SlideShare una empresa de Scribd logo
1 de 14
Descargar para leer sin conexión
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 1 of 14
RAFT FOUNDATION DESIGN IN ACCORDANCE WITH BS8110:PART 1-
1997_FOR MULTISTOREY BUILDING (BS8110 : PART 1 : 1997)
hedge
hboot
bedgebboot
aedge
hslab
hhcoreslab
hhcorethick
AsslabtopAsedgetop
Asslabbtm
Asedgebtm
Asedgelink
Soil and raft definition
Soil definition
Allowable bearing pressure; qallow = 75.0 kN/m
2
Number of types of soil forming sub-soil; Two or more types
Soil density; Firm to loose
Depth of hardcore beneath slab; hhcoreslab = 200 mm; (Dispersal allowed for bearing pressure check)
Depth of hardcore beneath thickenings; hhcorethick = 0 mm; (Dispersal allowed for bearing pressure check)
Density of hardcore; γhcore = 20.0 kN/m
3
Basic assumed diameter of local depression; φdepbasic = 3500mm
Diameter under slab modified for hardcore; φdepslab = φdepbasic - hhcoreslab = 3300 mm
Diameter under thickenings modified for hardcore; φdepthick = φdepbasic - hhcorethick = 3500 mm
Raft slab definition
Max dimension/max dimension between joints; lmax = 12.000 m
Slab thickness; hslab = 250 mm
Concrete strength; fcu = 35 N/mm
2
Poissons ratio of concrete; ν = 0.2
Slab mesh reinforcement strength; fyslab = 500 N/mm
2
Partial safety factor for steel reinforcement; γs = 1.15
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 2 of 14
From C&CA document ‘Concrete ground floors’ Table 5
Minimum mesh required in top for shrinkage; A142;
Actual mesh provided in top; A393 (Asslabtop = 393 mm
2
/m)
Mesh provided in bottom; A393 (Asslabbtm = 393 mm
2
/m)
Top mesh bar diameter; φslabtop = 10 mm
Bottom mesh bar diameter; φslabbtm = 10 mm
Cover to top reinforcement; ctop = 20 mm
Cover to bottom reinforcement; cbtm = 40 mm
Average effective depth of top reinforcement; dtslabav = hslab - ctop - φslabtop = 220 mm
Average effective depth of bottom reinforcement; dbslabav = hslab - cbtm - φslabbtm = 200 mm
Overall average effective depth; dslabav = (dtslabav + dbslabav)/2 = 210 mm
Minimum effective depth of top reinforcement; dtslabmin = dtslabav - φslabtop/2 = 215 mm
Minimum effective depth of bottom reinforcement; dbslabmin = dbslabav - φslabbtm/2 = 195 mm
Edge beam definition
Overall depth; hedge = 600 mm
Width; bedge = 550 mm
Depth of boot; hboot = 250 mm
Width of boot; bboot = 250 mm
Angle of chamfer to horizontal; αedge = 60 deg
Strength of main bar reinforcement; fy = 500 N/mm
2
Strength of link reinforcement; fys = 500 N/mm
2
Reinforcement provided in top; 3 H25 bars (Asedgetop = 1473 mm
2
)
Reinforcement provided in bottom; 3 H20 bars (Asedgebtm = 942 mm
2
)
Link reinforcement provided; 2 H12 legs at 250 ctrs (Asv/sv = 0.905 mm)
Bottom cover to links; cbeam = 40 mm
Effective depth of top reinforcement; dedgetop = hedge - ctop - φslabtop - φedgelink - φedgetop/2 = 546 mm
Effective depth of bottom reinforcement; dedgebtm = hedge - cbeam - φedgelink - φedgebtm/2 = 538 mm
Boot main reinforcement; H8 bars at 250 ctrs (Asboot = 201 mm
2
/m)
Effective depth of boot reinforcement; dboot = hboot - cbeam - φboot/2 = 206 mm
Internal beam definition
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 3 of 14
hint
bint
aint
hslab
hhcoreslab
hhcorethick
AsslabtopAsinttop
Asslabbtm
Asintbtm
Asintlink
Overall depth; hint = 550 mm
Width; bint = 500 mm
Angle of chamfer to horizontal; αint = 60 deg
Strength of main bar reinforcement; fy = 500 N/mm
2
Strength of link reinforcement; fys = 500 N/mm
2
Reinforcement provided in top; 3 H25 bars (Asinttop = 1473 mm
2
)
Reinforcement provided in bottom; 3 H25 bars (Asintbtm = 1473 mm
2
)
Link reinforcement provided; 2 H12 legs at 225 ctrs (Asv/sv = 1.005 mm)
Effective depth of top reinforcement; dinttop = hint - ctop - 2 × φslabtop - φinttop/2 = 498 mm
Effective depth of bottom reinforcement; dintbtm = hint - cbeam - φintlink - φintbtm/2 = 486 mm
Internal slab design checks
Basic loading
Slab self weight; wslab = 24 kN/m
3
× hslab = 6.0 kN/m
2
Hardcore; whcoreslab = γhcore × hhcoreslab = 4.0 kN/m
2
Applied loading
Uniformly distributed dead load; wDudl = 2.0 kN/m
2
Uniformly distributed live load; wLudl = 2.5 kN/m
2
Slab load number 1
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 4 of 14
Load type; Line load
Dead load; wD1 = 3.0 kN/m
Live load; wL1 = 2.0 kN/m
Ultimate load; wult1 = 1.4 × wD1 + 1.6 × wL1 = 7.4 kN/m
Line load width; b1 = 140 mm
Internal slab bearing pressure check
Total uniform load at formation level; wudl = wslab + whcoreslab + wDudl + wLudl = 14.5 kN/m
2
Bearing pressure beneath load number 1
Net bearing pressure available to resist line load; qnet = qallow - wudl = 60.5 kN/m
2
Net ‘ultimate’ bearing pressure available; qnetult = qnet × wult1/(wD1 + wL1) = 89.5 kN/m
2
Loaded width required at formation; lreq1 = wult1/qnetult = 0.083 m
Effective loaded width at u/side slab; leff1 = max(b1, lreq1 - 2 × hhcoreslab × tan(30)) = 0.140 m
Effective net ult bearing pressure at u/side slab; qnetulteff = qnetult × lreq1/leff1 = 52.9 kN/m
2
Cantilever bending moment; Mcant1 = qnetulteff × [(leff1 - b1)/2]
2
/2 = 0.0 kNm/m
Reinforcement required in bottom
Maximum cantilever moment; Mcantmax = 0.0 kNm/m
K factor; Kslabbp = Mcantmax/(fcu × dbslabmin
2
) = 0.000
Lever arm; zslabbp = dbslabmin × min(0.95, 0.5 + √(0.25 - Kslabbp/0.9)) = 185.3 mm
Area of steel required; Asslabbpreq = Mcantmax/((1.0/γs) × fyslab × zslabbp) = 0 mm
2
/m
PASS - Asslabbpreq <= Asslabbtm - Area of reinforcement provided to distribute the load is adequate
The allowable bearing pressure will not be exceeded
Internal slab bending and shear check
Applied bending moments
Span of slab; lslab = φdepslab + dtslabav = 3520 mm
Ultimate self weight udl; wswult = 1.4 × wslab = 8.4 kN/m
2
Self weight moment at centre; Mcsw = wswult × lslab
2
× (1 + ν) / 64 = 2.0 kNm/m
Self weight moment at edge; Mesw = wswult × lslab
2
/ 32 = 3.3 kNm/m
Self weight shear force at edge; Vsw = wswult × lslab / 4 = 7.4 kN/m
Moments due to applied uniformly distributed loads
Ultimate applied udl; wudlult = 1.4 × wDudl + 1.6 × wLudl = 6.8 kN/m
2
Moment at centre; Mcudl = wudlult × lslab
2
× (1 + ν) / 64 = 1.6 kNm/m
Moment at edge; Meudl = wudlult × lslab
2
/ 32 = 2.6 kNm/m
Shear force at edge; Vudl = wudlult × lslab / 4 = 6.0 kN/m
Moment due to load number 1
Approximate equivalent udl; wudl1 = wult1/(2 × 0.3 × lslab) = 3.5 kN/m
2
Moment at centre; Mc1 = wudl1 × lslab
2
× (1 + ν) / 64 = 0.8 kNm/m
Moment at edge; Me1 = wudl1 × lslab
2
/ 32 = 1.4 kNm/m
Shear force at edge; V1 = wudl1 × lslab / 4 = 3.1 kN/m
Resultant moments and shears
Total moment at edge; MΣe = 7.2 kNm/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 5 of 14
Total moment at centre; MΣc = 4.3 kNm/m
Total shear force; VΣ = 16.5 kN/m
Reinforcement required in top
K factor; Kslabtop = MΣe/(fcu × dtslabav
2
) = 0.004
Lever arm; zslabtop = dtslabav × min(0.95, 0.5 + √(0.25 - Kslabtop/0.9)) = 209.0 mm
Area of steel required for bending; Asslabtopbend = MΣe/((1.0/γs) × fyslab × zslabtop) = 80 mm
2
/m
Minimum area of steel required; Asslabmin = 0.0013 × hslab = 325 mm
2
/m
Area of steel required; Asslabtopreq = max(Asslabtopbend, Asslabmin) = 325 mm
2
/m
PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is adequate
Reinforcement required in bottom
K factor; Kslabbtm = MΣc/(fcu × dbslabav
2
) = 0.003
Lever arm; zslabbtm = dbslabav × min(0.95, 0.5 + √(0.25 - Kslabbtm/0.9)) = 190.0 mm
Area of steel required for bending; Asslabbtmbend = MΣc/((1.0/γs) × fyslab × zslabbtm) = 53 mm
2
/m
Area of steel required; Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 325 mm
2
/m
PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local depressions is adequate
Shear check
Applied shear stress; v = VΣ/dtslabmin = 0.077 N/mm
2
Tension steel ratio; ρ = 100 × Asslabtop/dtslabmin = 0.183
From BS8110-1:1997 - Table 3.8;
Design concrete shear strength; vc = 0.469 N/mm
2
PASS - v <= vc - Shear capacity of the slab is adequate
Internal slab deflection check
Basic allowable span to depth ratio; Ratiobasic = 26.0
Moment factor; Mfactor = MΣc/dbslabav
2
= 0.109 N/mm
2
Steel service stress; fs = 2/3 × fyslab × Asslabbtmbend/Asslabbtm = 44.615 N/mm
2
Modification factor; MFslab = min(2.0, 0.55 + [(477N/mm
2
- fs)/(120 × (0.9N/mm
2
+ Mfactor))])
MFslab = 2.000
Modified allowable span to depth ratio; Ratioallow = Ratiobasic × MFslab = 52.000
Actual span to depth ratio; Ratioactual = lslab/ dbslabav = 17.600
PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate
Edge beam design checks
Basic loading
Hardcore; whcorethick = γhcore × hhcorethick = 0.0 kN/m
2
Edge beam
Rectangular beam element; wbeam = 24 kN/m
3
× hedge × bedge = 7.9 kN/m
Boot element; wboot = 24 kN/m3
× hboot × bboot = 1.5 kN/m
Chamfer element; wchamfer = 24 kN/m
3
× (hedge - hslab)
2
/(2 × tan(αedge)) = 0.8 kN/m
Slab element; wslabelmt = 24 kN/m
3
× hslab × (hedge - hslab)/tan(αedge) = 1.2 kN/m
Edge beam self weight; wedge = wbeam + wboot + wchamfer + wslabelmt = 11.5 kN/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 6 of 14
Edge load number 1
Load type; Longitudinal line load
Dead load; wDedge1 = 13.2 kN/m
Live load; wLedge1 = 0.0 kN/m
Ultimate load; wultedge1 = 1.4 × wDedge1 + 1.6 × wLedge1 = 18.5 kN/m
Longitudinal line load width; bedge1 = 102 mm
Centroid of load from outside face of raft; xedge1 = 51 mm
Edge load number 2
Load type; Longitudinal line load
Dead load; wDedge2 = 16.1 kN/m
Live load; wLedge2 = 5.6 kN/m
Ultimate load; wultedge2 = 1.4 × wDedge2 + 1.6 × wLedge2 = 31.5 kN/m
Longitudinal line load width; bedge2 = 100 mm
Centroid of load from outside face of raft; xedge2 = 230 mm
Edge beam bearing pressure check
Effective bearing width of edge beam; bbearing = bedge + bboot + (hedge - hslab)/tan(αedge) = 1002 mm
Total uniform load at formation level; wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 16.0 kN/m
2
Centroid of longitudinal and equivalent line loads from outside face of raft
Load x distance for edge load 1; Moment1 = wultedge1 × xedge1 = 0.9 kN
Load x distance for edge load 2; Moment2 = wultedge2 × xedge2 = 7.2 kN
Sum of ultimate longitud’l and equivalent line loads; ΣUDL = 50.0 kN/m
Sum of load x distances; ΣMoment = 8.2 kN
Centroid of loads; xbar = ΣMoment/ΣUDL = 164 mm
Initially assume no moment transferred into slab due to load/reaction eccentricity
Sum of unfactored longitud’l and eff’tive line loads; ΣUDLsls = 34.9 kN/m
Allowable bearing width; ballow = 2 × xbar + 2 × hhcoreslab × tan(30) = 559 mm
Bearing pressure due to line/point loads; qlinepoint = ΣUDLsls/ ballow = 62.5 kN/m
2
Total applied bearing pressure; qedge = qlinepoint + wudledge = 78.4 kN/m
2
qedge > qallow - The slab is required to resist a moment due to eccentricity
Now assume moment due to load/reaction eccentricity is resisted by slab
Bearing width required; breq = ΣUDLsls/(qallow - wudledge) = 591 mm
Effective bearing width at u/s of slab; breqeff = breq - 2 × hhcoreslab × tan(30) = 360 mm
Load/reaction eccentricity; e = breqeff/2 - xbar = 16 mm
Ultimate moment to be resisted by slab; Mecc = ΣUDL × e = 0.8 kNm/m
From slab bending check
Moment due to depression under slab (hogging); MΣe = 7.2 kNm/m
Total moment to be resisted by slab top steel; Mslabtop = Mecc + MΣe = 8.1 kNm/m
K factor; Kslab = Mslabtop/(fcu × dtslabmin
2
) = 0.005
Lever arm; zslab = dtslabmin × min(0.95, 0.5 + √(0.25 - Kslab/0.9)) = 204 mm
Area of steel required; Asslabreq = Mslabtop/((1.0/γs) × 460 N/mm
2
× zslab) = 99 mm
2
/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 7 of 14
PASS - Asslabreq <= Asslabtop - Area of reinforcement provided to transfer moment into slab is adequate
The allowable bearing pressure under the edge beam will not be exceeded
Edge beam bending check
Divider for moments due to udl’s; βudl = 12.0
Applied bending moments
Span of edge beam; ledge = φdepthick + dedgetop = 4045 mm
Ultimate self weight udl; wedgeult = 1.4 × wedge = 16.1 kN/m
Ultimate slab udl (approx); wedgeslab = max(0 kN/m,1.4×wslab×((φdepthick/2×3/4)-(bedge+(hedge-hslab)/tan(αedge))))
wedgeslab = 4.7 kN/m
Self weight and slab bending moment; Medgesw = (wedgeult + wedgeslab) × ledge
2
/βudl = 28.3 kNm
Self weight shear force; Vedgesw = (wedgeult + wedgeslab) × ledge/2 = 42.0 kN
Moments due to applied uniformly distributed loads
Ultimate udl (approx); wedgeudl = wudlult × φdepthick/2 × 3/4 = 8.9 kN/m
Bending moment; Medgeudl = wedgeudl × ledge
2
/βudl = 12.2 kNm
Shear force; Vedgeudl = wedgeudl × ledge/2 = 18.1 kN
Moment and shear due to load number 1
Bending moment; Medge1 = wultedge1 × ledge
2
/βudl = 25.2 kNm
Shear force; Vedge1 = wultedge1 × ledge/2 = 37.4 kN
Moment and shear due to load number 2
Bending moment; Medge2 = wultedge2 × ledge
2
/βudl = 43.0 kNm
Shear force; Vedge2 = wultedge2 × ledge/2 = 63.7 kN
Resultant moments and shears
Total moment (hogging and sagging); MΣedge = 108.7 kNm
Maximum shear force; VΣedge = 161.2 kN
Reinforcement required in top
Width of section in compression zone; bedgetop = bedge + bboot = 800 mm
Average web width; bw = bedge + (hedge/tan(αedge))/2 = 723 mm
K factor; Kedgetop = MΣedge/(fcu × bedgetop × dedgetop
2
) = 0.013
Lever arm; zedgetop = dedgetop × min(0.95, 0.5 + √(0.25 - Kedgetop/0.9)) = 518 mm
Area of steel required for bending; Asedgetopbend = MΣedge/((1.0/γs) × fy × zedgetop) = 482 mm
2
Minimum area of steel required; Asedgetopmin = 0.0013 × 1.0 × bw × hedge = 564 mm
2
Area of steel required; Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 564 mm
2
PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate
Reinforcement required in bottom
Width of section in compression zone; bedgebtm = bedge + (hedge - hslab)/tan(αedge) + 0.1 × ledge = 1157 mm
K factor; Kedgebtm = MΣedge/(fcu × bedgebtm × dedgebtm
2
) = 0.009
Lever arm; zedgebtm = dedgebtm × min(0.95, 0.5 + √(0.25 - Kedgebtm/0.9)) = 511 mm
Area of steel required for bending; Asedgebtmbend = MΣedge/((1.0/γs) × fy × zedgebtm) = 489 mm
2
Minimum area of steel required; Asedgebtmmin = 0.0013 × 1.0 × bw × hedge = 564 mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 8 of 14
Area of steel required; Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 564 mm
2
PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate
Edge beam shear check
Applied shear stress; vedge = VΣedge/(bw × dedgetop) = 0.409 N/mm
2
Tension steel ratio; ρedge = 100 × Asedgetop/(bw × dedgetop) = 0.373
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vcedge = 0.509 N/mm
2
vedge <= vcedge + 0.4N/mm
2
- Therefore minimum links required
Link area to spacing ratio required; Asv_upon_svreqedge = 0.4N/mm
2
× bw/((1.0/γs) × fys) = 0.665 mm
Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelink×π×φedgelink
2
/(4×svedge) = 0.905 mm
PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams is adequate
Boot design check
Effective cantilever span; lboot = bboot + dboot/2 = 353 mm
Approximate ultimate bearing pressure; qult = 1.55 × qallow = 116.3 kN/m
2
Cantilever moment; Mboot = qult × lboot
2
/2 = 7.2 kNm/m
Shear force; Vboot = qult × lboot = 41.0 kN/m
K factor; Kboot = Mboot/(fcu × dboot
2
) = 0.005
Lever arm; zboot = dboot × min(0.95, 0.5 + √(0.25 - Kboot/0.9)) = 196 mm
Area of reinforcement required; Asbootreq = Mboot/((1.0/γs) × fyboot × zboot) = 85 mm
2
/m
PASS - Asbootreq <= Asboot - Area of reinforcement provided in boot is adequate for bending
Applied shear stress; vboot = Vboot/dboot = 0.199 N/mm
2
Tension steel ratio; ρboot = 100 × Asboot/dboot = 0.098
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vcboot = 0.384 N/mm
2
PASS - vboot <= vcboot - Shear capacity of the boot is adequate
Corner design checks
Basic loading
Corner load number 1
Load type; Line load in x direction
Dead load; wDcorner1 = 13.2 kN/m
Live load; wLcorner1 = 0.0 kN/m
Ultimate load; wultcorner1 = 1.4 × wDcorner1 + 1.6 × wLcorner1 = 18.5 kN/m
Centroid of load from outside face of raft; ycorner1 = 51 mm
Corner load number 2
Load type; Line load in x direction
Dead load; wDcorner2 = 16.1 kN/m
Live load; wLcorner2 = 5.6 kN/m
Ultimate load; wultcorner2 = 1.4 × wDcorner2 + 1.6 × wLcorner2 = 31.5 kN/m
Centroid of load from outside face of raft; ycorner2 = 230 mm
Corner load number 3
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 9 of 14
Load type; Line load in y direction
Dead load; wDcorner3 = 14.3 kN/m
Live load; wLcorner3 = 0.0 kN/m
Ultimate load; wultcorner3 = 1.4 × wDcorner3 + 1.6 × wLcorner3 = 20.0 kN/m
Centroid of load from outside face of raft; xcorner3 = 51 mm
Corner load number 4
Load type; Line load in y direction
Dead load; wDcorner4 = 11.7 kN/m
Live load; wLcorner4 = 0.0 kN/m
Ultimate load; wultcorner4 = 1.4 × wDcorner4 + 1.6 × wLcorner4 = 16.4 kN/m
Centroid of load from outside face of raft; xcorner4 = 230 mm
Corner load number 5
Load type; Line load in y direction
Dead load; wDcorner5 = 15.0 kN/m
Live load; wLcorner5 = 0.0 kN/m
Ultimate load; wultcorner5 = 1.4 × wDcorner5 + 1.6 × wLcorner5 = 21.0 kN/m
Centroid of load from outside face of raft; xcorner5 = 230 mm
Corner bearing pressure check
Total uniform load at formation level; wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 16.0 kN/m
2
Net bearing press avail to resist line/point loads; qnetcorner = qallow - wudlcorner = 59.0 kN/m
2
Total line/point loads
Total unfactored line load in x direction; wΣlinex = 34.9 kN/m
Total ultimate line load in x direction; wΣultlinex =50.0 kN/m
Total unfactored line load in y direction; wΣliney = 41.0 kN/m
Total ultimate line load in y direction; wΣultliney = 57.4 kN/m
Total unfactored point load; wΣpoint = 0.0 kN
Total ultimate point load; wΣultpoint = 0.0 kN
Length of side of sq reqd to resist line/point loads; pcorner =[wΣlinex+wΣliney+√((wΣlinex+wΣliney)
2
+4×qnetcorner×wΣpoint)]/(2×qnetcorner)
pcorner = 1286 mm
Bending moment about x-axis due to load/reaction eccentricity
Moment due to load 1 (x line); Mx1 = max(0 kNm, wultcorner1 × pcorner × (pcorner/2 - ycorner1)) = 14.1 kNm
Moment due to load 2 (x line); Mx2 = max(0 kNm, wultcorner2 × pcorner × (pcorner/2 - ycorner2)) = 16.7 kNm
Total moment about x axis; MΣx = 30.8 kNm
Bending moment about y-axis due to load/reaction eccentricity
Moment due to load 3 (y line); My3 = max(0 kNm, wultcorner3 × pcorner × (pcorner/2 - xcorner3)) = 15.2 kNm
Moment due to load 4 (y line); My4 = max(0 kNm, wultcorner4 × pcorner × (pcorner/2 - xcorner4)) = 8.7 kNm
Moment due to load 5 (y line); My5 = max(0 kNm, wultcorner5 × pcorner × (pcorner/2 - xcorner5)) = 11.1 kNm
Total moment about y axis; MΣy = 35.1 kNm
Check top reinforcement in edge beams for load/reaction eccentric moment
Max moment due to load/reaction eccentricity; MΣ = max(MΣx, MΣy) = 35.1 kNm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 10 of 14
Assume all of this moment is resisted by edge beam
From edge beam design checks away from corners
Moment due to edge beam spanning depression; MΣedge = 108.7 kNm
Total moment to be resisted; MΣcornerbp = MΣ + MΣedge = 143.7 kNm
Width of section in compression zone; bedgetop = bedge + bboot = 800 mm
K factor; Kcornerbp = MΣcornerbp/(fcu × bedgetop × dedgetop
2
) = 0.017
Lever arm; zcornerbp = dedgetop × min(0.95, 0.5 + √(0.25 - Kcornerbp/0.9)) = 518 mm
Total area of top steel required; Ascornerbp = MΣcornerbp /((1.0/γs) × fy × zcornerbp) = 638 mm
2
PASS - Ascornerbp <= Asedgetop - Area of reinforcement provided to resist eccentric moment is adequate
The allowable bearing pressure at the corner will not be exceeded
Corner beam bending check
Cantilever span of edge beam; lcorner = φdepthick/√(2) + dedgetop/2 = 2748 mm
Moment and shear due to self weight
Ultimate self weight udl; wedgeult = 1.4 × wedge = 16.1 kN/m
Average ultimate slab udl (approx); wcornerslab = max(0 kN/m,1.4×wslab×(φdepthick/(√(2)×2)-(bedge+(hedge-hslab)/tan(αedge))))
wcornerslab = 4.1 kN/m
Self weight and slab bending moment; Mcornersw = (wedgeult + wcornerslab) × lcorner
2
/2 = 76.1 kNm
Self weight and slab shear force; Vcornersw = (wedgeult + wcornerslab) × lcorner = 55.4 kN
Moment and shear due to udls
Maximum ultimate udl; wcornerudl = ((1.4×wDudl)+(1.6×wLudl)) × φdepthick/√(2) = 16.8 kN/m
Bending moment; Mcornerudl = wcornerudl × lcorner
2
/6 = 21.2 kNm
Shear force; Vcornerudl = wcornerudl × lcorner/2 = 23.1 kN
Moment and shear due to line loads in x direction
Bending moment; Mcornerlinex = wΣultlinex × lcorner
2
/2 = 188.7 kNm
Shear force; Vcornerlinex = wΣultlinex × lcorner = 137.3 kN
Moment and shear due to line loads in y direction
Bending moment; Mcornerliney = wΣultliney × lcorner
2
/2 = 216.7 kNm
Shear force; Vcornerliney = wΣultliney × lcorner = 157.7 kN
Total moments and shears due to point loads
Bending moment about x axis; Mcornerpointx = 0.0 kNm
Bending moment about y axis; Mcornerpointy = 0.0 kNm
Shear force; Vcornerpoint = 0.0 kN
Resultant moments and shears
Total moment about x axis; MΣcornerx = Mcornersw+ Mcornerudl+ Mcornerliney+ Mcornerpointx = 313.9 kNm
Total shear force about x axis; VΣcornerx = Vcornersw+ Vcornerudl+ Vcornerliney + Vcornerpoint = 236.2 kN
Total moment about y axis; MΣcornery = Mcornersw+ Mcornerudl+ Mcornerlinex+ Mcornerpointy = 285.9 kNm
Total shear force about y axis; VΣcornery = Vcornersw+ Vcornerudl+ Vcornerlinex + Vcornerpoint = 215.8 kN
Deflection of both edge beams at corner will be the same therefore design for average of these moments and shears
Design bending moment; MΣcorner = (MΣcornerx + MΣcornery)/2 = 299.9 kNm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 11 of 14
Design shear force; VΣcorner = (VΣcornerx + VΣcornery)/2 = 226.0 kN
Reinforcement required in top of edge beam
K factor; Kcorner = MΣcorner/(fcu × bedgetop × dedgetop
2
) = 0.036
Lever arm; zcorner = dedgetop × min(0.95, 0.5 + √(0.25 - Kcorner/0.9)) = 518 mm
Area of steel required for bending; Ascornerbend = MΣcorner/((1.0/γs) × fy × zcorner) = 1331 mm
2
Minimum area of steel required; Ascornermin = Asedgetopmin = 564 mm
2
Area of steel required; Ascorner = max(Ascornerbend, Ascornermin) = 1331 mm
2
PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is adequate
Corner beam shear check
Average web width; bw = bedge + (hedge/tan(αedge))/2 = 723 mm
Applied shear stress; vcorner = VΣcorner/(bw × dedgetop) = 0.573 N/mm
2
Tension steel ratio; ρcorner = 100 × Asedgetop/(bw × dedgetop) = 0.373
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vccorner = 0.471 N/mm
2
vcorner <= vccorner + 0.4N/mm
2
- Therefore minimum links required
Link area to spacing ratio required; Asv_upon_svreqcorner = 0.4N/mm
2
× bw/((1.0/γs) × fys) = 0.665 mm
Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelink×π×φedgelink
2
/(4×svedge) = 0.905 mm
PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams at corners is
adequate
Corner beam deflection check
Basic allowable span to depth ratio; Ratiobasiccorner = 7.0
Moment factor; Mfactorcorner = MΣcorner/(bedgetop × dedgetop
2
) = 1.260 N/mm
2
Steel service stress; fscorner = 2/3 × fy × Ascornerbend/Asedgetop = 301.285 N/mm
2
Modification factor; MFcorner=min(2.0,0.55+[(477N/mm
2
-fscorner)/(120×(0.9N/mm
2
+Mfactorcorner))])
MFcorner = 1.228
Modified allowable span to depth ratio; Ratioallowcorner = Ratiobasiccorner × MFcorner = 8.596
Actual span to depth ratio; Ratioactualcorner = lcorner/ dedgetop = 5.037
PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate
Internal beam design checks
Basic loading
Hardcore; whcorethick = γhcore × hhcorethick = 0.0 kN/m
2
Internal beam self weight; wint=24 kN/m
3
×[(hint×bint)+(hint-hslab)
2
/tan(αint)+2×hslab×(hint-hslab)/tan(αint)]
wint = 9.9 kN/m
Internal beam load number 1
Load type; Longitudinal line load
Dead load; wDint1 = 15.0 kN/m
Live load; wLint1 = 5.3 kN/m
Ultimate load; wultint1 = 1.4 × wDint1 + 1.6 × wLint1 = 29.5 kN/m
Longitudinal line load width; bint1 = 140 mm
Centroid of load from centreline of beam; xint1 = 0 mm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 12 of 14
Internal beam load number 2
Load type; Full transverse line load;
Dead load; wDint2 = 10.0 kN/m
Live load; wLint2 = 4.0 kN/m
Ultimate load; wultint2 = 1.4 × wDint2 + 1.6 × wLint2 = 20.4 kN/m
Transverse line load width; bint2 = 140 mm
Internal beam bearing pressure check
Total uniform load at formation level; wudlint = wDudl+wLudl+whcorethick+24kN/m
3
×hint = 17.7 kN/m
2
Effective point load due to transverse line/point loads
Effective point load due to load 2 (Line load); Wint2 = wultint2 × [bint + 2×(hint - hslab)/tan(αint)] = 17.3 kN
Total effective point load; Wint = 17.3 kN
Minimum width of effective point load; bintmin = 140 mm
Approximate longitudinal dispersal of effective point load
Approx moment capacity of bottom steel; Mintbtm = (1.0/γs) × fy × 0.9 × dintbtm × Asintbtm = 279.8 kNm
Max allow dispersal based on moment capacity; pintmom = [2×Mintbtm + √(4×Mintbtm
2
+2×Wint×Mintbtm×bintmin)]/Wint
pintmom = 64880 mm
Limiting max dispersal to say 5 x beam depth; pint = min(pintmom, 5 × hint) = 2750 mm
Total dispersal length of effective point load; linteff = 2 × pint + bintmin = 5640 mm
Equivalent and total beam line loads
Equivalent ultimate udl of internal load 2; wintudl2 = Wint2/linteff = 3.1 kN/m
Equivalent unfactored udl of internal load 2; wintudl2sls = wintudl2 × (wDint2 + wLint2)/wultint2 = 2.1 kN/m
Sum of factored longitud’l and eff’tive line loads; ΣUDLint = 32.5 kN/m
Sum of unfactored longitud’l and eff’tive line loads; ΣUDLslsint = 22.4 kN/m
Centroid of loads from centreline of internal beam
Load x distance for internal load 1; Momentint1 = wultint1 × xint1 = 0.0 kN
Sum of load x distances; ΣMomentint = 0.0 kN
Centroid of loads; xbarint = ΣMomentint/ΣUDLint = 0.0 mm
Moment due to eccentricity to be resisted by slab; Meccint = ΣUDLint × abs(xbarint) = 0.0 kNm/m
Assume moment due to eccentricity is resisted equally by top steel of slab on one side and bottom steel of slab on other
From slab bending check
Moment due to depression under slab (hogging); MΣe = 7.2 kNm/m
Total moment to be resisted by slab top steel; Mslabtopint = Meccint/2 + MΣe = 7.2 kNm/m
K factor; Kslabtopint = Mslabtopint/(fcu × dtslabmin
2
) = 0.004
Lever arm; zslabtopint = dtslabmin × min(0.95, 0.5 + √(0.25 - Kslabtopint/0.9)) = 204 mm
Area of steel required; Asslabtopintreq = Mslabtopint/((1.0/γs) × fyslab × zslabtopint) = 82 mm
2
/m
PASS - Asslabtopintreq <= Asslabtop - Area of reinforcement in top of slab is adequate to transfer moment into slab
Mt to be resisted by slab btm stl due to load ecc’ty; Mslabbtmint = Meccint/2 = 0.0 kNm/m
K factor; Kslabbtmint = Mslabbtmint/(fcu × dbslabmin
2
) = 0.000
Lever arm; zslabbtmint = dbslabmin × min(0.95, 0.5 + √(0.25-Kslabbtmint/0.9)) = 185 mm
Area of steel required in bottom; Asslabbtmintreq = Mslabbtmint/((1.0/γs) × fyslab × zslabbtmint) = 0 mm
2
/m
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 13 of 14
PASS - Asslabbtmintreq <= Asslabbtm - Area of reinforcement in bottom of slab is adequate to transfer moment into slab
Bearing pressure
Initially check bearing pressure based on beam soffit/chamfer width only
Allowable bearing width; bbearint = bint + 2 × (hint - hslab)/tan(αint) = 846 mm
Bearing pressure due to line/point loads; qlinepointint = ΣUDLslsint/bbearint = 26.5 kN/m
2
Total applied bearing pressure; qint = qlinepointint + wudlint = 44.2 kN/m
2
PASS - qint <= qallow - Allowable bearing pressure is not exceeded
Internal beam bending check
Divider for moments due to udl’s; βudl = 12.0
Divider for moments due to point loads; βpoint = 7.0
Applied bending moments
Span of internal beam; lint = φdepthick + dinttop = 3998 mm
Ultimate self weight udl; wintult = 1.4 × wint = 13.9 kN/m
Ultimate slab udl (approx); wintslab = max(0 kN/m,1.4×wslab×((φdepthick×3/4)-(bint+2×(hint-hslab)/tan(αint))))
wintslab = 14.9 kN/m
Self weight and slab bending moment; Mintsw = (wintult + wintslab) × lint
2
/βudl = 38.4 kNm
Self weight shear force; Vintsw = (wintult + wintslab) × lint/2 = 57.6 kN
Moments due to applied uniformly distributed loads
Ultimate udl (approx); wintudl = wudlult × φdepthick × 3/4 = 17.9 kN/m
Bending moment; Mintudl = wintudl × lint
2
/βudl = 23.8 kNm
Shear force; Vintudl = wintudl × lint/2 = 35.7 kN
Moment and shear due to load number 1
Bending moment; Mint1 = wultint1 × lint
2
/βudl = 39.3 kNm
Shear force; Vint1 = wultint1 × lint/2 = 58.9 kN
Moment and shear due to load number 2
Ultimate point load; Wint2 = wultint2 × φdepthick × 3/4 = 53.6 kN
Bending moment; Mint2 = Wint2 × lint/βpoint = 30.6 kNm
Shear force; Vint2 = Wint2 = 53.6 kN
Resultant moments and shears
Total moment (hogging and sagging); MΣint = 132.0 kNm
Maximum shear force; VΣint = 205.8 kN
Reinforcement required in top
Width of section in compression zone; binttop = bint = 500 mm
Average web width; bwint = bint + hint/tan(αint) = 818 mm
K factor; Kinttop = MΣint/(fcu × binttop × dinttop
2
) = 0.030
Lever arm; zinttop = dinttop × min(0.95, 0.5 + √(0.25 - Kinttop/0.9)) = 473 mm
Area of steel required for bending; Asinttopbend = MΣint/((1.0/γs) × fy × zinttop) = 642 mm
2
Minimum area of steel; Asinttopmin = 0.0013 × bwint × hint = 585 mm
2
Area of steel required; Asinttopreq = max(Asinttopbend, Asinttopmin) = 642 mm
2
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info
Project: Raft Foundation Analysis & Design, In
accordance with BS8110:part 1-1997_for
multistorey Building.
Job Ref.
www.geodomisi.com
Section
Civil & Geotechnical EngineeringCalculations for
Sheet no./rev. 1
Calc.Made by
Dr. C. Sachpazis
Date
27/02/2016
Chk'd by
Date App'd by Date
Page 14 of 14
PASS - Asinttopreq <= Asinttop - Area of reinforcement provided in top of internal beams is adequate
Reinforcement required in bottom
Width of section in compression zone; bintbtm = bint + 2 × (hint - hslab)/tan(αint) + 0.2 × lint = 1646 mm
K factor; Kintbtm = MΣint/(fcu × bintbtm × dintbtm
2
) = 0.010
Lever arm; zintbtm = dintbtm × min(0.95, 0.5 + √(0.25 - Kintbtm/0.9)) = 461 mm
Area of steel required for bending; Asintbtmbend = MΣint/((1.0/γs) × fy × zintbtm) = 658 mm
2
Minimum area of steel required; Asintbtmmin = 0.0013 × 1.0 × bwint × hint = 585 mm
2
Area of steel required; Asintbtmreq = max(Asintbtmbend, Asintbtmmin) = 658 mm
2
PASS - Asintbtmreq <= Asintbtm - Area of reinforcement provided in bottom of internal beams is adequate
Internal beam shear check
Applied shear stress; vint = VΣint/(bwint × dinttop) = 0.506 N/mm
2
Tension steel ratio; ρint = 100 × Asinttop/(bwint × dinttop) = 0.362
From BS8110-1:1997 - Table 3.8
Design concrete shear strength; vcint = 0.477 N/mm
2
vint <= vcint + 0.4N/mm
2
- Therefore minimum links required
Link area to spacing ratio required; Asv_upon_svreqint = 0.4N/mm
2
× bwint/((1.0/γs) × fys) = 0.752 mm
Link area to spacing ratio provided; Asv_upon_svprovint = Nintlink×π×φintlink
2
/(4×svint) = 1.005 mm
PASS - Asv_upon_svreqint <= Asv_upon_svprovint - Shear reinforcement provided in internal beams is adequate
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 -
Mobile: (+30) 6936425722 & (+44) 7585939944,
www.geodomisi.com - costas@sachpazis.info

Más contenido relacionado

La actualidad más candente

Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Muhammad Irfan
 
Braced cuts in deep excavation
Braced cuts in deep excavationBraced cuts in deep excavation
Braced cuts in deep excavationRakesh Reddy
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Muhammad Irfan
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Muhammad Irfan
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforcedSelvakumar Palanisamy
 
Plaxis 2 d tutorial
Plaxis 2 d tutorialPlaxis 2 d tutorial
Plaxis 2 d tutorialssuserdaf7ae
 
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaHossam Shafiq II
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of pilesLatif Hyder Wadho
 
Mat foundation
Mat foundationMat foundation
Mat foundationV.m. Rajan
 
CH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptxCH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptxGetahunTadesse5
 
Combined footings
Combined footingsCombined footings
Combined footingsseemavgiri
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse ProjectJawad Shaukat
 

La actualidad más candente (20)

Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
Geotechnical Engineering-II [Lec #15 & 16: Schmertmann Method]
 
Geotechnical vertical stress
Geotechnical vertical stressGeotechnical vertical stress
Geotechnical vertical stress
 
Braced cuts in deep excavation
Braced cuts in deep excavationBraced cuts in deep excavation
Braced cuts in deep excavation
 
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
Geotechnical Engineering-II [Lec #21: Lateral Earth Pressure)
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
Ch.3-Examples 3.pdf
Ch.3-Examples 3.pdfCh.3-Examples 3.pdf
Ch.3-Examples 3.pdf
 
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
 
Flanged beams analysis - type 3
Flanged beams   analysis - type 3Flanged beams   analysis - type 3
Flanged beams analysis - type 3
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Unit3 hbn
Unit3 hbnUnit3 hbn
Unit3 hbn
 
Singly reinforced beam ast - over reinforced
Singly reinforced beam   ast - over reinforcedSingly reinforced beam   ast - over reinforced
Singly reinforced beam ast - over reinforced
 
Plaxis 2 d tutorial
Plaxis 2 d tutorialPlaxis 2 d tutorial
Plaxis 2 d tutorial
 
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
 
Mat foundation
Mat foundationMat foundation
Mat foundation
 
CH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptxCH-1 Shear Strength of Soil.pptx
CH-1 Shear Strength of Soil.pptx
 
Combined footings
Combined footingsCombined footings
Combined footings
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
Doubly reinforced beam]
Doubly reinforced beam]Doubly reinforced beam]
Doubly reinforced beam]
 

Destacado

الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعي
الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعيالأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعي
الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعيIbrahem Qasim
 
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...Dr.Youssef Hammida
 
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابر
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابرالدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابر
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابرKarim Gaber
 
Pumps and pumping systems
Pumps and pumping systemsPumps and pumping systems
Pumps and pumping systemsPrem Baboo
 
Pumps & pumping systems
Pumps & pumping systemsPumps & pumping systems
Pumps & pumping systemsSudhir Reddy
 
الأساسات الخازوقية Pile foundations
الأساسات الخازوقية Pile foundationsالأساسات الخازوقية Pile foundations
الأساسات الخازوقية Pile foundationsfreemadoo
 
تصنيف المواسير
تصنيف المواسيرتصنيف المواسير
تصنيف المواسيرMohamed Badawy
 
شبكة التغذية والصرف
شبكة التغذية والصرفشبكة التغذية والصرف
شبكة التغذية والصرفTaha Farwan
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachAlmotasem Darawish
 
978 التصميمات التنفيذية
978 التصميمات التنفيذية978 التصميمات التنفيذية
978 التصميمات التنفيذيةAlaa Altaie
 
pumps and its types-ppt
pumps and its types-pptpumps and its types-ppt
pumps and its types-pptDharmas India
 
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربى
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربىArchitectural Design Book - Arabic كتاب التصميم المعمارى - عربى
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربىGalala University
 
Introduction to Pumps
Introduction to PumpsIntroduction to Pumps
Introduction to Pumpsmohdalaamri
 
Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detailFARRUKH SHEHZAD
 

Destacado (19)

الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعي
الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعيالأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعي
الأجهزة الصحية - تركيبات صحية - سنة3 - ابراهيم الرداعي
 
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...
All mat-raft-piles-mat-foundation- اللبشة – الحصيرة العامة -لبشة الخوازيق ( ا...
 
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابر
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابرالدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابر
الدليل الشامل للأشراف على تنفيذ الخوازيق الخرسانيه - كريم سيد جابر
 
Pumps and pumping systems
Pumps and pumping systemsPumps and pumping systems
Pumps and pumping systems
 
Pumps & pumping systems
Pumps & pumping systemsPumps & pumping systems
Pumps & pumping systems
 
الأساسات الخازوقية Pile foundations
الأساسات الخازوقية Pile foundationsالأساسات الخازوقية Pile foundations
الأساسات الخازوقية Pile foundations
 
صرف المطر
 صرف المطر صرف المطر
صرف المطر
 
تصنيف المواسير
تصنيف المواسيرتصنيف المواسير
تصنيف المواسير
 
شبكة التغذية والصرف
شبكة التغذية والصرفشبكة التغذية والصرف
شبكة التغذية والصرف
 
Seminar piled raft_foundation
Seminar piled raft_foundationSeminar piled raft_foundation
Seminar piled raft_foundation
 
Raft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approachRaft foundations _design_and_analysis_with_a_practical_approach
Raft foundations _design_and_analysis_with_a_practical_approach
 
Pumps and types of pumps
Pumps and types of pumpsPumps and types of pumps
Pumps and types of pumps
 
978 التصميمات التنفيذية
978 التصميمات التنفيذية978 التصميمات التنفيذية
978 التصميمات التنفيذية
 
pumps and its types-ppt
pumps and its types-pptpumps and its types-ppt
pumps and its types-ppt
 
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربى
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربىArchitectural Design Book - Arabic كتاب التصميم المعمارى - عربى
Architectural Design Book - Arabic كتاب التصميم المعمارى - عربى
 
Introduction to Pumps
Introduction to PumpsIntroduction to Pumps
Introduction to Pumps
 
Pumps and types of pumps in detail
Pumps and types of pumps in detailPumps and types of pumps in detail
Pumps and types of pumps in detail
 
Basics of pump
Basics of pump Basics of pump
Basics of pump
 
PUMPS
 PUMPS PUMPS
PUMPS
 

Similar a Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStorey Buildings

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleDr.Costas Sachpazis
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENDr.Costas Sachpazis
 

Similar a Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStorey Buildings (20)

Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
Sachpazis steel sheet piling analysis &amp; design, fixed earth support in ac...
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
Sachpazis_Pocket reinforced masonry retaining wall analysis exampleEN1997-1-2004
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 

Más de Dr.Costas Sachpazis

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 

Más de Dr.Costas Sachpazis (20)

Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 

Último

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 

Último (20)

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 

Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStorey Buildings

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 1 of 14 RAFT FOUNDATION DESIGN IN ACCORDANCE WITH BS8110:PART 1- 1997_FOR MULTISTOREY BUILDING (BS8110 : PART 1 : 1997) hedge hboot bedgebboot aedge hslab hhcoreslab hhcorethick AsslabtopAsedgetop Asslabbtm Asedgebtm Asedgelink Soil and raft definition Soil definition Allowable bearing pressure; qallow = 75.0 kN/m 2 Number of types of soil forming sub-soil; Two or more types Soil density; Firm to loose Depth of hardcore beneath slab; hhcoreslab = 200 mm; (Dispersal allowed for bearing pressure check) Depth of hardcore beneath thickenings; hhcorethick = 0 mm; (Dispersal allowed for bearing pressure check) Density of hardcore; γhcore = 20.0 kN/m 3 Basic assumed diameter of local depression; φdepbasic = 3500mm Diameter under slab modified for hardcore; φdepslab = φdepbasic - hhcoreslab = 3300 mm Diameter under thickenings modified for hardcore; φdepthick = φdepbasic - hhcorethick = 3500 mm Raft slab definition Max dimension/max dimension between joints; lmax = 12.000 m Slab thickness; hslab = 250 mm Concrete strength; fcu = 35 N/mm 2 Poissons ratio of concrete; ν = 0.2 Slab mesh reinforcement strength; fyslab = 500 N/mm 2 Partial safety factor for steel reinforcement; γs = 1.15
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 2 of 14 From C&CA document ‘Concrete ground floors’ Table 5 Minimum mesh required in top for shrinkage; A142; Actual mesh provided in top; A393 (Asslabtop = 393 mm 2 /m) Mesh provided in bottom; A393 (Asslabbtm = 393 mm 2 /m) Top mesh bar diameter; φslabtop = 10 mm Bottom mesh bar diameter; φslabbtm = 10 mm Cover to top reinforcement; ctop = 20 mm Cover to bottom reinforcement; cbtm = 40 mm Average effective depth of top reinforcement; dtslabav = hslab - ctop - φslabtop = 220 mm Average effective depth of bottom reinforcement; dbslabav = hslab - cbtm - φslabbtm = 200 mm Overall average effective depth; dslabav = (dtslabav + dbslabav)/2 = 210 mm Minimum effective depth of top reinforcement; dtslabmin = dtslabav - φslabtop/2 = 215 mm Minimum effective depth of bottom reinforcement; dbslabmin = dbslabav - φslabbtm/2 = 195 mm Edge beam definition Overall depth; hedge = 600 mm Width; bedge = 550 mm Depth of boot; hboot = 250 mm Width of boot; bboot = 250 mm Angle of chamfer to horizontal; αedge = 60 deg Strength of main bar reinforcement; fy = 500 N/mm 2 Strength of link reinforcement; fys = 500 N/mm 2 Reinforcement provided in top; 3 H25 bars (Asedgetop = 1473 mm 2 ) Reinforcement provided in bottom; 3 H20 bars (Asedgebtm = 942 mm 2 ) Link reinforcement provided; 2 H12 legs at 250 ctrs (Asv/sv = 0.905 mm) Bottom cover to links; cbeam = 40 mm Effective depth of top reinforcement; dedgetop = hedge - ctop - φslabtop - φedgelink - φedgetop/2 = 546 mm Effective depth of bottom reinforcement; dedgebtm = hedge - cbeam - φedgelink - φedgebtm/2 = 538 mm Boot main reinforcement; H8 bars at 250 ctrs (Asboot = 201 mm 2 /m) Effective depth of boot reinforcement; dboot = hboot - cbeam - φboot/2 = 206 mm Internal beam definition
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 3 of 14 hint bint aint hslab hhcoreslab hhcorethick AsslabtopAsinttop Asslabbtm Asintbtm Asintlink Overall depth; hint = 550 mm Width; bint = 500 mm Angle of chamfer to horizontal; αint = 60 deg Strength of main bar reinforcement; fy = 500 N/mm 2 Strength of link reinforcement; fys = 500 N/mm 2 Reinforcement provided in top; 3 H25 bars (Asinttop = 1473 mm 2 ) Reinforcement provided in bottom; 3 H25 bars (Asintbtm = 1473 mm 2 ) Link reinforcement provided; 2 H12 legs at 225 ctrs (Asv/sv = 1.005 mm) Effective depth of top reinforcement; dinttop = hint - ctop - 2 × φslabtop - φinttop/2 = 498 mm Effective depth of bottom reinforcement; dintbtm = hint - cbeam - φintlink - φintbtm/2 = 486 mm Internal slab design checks Basic loading Slab self weight; wslab = 24 kN/m 3 × hslab = 6.0 kN/m 2 Hardcore; whcoreslab = γhcore × hhcoreslab = 4.0 kN/m 2 Applied loading Uniformly distributed dead load; wDudl = 2.0 kN/m 2 Uniformly distributed live load; wLudl = 2.5 kN/m 2 Slab load number 1
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 4 of 14 Load type; Line load Dead load; wD1 = 3.0 kN/m Live load; wL1 = 2.0 kN/m Ultimate load; wult1 = 1.4 × wD1 + 1.6 × wL1 = 7.4 kN/m Line load width; b1 = 140 mm Internal slab bearing pressure check Total uniform load at formation level; wudl = wslab + whcoreslab + wDudl + wLudl = 14.5 kN/m 2 Bearing pressure beneath load number 1 Net bearing pressure available to resist line load; qnet = qallow - wudl = 60.5 kN/m 2 Net ‘ultimate’ bearing pressure available; qnetult = qnet × wult1/(wD1 + wL1) = 89.5 kN/m 2 Loaded width required at formation; lreq1 = wult1/qnetult = 0.083 m Effective loaded width at u/side slab; leff1 = max(b1, lreq1 - 2 × hhcoreslab × tan(30)) = 0.140 m Effective net ult bearing pressure at u/side slab; qnetulteff = qnetult × lreq1/leff1 = 52.9 kN/m 2 Cantilever bending moment; Mcant1 = qnetulteff × [(leff1 - b1)/2] 2 /2 = 0.0 kNm/m Reinforcement required in bottom Maximum cantilever moment; Mcantmax = 0.0 kNm/m K factor; Kslabbp = Mcantmax/(fcu × dbslabmin 2 ) = 0.000 Lever arm; zslabbp = dbslabmin × min(0.95, 0.5 + √(0.25 - Kslabbp/0.9)) = 185.3 mm Area of steel required; Asslabbpreq = Mcantmax/((1.0/γs) × fyslab × zslabbp) = 0 mm 2 /m PASS - Asslabbpreq <= Asslabbtm - Area of reinforcement provided to distribute the load is adequate The allowable bearing pressure will not be exceeded Internal slab bending and shear check Applied bending moments Span of slab; lslab = φdepslab + dtslabav = 3520 mm Ultimate self weight udl; wswult = 1.4 × wslab = 8.4 kN/m 2 Self weight moment at centre; Mcsw = wswult × lslab 2 × (1 + ν) / 64 = 2.0 kNm/m Self weight moment at edge; Mesw = wswult × lslab 2 / 32 = 3.3 kNm/m Self weight shear force at edge; Vsw = wswult × lslab / 4 = 7.4 kN/m Moments due to applied uniformly distributed loads Ultimate applied udl; wudlult = 1.4 × wDudl + 1.6 × wLudl = 6.8 kN/m 2 Moment at centre; Mcudl = wudlult × lslab 2 × (1 + ν) / 64 = 1.6 kNm/m Moment at edge; Meudl = wudlult × lslab 2 / 32 = 2.6 kNm/m Shear force at edge; Vudl = wudlult × lslab / 4 = 6.0 kN/m Moment due to load number 1 Approximate equivalent udl; wudl1 = wult1/(2 × 0.3 × lslab) = 3.5 kN/m 2 Moment at centre; Mc1 = wudl1 × lslab 2 × (1 + ν) / 64 = 0.8 kNm/m Moment at edge; Me1 = wudl1 × lslab 2 / 32 = 1.4 kNm/m Shear force at edge; V1 = wudl1 × lslab / 4 = 3.1 kN/m Resultant moments and shears Total moment at edge; MΣe = 7.2 kNm/m
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 5 of 14 Total moment at centre; MΣc = 4.3 kNm/m Total shear force; VΣ = 16.5 kN/m Reinforcement required in top K factor; Kslabtop = MΣe/(fcu × dtslabav 2 ) = 0.004 Lever arm; zslabtop = dtslabav × min(0.95, 0.5 + √(0.25 - Kslabtop/0.9)) = 209.0 mm Area of steel required for bending; Asslabtopbend = MΣe/((1.0/γs) × fyslab × zslabtop) = 80 mm 2 /m Minimum area of steel required; Asslabmin = 0.0013 × hslab = 325 mm 2 /m Area of steel required; Asslabtopreq = max(Asslabtopbend, Asslabmin) = 325 mm 2 /m PASS - Asslabtopreq <= Asslabtop - Area of reinforcement provided in top to span local depressions is adequate Reinforcement required in bottom K factor; Kslabbtm = MΣc/(fcu × dbslabav 2 ) = 0.003 Lever arm; zslabbtm = dbslabav × min(0.95, 0.5 + √(0.25 - Kslabbtm/0.9)) = 190.0 mm Area of steel required for bending; Asslabbtmbend = MΣc/((1.0/γs) × fyslab × zslabbtm) = 53 mm 2 /m Area of steel required; Asslabbtmreq = max(Asslabbtmbend, Asslabmin) = 325 mm 2 /m PASS - Asslabbtmreq <= Asslabbtm - Area of reinforcement provided in bottom to span local depressions is adequate Shear check Applied shear stress; v = VΣ/dtslabmin = 0.077 N/mm 2 Tension steel ratio; ρ = 100 × Asslabtop/dtslabmin = 0.183 From BS8110-1:1997 - Table 3.8; Design concrete shear strength; vc = 0.469 N/mm 2 PASS - v <= vc - Shear capacity of the slab is adequate Internal slab deflection check Basic allowable span to depth ratio; Ratiobasic = 26.0 Moment factor; Mfactor = MΣc/dbslabav 2 = 0.109 N/mm 2 Steel service stress; fs = 2/3 × fyslab × Asslabbtmbend/Asslabbtm = 44.615 N/mm 2 Modification factor; MFslab = min(2.0, 0.55 + [(477N/mm 2 - fs)/(120 × (0.9N/mm 2 + Mfactor))]) MFslab = 2.000 Modified allowable span to depth ratio; Ratioallow = Ratiobasic × MFslab = 52.000 Actual span to depth ratio; Ratioactual = lslab/ dbslabav = 17.600 PASS - Ratioactual <= Ratioallow - Slab span to depth ratio is adequate Edge beam design checks Basic loading Hardcore; whcorethick = γhcore × hhcorethick = 0.0 kN/m 2 Edge beam Rectangular beam element; wbeam = 24 kN/m 3 × hedge × bedge = 7.9 kN/m Boot element; wboot = 24 kN/m3 × hboot × bboot = 1.5 kN/m Chamfer element; wchamfer = 24 kN/m 3 × (hedge - hslab) 2 /(2 × tan(αedge)) = 0.8 kN/m Slab element; wslabelmt = 24 kN/m 3 × hslab × (hedge - hslab)/tan(αedge) = 1.2 kN/m Edge beam self weight; wedge = wbeam + wboot + wchamfer + wslabelmt = 11.5 kN/m
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 6 of 14 Edge load number 1 Load type; Longitudinal line load Dead load; wDedge1 = 13.2 kN/m Live load; wLedge1 = 0.0 kN/m Ultimate load; wultedge1 = 1.4 × wDedge1 + 1.6 × wLedge1 = 18.5 kN/m Longitudinal line load width; bedge1 = 102 mm Centroid of load from outside face of raft; xedge1 = 51 mm Edge load number 2 Load type; Longitudinal line load Dead load; wDedge2 = 16.1 kN/m Live load; wLedge2 = 5.6 kN/m Ultimate load; wultedge2 = 1.4 × wDedge2 + 1.6 × wLedge2 = 31.5 kN/m Longitudinal line load width; bedge2 = 100 mm Centroid of load from outside face of raft; xedge2 = 230 mm Edge beam bearing pressure check Effective bearing width of edge beam; bbearing = bedge + bboot + (hedge - hslab)/tan(αedge) = 1002 mm Total uniform load at formation level; wudledge = wDudl+wLudl+wedge/bbearing+whcorethick = 16.0 kN/m 2 Centroid of longitudinal and equivalent line loads from outside face of raft Load x distance for edge load 1; Moment1 = wultedge1 × xedge1 = 0.9 kN Load x distance for edge load 2; Moment2 = wultedge2 × xedge2 = 7.2 kN Sum of ultimate longitud’l and equivalent line loads; ΣUDL = 50.0 kN/m Sum of load x distances; ΣMoment = 8.2 kN Centroid of loads; xbar = ΣMoment/ΣUDL = 164 mm Initially assume no moment transferred into slab due to load/reaction eccentricity Sum of unfactored longitud’l and eff’tive line loads; ΣUDLsls = 34.9 kN/m Allowable bearing width; ballow = 2 × xbar + 2 × hhcoreslab × tan(30) = 559 mm Bearing pressure due to line/point loads; qlinepoint = ΣUDLsls/ ballow = 62.5 kN/m 2 Total applied bearing pressure; qedge = qlinepoint + wudledge = 78.4 kN/m 2 qedge > qallow - The slab is required to resist a moment due to eccentricity Now assume moment due to load/reaction eccentricity is resisted by slab Bearing width required; breq = ΣUDLsls/(qallow - wudledge) = 591 mm Effective bearing width at u/s of slab; breqeff = breq - 2 × hhcoreslab × tan(30) = 360 mm Load/reaction eccentricity; e = breqeff/2 - xbar = 16 mm Ultimate moment to be resisted by slab; Mecc = ΣUDL × e = 0.8 kNm/m From slab bending check Moment due to depression under slab (hogging); MΣe = 7.2 kNm/m Total moment to be resisted by slab top steel; Mslabtop = Mecc + MΣe = 8.1 kNm/m K factor; Kslab = Mslabtop/(fcu × dtslabmin 2 ) = 0.005 Lever arm; zslab = dtslabmin × min(0.95, 0.5 + √(0.25 - Kslab/0.9)) = 204 mm Area of steel required; Asslabreq = Mslabtop/((1.0/γs) × 460 N/mm 2 × zslab) = 99 mm 2 /m
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 7 of 14 PASS - Asslabreq <= Asslabtop - Area of reinforcement provided to transfer moment into slab is adequate The allowable bearing pressure under the edge beam will not be exceeded Edge beam bending check Divider for moments due to udl’s; βudl = 12.0 Applied bending moments Span of edge beam; ledge = φdepthick + dedgetop = 4045 mm Ultimate self weight udl; wedgeult = 1.4 × wedge = 16.1 kN/m Ultimate slab udl (approx); wedgeslab = max(0 kN/m,1.4×wslab×((φdepthick/2×3/4)-(bedge+(hedge-hslab)/tan(αedge)))) wedgeslab = 4.7 kN/m Self weight and slab bending moment; Medgesw = (wedgeult + wedgeslab) × ledge 2 /βudl = 28.3 kNm Self weight shear force; Vedgesw = (wedgeult + wedgeslab) × ledge/2 = 42.0 kN Moments due to applied uniformly distributed loads Ultimate udl (approx); wedgeudl = wudlult × φdepthick/2 × 3/4 = 8.9 kN/m Bending moment; Medgeudl = wedgeudl × ledge 2 /βudl = 12.2 kNm Shear force; Vedgeudl = wedgeudl × ledge/2 = 18.1 kN Moment and shear due to load number 1 Bending moment; Medge1 = wultedge1 × ledge 2 /βudl = 25.2 kNm Shear force; Vedge1 = wultedge1 × ledge/2 = 37.4 kN Moment and shear due to load number 2 Bending moment; Medge2 = wultedge2 × ledge 2 /βudl = 43.0 kNm Shear force; Vedge2 = wultedge2 × ledge/2 = 63.7 kN Resultant moments and shears Total moment (hogging and sagging); MΣedge = 108.7 kNm Maximum shear force; VΣedge = 161.2 kN Reinforcement required in top Width of section in compression zone; bedgetop = bedge + bboot = 800 mm Average web width; bw = bedge + (hedge/tan(αedge))/2 = 723 mm K factor; Kedgetop = MΣedge/(fcu × bedgetop × dedgetop 2 ) = 0.013 Lever arm; zedgetop = dedgetop × min(0.95, 0.5 + √(0.25 - Kedgetop/0.9)) = 518 mm Area of steel required for bending; Asedgetopbend = MΣedge/((1.0/γs) × fy × zedgetop) = 482 mm 2 Minimum area of steel required; Asedgetopmin = 0.0013 × 1.0 × bw × hedge = 564 mm 2 Area of steel required; Asedgetopreq = max(Asedgetopbend, Asedgetopmin) = 564 mm 2 PASS - Asedgetopreq <= Asedgetop - Area of reinforcement provided in top of edge beams is adequate Reinforcement required in bottom Width of section in compression zone; bedgebtm = bedge + (hedge - hslab)/tan(αedge) + 0.1 × ledge = 1157 mm K factor; Kedgebtm = MΣedge/(fcu × bedgebtm × dedgebtm 2 ) = 0.009 Lever arm; zedgebtm = dedgebtm × min(0.95, 0.5 + √(0.25 - Kedgebtm/0.9)) = 511 mm Area of steel required for bending; Asedgebtmbend = MΣedge/((1.0/γs) × fy × zedgebtm) = 489 mm 2 Minimum area of steel required; Asedgebtmmin = 0.0013 × 1.0 × bw × hedge = 564 mm 2
  • 8. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 8 of 14 Area of steel required; Asedgebtmreq = max(Asedgebtmbend, Asedgebtmmin) = 564 mm 2 PASS - Asedgebtmreq <= Asedgebtm - Area of reinforcement provided in bottom of edge beams is adequate Edge beam shear check Applied shear stress; vedge = VΣedge/(bw × dedgetop) = 0.409 N/mm 2 Tension steel ratio; ρedge = 100 × Asedgetop/(bw × dedgetop) = 0.373 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vcedge = 0.509 N/mm 2 vedge <= vcedge + 0.4N/mm 2 - Therefore minimum links required Link area to spacing ratio required; Asv_upon_svreqedge = 0.4N/mm 2 × bw/((1.0/γs) × fys) = 0.665 mm Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelink×π×φedgelink 2 /(4×svedge) = 0.905 mm PASS - Asv_upon_svreqedge <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams is adequate Boot design check Effective cantilever span; lboot = bboot + dboot/2 = 353 mm Approximate ultimate bearing pressure; qult = 1.55 × qallow = 116.3 kN/m 2 Cantilever moment; Mboot = qult × lboot 2 /2 = 7.2 kNm/m Shear force; Vboot = qult × lboot = 41.0 kN/m K factor; Kboot = Mboot/(fcu × dboot 2 ) = 0.005 Lever arm; zboot = dboot × min(0.95, 0.5 + √(0.25 - Kboot/0.9)) = 196 mm Area of reinforcement required; Asbootreq = Mboot/((1.0/γs) × fyboot × zboot) = 85 mm 2 /m PASS - Asbootreq <= Asboot - Area of reinforcement provided in boot is adequate for bending Applied shear stress; vboot = Vboot/dboot = 0.199 N/mm 2 Tension steel ratio; ρboot = 100 × Asboot/dboot = 0.098 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vcboot = 0.384 N/mm 2 PASS - vboot <= vcboot - Shear capacity of the boot is adequate Corner design checks Basic loading Corner load number 1 Load type; Line load in x direction Dead load; wDcorner1 = 13.2 kN/m Live load; wLcorner1 = 0.0 kN/m Ultimate load; wultcorner1 = 1.4 × wDcorner1 + 1.6 × wLcorner1 = 18.5 kN/m Centroid of load from outside face of raft; ycorner1 = 51 mm Corner load number 2 Load type; Line load in x direction Dead load; wDcorner2 = 16.1 kN/m Live load; wLcorner2 = 5.6 kN/m Ultimate load; wultcorner2 = 1.4 × wDcorner2 + 1.6 × wLcorner2 = 31.5 kN/m Centroid of load from outside face of raft; ycorner2 = 230 mm Corner load number 3
  • 9. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 9 of 14 Load type; Line load in y direction Dead load; wDcorner3 = 14.3 kN/m Live load; wLcorner3 = 0.0 kN/m Ultimate load; wultcorner3 = 1.4 × wDcorner3 + 1.6 × wLcorner3 = 20.0 kN/m Centroid of load from outside face of raft; xcorner3 = 51 mm Corner load number 4 Load type; Line load in y direction Dead load; wDcorner4 = 11.7 kN/m Live load; wLcorner4 = 0.0 kN/m Ultimate load; wultcorner4 = 1.4 × wDcorner4 + 1.6 × wLcorner4 = 16.4 kN/m Centroid of load from outside face of raft; xcorner4 = 230 mm Corner load number 5 Load type; Line load in y direction Dead load; wDcorner5 = 15.0 kN/m Live load; wLcorner5 = 0.0 kN/m Ultimate load; wultcorner5 = 1.4 × wDcorner5 + 1.6 × wLcorner5 = 21.0 kN/m Centroid of load from outside face of raft; xcorner5 = 230 mm Corner bearing pressure check Total uniform load at formation level; wudlcorner = wDudl+wLudl+wedge/bbearing+whcorethick = 16.0 kN/m 2 Net bearing press avail to resist line/point loads; qnetcorner = qallow - wudlcorner = 59.0 kN/m 2 Total line/point loads Total unfactored line load in x direction; wΣlinex = 34.9 kN/m Total ultimate line load in x direction; wΣultlinex =50.0 kN/m Total unfactored line load in y direction; wΣliney = 41.0 kN/m Total ultimate line load in y direction; wΣultliney = 57.4 kN/m Total unfactored point load; wΣpoint = 0.0 kN Total ultimate point load; wΣultpoint = 0.0 kN Length of side of sq reqd to resist line/point loads; pcorner =[wΣlinex+wΣliney+√((wΣlinex+wΣliney) 2 +4×qnetcorner×wΣpoint)]/(2×qnetcorner) pcorner = 1286 mm Bending moment about x-axis due to load/reaction eccentricity Moment due to load 1 (x line); Mx1 = max(0 kNm, wultcorner1 × pcorner × (pcorner/2 - ycorner1)) = 14.1 kNm Moment due to load 2 (x line); Mx2 = max(0 kNm, wultcorner2 × pcorner × (pcorner/2 - ycorner2)) = 16.7 kNm Total moment about x axis; MΣx = 30.8 kNm Bending moment about y-axis due to load/reaction eccentricity Moment due to load 3 (y line); My3 = max(0 kNm, wultcorner3 × pcorner × (pcorner/2 - xcorner3)) = 15.2 kNm Moment due to load 4 (y line); My4 = max(0 kNm, wultcorner4 × pcorner × (pcorner/2 - xcorner4)) = 8.7 kNm Moment due to load 5 (y line); My5 = max(0 kNm, wultcorner5 × pcorner × (pcorner/2 - xcorner5)) = 11.1 kNm Total moment about y axis; MΣy = 35.1 kNm Check top reinforcement in edge beams for load/reaction eccentric moment Max moment due to load/reaction eccentricity; MΣ = max(MΣx, MΣy) = 35.1 kNm
  • 10. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 10 of 14 Assume all of this moment is resisted by edge beam From edge beam design checks away from corners Moment due to edge beam spanning depression; MΣedge = 108.7 kNm Total moment to be resisted; MΣcornerbp = MΣ + MΣedge = 143.7 kNm Width of section in compression zone; bedgetop = bedge + bboot = 800 mm K factor; Kcornerbp = MΣcornerbp/(fcu × bedgetop × dedgetop 2 ) = 0.017 Lever arm; zcornerbp = dedgetop × min(0.95, 0.5 + √(0.25 - Kcornerbp/0.9)) = 518 mm Total area of top steel required; Ascornerbp = MΣcornerbp /((1.0/γs) × fy × zcornerbp) = 638 mm 2 PASS - Ascornerbp <= Asedgetop - Area of reinforcement provided to resist eccentric moment is adequate The allowable bearing pressure at the corner will not be exceeded Corner beam bending check Cantilever span of edge beam; lcorner = φdepthick/√(2) + dedgetop/2 = 2748 mm Moment and shear due to self weight Ultimate self weight udl; wedgeult = 1.4 × wedge = 16.1 kN/m Average ultimate slab udl (approx); wcornerslab = max(0 kN/m,1.4×wslab×(φdepthick/(√(2)×2)-(bedge+(hedge-hslab)/tan(αedge)))) wcornerslab = 4.1 kN/m Self weight and slab bending moment; Mcornersw = (wedgeult + wcornerslab) × lcorner 2 /2 = 76.1 kNm Self weight and slab shear force; Vcornersw = (wedgeult + wcornerslab) × lcorner = 55.4 kN Moment and shear due to udls Maximum ultimate udl; wcornerudl = ((1.4×wDudl)+(1.6×wLudl)) × φdepthick/√(2) = 16.8 kN/m Bending moment; Mcornerudl = wcornerudl × lcorner 2 /6 = 21.2 kNm Shear force; Vcornerudl = wcornerudl × lcorner/2 = 23.1 kN Moment and shear due to line loads in x direction Bending moment; Mcornerlinex = wΣultlinex × lcorner 2 /2 = 188.7 kNm Shear force; Vcornerlinex = wΣultlinex × lcorner = 137.3 kN Moment and shear due to line loads in y direction Bending moment; Mcornerliney = wΣultliney × lcorner 2 /2 = 216.7 kNm Shear force; Vcornerliney = wΣultliney × lcorner = 157.7 kN Total moments and shears due to point loads Bending moment about x axis; Mcornerpointx = 0.0 kNm Bending moment about y axis; Mcornerpointy = 0.0 kNm Shear force; Vcornerpoint = 0.0 kN Resultant moments and shears Total moment about x axis; MΣcornerx = Mcornersw+ Mcornerudl+ Mcornerliney+ Mcornerpointx = 313.9 kNm Total shear force about x axis; VΣcornerx = Vcornersw+ Vcornerudl+ Vcornerliney + Vcornerpoint = 236.2 kN Total moment about y axis; MΣcornery = Mcornersw+ Mcornerudl+ Mcornerlinex+ Mcornerpointy = 285.9 kNm Total shear force about y axis; VΣcornery = Vcornersw+ Vcornerudl+ Vcornerlinex + Vcornerpoint = 215.8 kN Deflection of both edge beams at corner will be the same therefore design for average of these moments and shears Design bending moment; MΣcorner = (MΣcornerx + MΣcornery)/2 = 299.9 kNm
  • 11. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 11 of 14 Design shear force; VΣcorner = (VΣcornerx + VΣcornery)/2 = 226.0 kN Reinforcement required in top of edge beam K factor; Kcorner = MΣcorner/(fcu × bedgetop × dedgetop 2 ) = 0.036 Lever arm; zcorner = dedgetop × min(0.95, 0.5 + √(0.25 - Kcorner/0.9)) = 518 mm Area of steel required for bending; Ascornerbend = MΣcorner/((1.0/γs) × fy × zcorner) = 1331 mm 2 Minimum area of steel required; Ascornermin = Asedgetopmin = 564 mm 2 Area of steel required; Ascorner = max(Ascornerbend, Ascornermin) = 1331 mm 2 PASS - Ascorner <= Asedgetop - Area of reinforcement provided in top of edge beams at corners is adequate Corner beam shear check Average web width; bw = bedge + (hedge/tan(αedge))/2 = 723 mm Applied shear stress; vcorner = VΣcorner/(bw × dedgetop) = 0.573 N/mm 2 Tension steel ratio; ρcorner = 100 × Asedgetop/(bw × dedgetop) = 0.373 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vccorner = 0.471 N/mm 2 vcorner <= vccorner + 0.4N/mm 2 - Therefore minimum links required Link area to spacing ratio required; Asv_upon_svreqcorner = 0.4N/mm 2 × bw/((1.0/γs) × fys) = 0.665 mm Link area to spacing ratio provided; Asv_upon_svprovedge = Nedgelink×π×φedgelink 2 /(4×svedge) = 0.905 mm PASS - Asv_upon_svreqcorner <= Asv_upon_svprovedge - Shear reinforcement provided in edge beams at corners is adequate Corner beam deflection check Basic allowable span to depth ratio; Ratiobasiccorner = 7.0 Moment factor; Mfactorcorner = MΣcorner/(bedgetop × dedgetop 2 ) = 1.260 N/mm 2 Steel service stress; fscorner = 2/3 × fy × Ascornerbend/Asedgetop = 301.285 N/mm 2 Modification factor; MFcorner=min(2.0,0.55+[(477N/mm 2 -fscorner)/(120×(0.9N/mm 2 +Mfactorcorner))]) MFcorner = 1.228 Modified allowable span to depth ratio; Ratioallowcorner = Ratiobasiccorner × MFcorner = 8.596 Actual span to depth ratio; Ratioactualcorner = lcorner/ dedgetop = 5.037 PASS - Ratioactualcorner <= Ratioallowcorner - Edge beam span to depth ratio is adequate Internal beam design checks Basic loading Hardcore; whcorethick = γhcore × hhcorethick = 0.0 kN/m 2 Internal beam self weight; wint=24 kN/m 3 ×[(hint×bint)+(hint-hslab) 2 /tan(αint)+2×hslab×(hint-hslab)/tan(αint)] wint = 9.9 kN/m Internal beam load number 1 Load type; Longitudinal line load Dead load; wDint1 = 15.0 kN/m Live load; wLint1 = 5.3 kN/m Ultimate load; wultint1 = 1.4 × wDint1 + 1.6 × wLint1 = 29.5 kN/m Longitudinal line load width; bint1 = 140 mm Centroid of load from centreline of beam; xint1 = 0 mm
  • 12. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 12 of 14 Internal beam load number 2 Load type; Full transverse line load; Dead load; wDint2 = 10.0 kN/m Live load; wLint2 = 4.0 kN/m Ultimate load; wultint2 = 1.4 × wDint2 + 1.6 × wLint2 = 20.4 kN/m Transverse line load width; bint2 = 140 mm Internal beam bearing pressure check Total uniform load at formation level; wudlint = wDudl+wLudl+whcorethick+24kN/m 3 ×hint = 17.7 kN/m 2 Effective point load due to transverse line/point loads Effective point load due to load 2 (Line load); Wint2 = wultint2 × [bint + 2×(hint - hslab)/tan(αint)] = 17.3 kN Total effective point load; Wint = 17.3 kN Minimum width of effective point load; bintmin = 140 mm Approximate longitudinal dispersal of effective point load Approx moment capacity of bottom steel; Mintbtm = (1.0/γs) × fy × 0.9 × dintbtm × Asintbtm = 279.8 kNm Max allow dispersal based on moment capacity; pintmom = [2×Mintbtm + √(4×Mintbtm 2 +2×Wint×Mintbtm×bintmin)]/Wint pintmom = 64880 mm Limiting max dispersal to say 5 x beam depth; pint = min(pintmom, 5 × hint) = 2750 mm Total dispersal length of effective point load; linteff = 2 × pint + bintmin = 5640 mm Equivalent and total beam line loads Equivalent ultimate udl of internal load 2; wintudl2 = Wint2/linteff = 3.1 kN/m Equivalent unfactored udl of internal load 2; wintudl2sls = wintudl2 × (wDint2 + wLint2)/wultint2 = 2.1 kN/m Sum of factored longitud’l and eff’tive line loads; ΣUDLint = 32.5 kN/m Sum of unfactored longitud’l and eff’tive line loads; ΣUDLslsint = 22.4 kN/m Centroid of loads from centreline of internal beam Load x distance for internal load 1; Momentint1 = wultint1 × xint1 = 0.0 kN Sum of load x distances; ΣMomentint = 0.0 kN Centroid of loads; xbarint = ΣMomentint/ΣUDLint = 0.0 mm Moment due to eccentricity to be resisted by slab; Meccint = ΣUDLint × abs(xbarint) = 0.0 kNm/m Assume moment due to eccentricity is resisted equally by top steel of slab on one side and bottom steel of slab on other From slab bending check Moment due to depression under slab (hogging); MΣe = 7.2 kNm/m Total moment to be resisted by slab top steel; Mslabtopint = Meccint/2 + MΣe = 7.2 kNm/m K factor; Kslabtopint = Mslabtopint/(fcu × dtslabmin 2 ) = 0.004 Lever arm; zslabtopint = dtslabmin × min(0.95, 0.5 + √(0.25 - Kslabtopint/0.9)) = 204 mm Area of steel required; Asslabtopintreq = Mslabtopint/((1.0/γs) × fyslab × zslabtopint) = 82 mm 2 /m PASS - Asslabtopintreq <= Asslabtop - Area of reinforcement in top of slab is adequate to transfer moment into slab Mt to be resisted by slab btm stl due to load ecc’ty; Mslabbtmint = Meccint/2 = 0.0 kNm/m K factor; Kslabbtmint = Mslabbtmint/(fcu × dbslabmin 2 ) = 0.000 Lever arm; zslabbtmint = dbslabmin × min(0.95, 0.5 + √(0.25-Kslabbtmint/0.9)) = 185 mm Area of steel required in bottom; Asslabbtmintreq = Mslabbtmint/((1.0/γs) × fyslab × zslabbtmint) = 0 mm 2 /m
  • 13. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 13 of 14 PASS - Asslabbtmintreq <= Asslabbtm - Area of reinforcement in bottom of slab is adequate to transfer moment into slab Bearing pressure Initially check bearing pressure based on beam soffit/chamfer width only Allowable bearing width; bbearint = bint + 2 × (hint - hslab)/tan(αint) = 846 mm Bearing pressure due to line/point loads; qlinepointint = ΣUDLslsint/bbearint = 26.5 kN/m 2 Total applied bearing pressure; qint = qlinepointint + wudlint = 44.2 kN/m 2 PASS - qint <= qallow - Allowable bearing pressure is not exceeded Internal beam bending check Divider for moments due to udl’s; βudl = 12.0 Divider for moments due to point loads; βpoint = 7.0 Applied bending moments Span of internal beam; lint = φdepthick + dinttop = 3998 mm Ultimate self weight udl; wintult = 1.4 × wint = 13.9 kN/m Ultimate slab udl (approx); wintslab = max(0 kN/m,1.4×wslab×((φdepthick×3/4)-(bint+2×(hint-hslab)/tan(αint)))) wintslab = 14.9 kN/m Self weight and slab bending moment; Mintsw = (wintult + wintslab) × lint 2 /βudl = 38.4 kNm Self weight shear force; Vintsw = (wintult + wintslab) × lint/2 = 57.6 kN Moments due to applied uniformly distributed loads Ultimate udl (approx); wintudl = wudlult × φdepthick × 3/4 = 17.9 kN/m Bending moment; Mintudl = wintudl × lint 2 /βudl = 23.8 kNm Shear force; Vintudl = wintudl × lint/2 = 35.7 kN Moment and shear due to load number 1 Bending moment; Mint1 = wultint1 × lint 2 /βudl = 39.3 kNm Shear force; Vint1 = wultint1 × lint/2 = 58.9 kN Moment and shear due to load number 2 Ultimate point load; Wint2 = wultint2 × φdepthick × 3/4 = 53.6 kN Bending moment; Mint2 = Wint2 × lint/βpoint = 30.6 kNm Shear force; Vint2 = Wint2 = 53.6 kN Resultant moments and shears Total moment (hogging and sagging); MΣint = 132.0 kNm Maximum shear force; VΣint = 205.8 kN Reinforcement required in top Width of section in compression zone; binttop = bint = 500 mm Average web width; bwint = bint + hint/tan(αint) = 818 mm K factor; Kinttop = MΣint/(fcu × binttop × dinttop 2 ) = 0.030 Lever arm; zinttop = dinttop × min(0.95, 0.5 + √(0.25 - Kinttop/0.9)) = 473 mm Area of steel required for bending; Asinttopbend = MΣint/((1.0/γs) × fy × zinttop) = 642 mm 2 Minimum area of steel; Asinttopmin = 0.0013 × bwint × hint = 585 mm 2 Area of steel required; Asinttopreq = max(Asinttopbend, Asinttopmin) = 642 mm 2
  • 14. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info Project: Raft Foundation Analysis & Design, In accordance with BS8110:part 1-1997_for multistorey Building. Job Ref. www.geodomisi.com Section Civil & Geotechnical EngineeringCalculations for Sheet no./rev. 1 Calc.Made by Dr. C. Sachpazis Date 27/02/2016 Chk'd by Date App'd by Date Page 14 of 14 PASS - Asinttopreq <= Asinttop - Area of reinforcement provided in top of internal beams is adequate Reinforcement required in bottom Width of section in compression zone; bintbtm = bint + 2 × (hint - hslab)/tan(αint) + 0.2 × lint = 1646 mm K factor; Kintbtm = MΣint/(fcu × bintbtm × dintbtm 2 ) = 0.010 Lever arm; zintbtm = dintbtm × min(0.95, 0.5 + √(0.25 - Kintbtm/0.9)) = 461 mm Area of steel required for bending; Asintbtmbend = MΣint/((1.0/γs) × fy × zintbtm) = 658 mm 2 Minimum area of steel required; Asintbtmmin = 0.0013 × 1.0 × bwint × hint = 585 mm 2 Area of steel required; Asintbtmreq = max(Asintbtmbend, Asintbtmmin) = 658 mm 2 PASS - Asintbtmreq <= Asintbtm - Area of reinforcement provided in bottom of internal beams is adequate Internal beam shear check Applied shear stress; vint = VΣint/(bwint × dinttop) = 0.506 N/mm 2 Tension steel ratio; ρint = 100 × Asinttop/(bwint × dinttop) = 0.362 From BS8110-1:1997 - Table 3.8 Design concrete shear strength; vcint = 0.477 N/mm 2 vint <= vcint + 0.4N/mm 2 - Therefore minimum links required Link area to spacing ratio required; Asv_upon_svreqint = 0.4N/mm 2 × bwint/((1.0/γs) × fys) = 0.752 mm Link area to spacing ratio provided; Asv_upon_svprovint = Nintlink×π×φintlink 2 /(4×svint) = 1.005 mm PASS - Asv_upon_svreqint <= Asv_upon_svprovint - Shear reinforcement provided in internal beams is adequate GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, www.geodomisi.com - costas@sachpazis.info