TOPICSSUB - TOPICS Z – PARAMETER Y – PARAMETER T (ABCD) – PARAMETER TERMINATED TWO PORT NETWORKS
  • 3. 3 OBJECTIVESOBJECTIVES • TO UNDERSTAND ABOUT TWO – PORT NETWORKS AND ITS FUNTIONS. • TO UNDERSTAND THE DIFFERENT BETWEEN Z – PARAMETER, Y – PARAMETER, T – PARAMETER AND TERMINATED TWO PORT NETWORKS. • TO INVERTIGATE AND ANALYSIS THE BEHAVIOUR OF TWO – PORT NETWORKS.
  • 4. 4 TWO – PORT NETWORKSTWO – PORT NETWORKS • A pair of terminals through which a current may enter or leave a network is known as a port. • Two terminal devices or elements (such as resistors, capacitors, and inductors) results in one – port network. • Most of the circuits we have dealt with so far are two – terminal or one – port circuits.
  • 5. 5 • A two – port network is an electrical network with two separate ports for input and output. • It has two terminal pairs acting as access points. The current entering one terminal of a pair leaves the other terminal in the pair.
  • 6. 6 Linear network + V - I I One – port network Linear network + V1 - I1 I1 I2 I2 + V2 - Two – port network
  • 7. 7 • Two (2) reason why to study two port – network: Such networks are useful in communication, control system, power systems and electronics. Knowing the parameters of a two – port network enables us to treat it as a “black box” when embedded within a larger network.
  • 8. 8 • From the network, we can observe that there are 4 variables that is I1, I2, V1and V2, which two are independent. • The various term that relate these voltages and currents are called parameters.
  • 9. 9 Z – PARAMETERZ – PARAMETER • Z – parameter also called as impedance parameter and the units is ohm (Ω) • Impedance parameters is commonly used in the synthesis of filters and also useful in the design and analysis of impedance matching networks and power distribution networks. • The two – port network may be voltage – driven or current – driven.
  • 10. 10 • Two – port network driven by voltage source. • Two – port network driven by current sources. Linear network I1 I2 + − + − V1 V2 I1 I2 + V1 - Linear network + V2 -
  • 11. 11 • The “black box” is replace with Z-parameter is as shown below. • The terminal voltage can be related to the terminal current as: + V1 - I1 I2 + V2 - Z11 Z21 Z12 Z22 2221212 2121111 IzIzV IzIzV += += (1) (2)
  • 12. 12 • In matrix form as: • The Z-parameter that we want to determine are z11, z12, z21, z22. • The value of the parameters can be evaluated by setting: 1. I1= 0 (input port open – circuited) 2. I2= 0 (output port open – circuited)             =      2 1 2221 1211 2 1 I I zz zz V V
  • 14. 14 • Where; z11 = open – circuit input impedance. z12 = open – circuit transfer impedance from port 1 to port 2. z21 = open – circuit transfer impedance from port 2 to port 1. z22 = open – circuit output impedance.
  • 15. 15 Example 1Example 1 Find the Z – parameter of the circuit below. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 I2
  • 16. 16 SolutionSolution i) I2 = 0(open circuit port 2). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ I1 Ia Ib
  • 18. 18 ii) I1 = 0 (open circuit port 1). Redraw the circuit. 40Ω 240Ω 120Ω + V1 _ + V2 _ Iy I2 Ix
  • 20. 20 Example 2Example 2 Find the Z – parameter of the circuit below + _ + V1 _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1
  • 21. 21 SolutionSolution i) I2 = 0 (open circuit port 2). Redraw the circuit. Ω=∴ = Ω+==∴ += 0Z circuit)(short0V j4)(2 I V Z j4)(2IV 21 2 1 1 11 11 + V1 _ j4Ω2ΩI1 + V2 _ I2 = 0
  • 22. 22 ii) I1 = 0 (open circuit port 1). Redraw the circuit. Ω==∴       += + − = Ω==∴ = j8)-(16 I V Z 10 1 20 j V2I 10 10I-V j20 V I 10 I V Z 10IV 2 2 22 22 222 2 2 1 12 21 [ ]       + = j8)-(1610 0j4)(2 Z form;matrixIn + _ + V1 _ + V2 _-j20Ω 10Ω 10I2 I2I1 = 0
  • 23. 23 Y - PARAMETERY - PARAMETER • Y – parameter also called admittance parameter and the units is siemens (S). • The “black box” that we want to replace with the Y-parameter is shown below. + V1 - I1 I2 + V2 - Y11 Y21 Y12 Y22
  • 24. 24 • The terminal current can be expressed in term of terminal voltage as: • In matrix form: 2221212 2121111 VyVyI VyVyI += += (1) (2)             =      2 1 2221 1211 2 1 V V yy yy I I
  • 25. 25 • The y-parameter that we want to determine are Y11, Y12, Y21, Y22. The values of the parameters can be evaluate by setting: i) V1 = 0 (input port short – circuited). ii) V2 = 0 (output port short – circuited). • Thus; 01 2 21 01 1 11 2 2 = = = = V V V I Y V I Y 02 2 22 02 1 12 1 1 = = = = V V V I Y V I Y
  • 26. 26 Example 1Example 1 Find the Y – parameter of the circuit shown below. 5Ω 15Ω20Ω + V1 _ + V2 _ I1 I2
  • 27. 27 SolutionSolution i) V2 = 0 5Ω 20Ω + V1 _ I1 I2 Ia S V I Y II IV a a 4 1 (2)(1)sub )2.......( 25 5 )1.......(20 1 1 11 1 1 ==∴ → = = S V I Y IV 5 1 5 1 2 21 21 −==∴ −=
  • 28. 28 ii) V1 = 0 In matrix form; 5Ω 15Ω + V2 _ I1 I2 Ix S V I Y II IV x x 15 4 (4)(3)sub )4.......( 25 5 )3.......(15 2 2 22 2 2 ==∴ → = = S V I Y IV 5 1 5 2 1 12 12 −==∴ −= [ ] SY           − − = 15 4 5 1 5 1 4 1
  • 29. 29 Example 2 (circuit withExample 2 (circuit with dependent source)dependent source) Find the Y – parameters of the circuit shown. + _ + V1 _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1
  • 30. 30 SolutionSolution i) V2 = 0 (short – circuit port 2). Redraw the circuit. + _ + V1 _ 10Ωj4Ω2Ω 10I2 I2 I1 S0 V I Y Sj0.2)-(0.1 j42 1 V I Y j4)I(2V 0I 1 2 21 1 1 11 11 ==∴ = + ==∴ += =
  • 31. 31 ii) V1 = 0 (short – circuit port 1). Redraw the circuit. )2.......( j20- 1 10 1 V2I 10 10I-V j20- V I )........(1 j42 10I- I 22 222 2 2 1       += += + = + _ + V2 _-j20Ω 10Ωj4Ω2Ω 10I2 I2I1 [ ] S j0.0250.050 j0.0751.0j0.20.1 Y form;matrixIn Sj0.075)(-0.1 V I Y (1)(2)sub Sj0.025)(0.05 V I Y 2 1 12 2 2 22       + +−+ =∴ +== → +==∴
  • 32. 32 T (ABCD) PARAMETERT (ABCD) PARAMETER • T – parameter or ABCD – parameter is a another set of parameters relates the variables at the input port to those at the output port. • T – parameter also called transmission parameters because this parameter are useful in the analysis of transmission lines because they express sending – end variables (V1 and I1) in terms of the receiving – end variables (V2 and -I2).
  • 33. 33 • The “black box” that we want to replace with T – parameter is as shown below. • The equation is: + V1 - I1 I2 + V2 - A11 C21 B12 D22 )2.......( )1.......( 221 221 DICVI BIAVV −= −=
  • 34. 34 • In matrix form is: • The T – parameter that we want determine are A, B, C and D where A and D are dimensionless, B is in ohm (Ω) and C is in siemens (S). • The values can be evaluated by setting i) I2 = 0 (input port open – circuit) ii) V2 = 0 (output port short circuit)       −      =      2 2 1 1 I V DC BA I V
  • 35. 35 • Thus; • In term of the transmission parameter, a network is reciprocal if; 02 1 02 1 2 2 = = = = I I V I C V V A 02 1 02 1 2 2 = = = = V V I I D I V B 1BC-AD =
  • 36. 36 ExampleExample Find the ABCD – parameter of the circuit shown below. 2Ω 10Ω + V2 _ I1 I2 + V1 _ 4Ω
  • 37. 37 SolutionSolution i) I2 = 0, 2Ω 10Ω + V2 _ I1 + V1 _ 2.1 5 6 10 2 2 1.0 10 2 1 22 2 1 211 2 1 12 ==∴ =+      = += ==∴ = V V A VV V V VIV S V I C IV
  • 38. 38 ii) V2 = 0, ( ) Ω=−=∴ +      −= += ++= =−=∴ −= 8.6 10 10 14 12 1012 102 4.1 14 10 2 1 221 211 2111 2 1 12 I V B IIV IIV IIIV I I D II 2Ω 10Ω I1 I2 + V1 _ 4Ω I1 + I2 [ ]       = 4.11.0 8.62.1 T
  • 39. 39 TERMINATED TWO – PORTTERMINATED TWO – PORT NETWORKSNETWORKS • In typical application of two port network, the circuit is driven at port 1 and loaded at port 2. • Figure below shows the typical terminated 2 port model. + V1 - I1 I2 + V2 - + − Zg ZLVg Two – port network
  • 40. 40 • Zg represents the internal impedance of the source and Vg is the internal voltage of the source and ZL is the load impedance. • There are a few characteristics of the terminated two-port network and some of them are; gV V V V I I I V I V 2 g 1 2 v 1 2 i 2 2 o 1 1 i Again,voltageoverallv) Again,voltageiv) Again,currentiii) Zimpedance,outputii) Zimpedance,inputi) = = = = =
  • 41. 41 • The derivation of any one of the desired expression involves the algebraic manipulation of the two – port equation. The equation are: 1) the two-port parameter equation either Z or Y or ABCD. For example, Z-parameter, )2.......(IZIZV )1.......(IZIV 2221212 2121111 += += Z
  • 42. 42 2) KVL at input, 3) KVL at the output, • From these equations, all the characteristic can be obtained. .......(3)ZIVV g1g1 −= )4.......(ZIV L22 −=
  • 43. 43 Example 1Example 1 For the two-port shown below, obtain the suitable value of Rs such that maximum power is available at the input terminal. The Z-parameter of the two-port network is given as With Rs = 5Ω,what would be the value of       =      44 26 2221 1211 ZZ ZZ s 2 V V + V1 - I1 I2 + V2 - + − Rs 4ΩVs Z
  • 44. 44 SolutionSolution 1) Z-parameter equation becomes; 2) KVL at the output; Subs. (3) into (2) )2.......(44 )1.......(26 212 211 IIV IIV += += )3.......(4 22 IV −= )4.......( 2 1 2 I I −=
  • 45. 45 Subs. (4) into (1) For the circuit to have maximum power, )5.......(5 11 IV = Ω==∴ 5 1 1 1 I V Z Ω== 51ZRs
  • 46. 46 To find at max. power transfer, voltage drop at Z1 is half of Vs From equations (3), (4), (5) & (6) Overall voltage gain, s 2 V V )6.......( 2 1 sV V = 5 12 == s g V V A
  • 47. 47 Example 2Example 2 The ABCD parameter of two – port network shown below are. The output port is connected to a variable load for a maximum power transfer. Find RL and the maximum power transferred.       Ω 20.1S 204
  • 48. 48 ABCD parameter equation becomes V1 = 4V2 – 20I2 I1 = 0.1V2 – 2I2 At the input port, V1 = -10I (1) (2) (3) Solution
  • 49. 49 (3) Into (1) -10I1 = 4V2 – 20I2 I1 = -0.4V2 2I2 (2) = (4) 0.1V2 – 2I2 = -0.4V2 + 2I2 0.5V2 = 4I2 From (5); ZTH = V2/I2 = 8Ω (4) (5) (6)
  • 50. 50 But from Figure (b), we know that V1 = 50 – 10I1 and I2 =0 Sub. these into (1) and (2) 50 – 10I1 = 4V2 I1 = 0.1V2 (8) (7)
  • 51. 51 Sub (8) into (7) V2 = 10 Thus, VTH = V2 = 10V RL for maximum power transfer, RL = ZTH = 8Ω The maximum power P = I2 RL = (VTH/2RL)2 x RL = V2 TH/4RL = 3.125W