Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Informer-Meformer CSCW Presentation

Chih-Hui Lai's slides from the conference presentation of "Is it Really About Me: Message Content in Social Awareness Streams" at CSCW2010

  • Inicia sesión para ver los comentarios

Informer-Meformer CSCW Presentation

  1. 1. Is It Really About Me? Message Content in Social Awareness Streams Mor Naaman, Jeffrey Boase, Chih-Hui Lai* 02/09/2010 CSCW Conference
  2. 2. What is Twitter? <ul><li>Popular social media service launched in 2007, with 19.1 millions user in Dec. 2009 </li></ul><ul><li>Users posts short messages -- 140 characters, maximum </li></ul><ul><li>the “follow-ship” relationships </li></ul><ul><ul><li>Asymmetric </li></ul></ul>
  3. 4. Social Awareness Streams (SAS) <ul><li>Characteristics of SAS </li></ul><ul><ul><li>Public or semi-public nature of messages (not one-on-one) </li></ul></ul><ul><ul><li>Messages are short, consumed in streams </li></ul></ul><ul><ul><li>Online personal networks are articulated; networks structure communication </li></ul></ul><ul><li>Twitter as a SAS model </li></ul><ul><ul><li>By identifying Twitter as a type of communication system, results of this research can potentially be generalized to other similar platforms </li></ul></ul>
  4. 5. Research Questions <ul><li>RQ1 : What types of messages are commonly posted and how does message type relate to other variables? </li></ul><ul><li>RQ2: What are the differences between users in terms of the types and diversity of messages that they usually post? </li></ul><ul><li>RQ3 : How are these differences between users’ content practices related to other user characteristics? </li></ul>
  5. 6. Analysis: Qualitative + Quantitative Approaches <ul><li>Why qualitative coding? </li></ul><ul><ul><li>No existing studies have created a definitive classification of Twitter messages </li></ul></ul><ul><ul><li>Twitter is a new mode of communication </li></ul></ul><ul><li>A grounded approach to derive message categories </li></ul><ul><ul><li>See paper for details </li></ul></ul>
  6. 7. Coding Scheme Code Example(s) Information Sharing (IS) “ 15 Impressive and Beautiful Uses of WordPress <URL REMOVED>” Opinions/Complaints (OC) “ Go Aussie $ go!” “ Illmatic= greatest rap album ever” Statements and Random Thoughts (RT) “ The sky is blue in the winter here” ” I miss New York but I love LA...” Me now (ME) “ tired and upset” “ just enjoyed speeding around my lawn on my John Deere. Hehe :)” Other categories See paper for details
  7. 8. Method <ul><li>Data collection </li></ul><ul><ul><li>Using Twitter’s (API) , randomly selected ‘active, personal users’, N = 350 </li></ul></ul><ul><ul><li>Code 10 messages from each user </li></ul></ul>
  8. 9. RQ1: Message Categories on Twitter <ul><ul><li>me now ( ME , 41% of all messages coded), random thoughts ( RT, 25%), opinions/complaints ( OC , 24%), information sharing ( IS , 22%) </li></ul></ul>Code Information Sharing (IS) Self Promotion (SP) Opinions/Complaints (OC) Statements and Random Thoughts (RT) Me now (ME) Question to followers (QF) Presence Maintenance (PM) Anecdote (me) (AM) Anecdote (others) (AO)
  9. 10. RQ1: Message Type and Other Variables <ul><li>Females are more likely to post “ me now ” messages (M=45% of a user’s messages) than males (M=37%) t(344)=3.12, p<0.005 </li></ul><ul><li>51% of mobile-posted messages are “ me now ” messages, compared to the 37% of “me now” messages posted from non-mobile applications </li></ul><ul><li>chi square=49.7, p<.0001 </li></ul>
  10. 11. RQ2: User Clusters by Message Type <ul><li>Cluster analysis was used to identify two clusters of users: </li></ul><ul><ul><li>Informers (20% of users), Meformers (80% of users) </li></ul></ul><ul><li>Both informers and meformers engage in different types of message activity </li></ul>
  11. 12. RQ3: How Users are Different? <ul><li>Informers are better connected to friends and followers than meformers </li></ul><ul><li>Informers are more conversational: have a higher proportion of mentions of other users in their messages </li></ul>Informers Meformers Friends (medians) 131 61 Followers (medians) 112 42
  12. 13. Summary of Key Findings <ul><li>Four major categories of messages on Twitter: </li></ul><ul><ul><li>me now (41% of all messages coded) , information sharing (22%) , opinions (24%), random statements (25%) </li></ul></ul><ul><li>Gender and device use </li></ul><ul><ul><li>Females are more likely to post “me now” messages </li></ul></ul><ul><ul><li>“ Me now” messages are likely to be sent by mobile devices </li></ul></ul><ul><li>Users are of two kinds : </li></ul><ul><ul><li>Informers (20% of users), Meformers (80% of users) </li></ul></ul><ul><li>Informers are better connected to friends and followers than meformers </li></ul>
  13. 14. Discussion and Implications <ul><li>Meformers engage in self-focused messages </li></ul><ul><ul><ul><li>People may use Twitter to engage in different ways of self-expression, and through which initiate social interaction (phatic communion---see ICA paper) </li></ul></ul></ul><ul><li>Informers engage in use of mentions and have more social contacts </li></ul><ul><ul><li>People may use Twitter to send/receive potentially valuable information directly, and through which maintain and build relationships </li></ul></ul>
  14. 15. <ul><li>Thank you! </li></ul><ul><li>Any questions? </li></ul><ul><li>Mor Naaman, Jeffrey Boase, Chih-Hui Lai* </li></ul><ul><li>{ mor, jboase, chihhui} </li></ul>