SlideShare una empresa de Scribd logo
1 de 15
Descargar para leer sin conexión
Instituto Tecnológico de Mexicali
Ingeniería Química
Materia:
Laboratorio Integral I
Tema:
Práctica
Medición de la viscosidad
Integrantes:
Blancas Wong Luis Adolfo 12490708
Blanchet guardado Jesús Eduardo 14490773
Torres tinoco josua Fernando 13490889
Juárez Zavala rebeca Celina 15490304
Huizar Zavala Felipe de Jesús 12490398
Nombre del profesor
Norman Edilberto Rivera Pazos
Mexicali, B.C. a 17 de marzo de 2017
1
Índice
Práctica
Título: “Medición de la viscosidad”
Objetivo
Introducción
Marco teórico
Viscosidad
Conversiones
Influencia de la temperatura
Influencia de la presión
Fluidos newtonianos y no newtonianos
Viscosímetros
Material, equipo y reactivos
Procedimiento
Cálculos
Bibliografía
2
Práctica I
Título:
“Medición de la viscosidad”
Objetivo:
Medir experimentalmente la viscosidad de dos sustancias (glicerina y aceite de ricino), a
diferentes condiciones, con la utilización de tres viscosímetros distintos, para así desarrollar la
capacidad de utilización y manejo de dichos viscosímetros.
Objetivos específicos:
 Medir la viscosidad de una sustancia a diferentes temperaturas utilizando el viscosímetro
Stormer, tal que se obtenga información necesaria para generar una ecuación matemática
para calcular la viscosidad.
 Medir la viscosidad de aceites delgados en viscosímetros Zahn con diferentes calibres.
 Aprender a montar y/o utilizar los diversos viscosímetros disponibles.
 Comparación de la viscosidad obtenida en cada viscosímetro, buscando que los valores se
parezcan lo más posible.
Introducción
Cuando hablamos en temas de ingeniería, se dice que un fluido es una sustanciaque se deforma
continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea.
Los fluidos no pueden considerarse siempre como ideales debido a su viscosidad.
La viscosidad es muy importante en los procesos porque da una referencia del esfuerzo necesario
para que un fluido se mueva, así como las pérdidas relacionadas con la fricción y deformación.
Un ingeniero al saber estas propiedades puede crear un proceso más eficiente o mejorar una ya
existente.
Es debido a la importancia de la viscosidad que en esta práctica nos dedicaremos a estudiarla,
ya sea teóricamente así comola opción experimental de la medición de la viscosidadcon distintos
viscosímetros.
3
Marco teórico
Viscosidad
La viscosidad es la propiedad más importante de los fluidos y esta se define como la resistencia
que ejercen los fluidos al ser deformados cuando se les aplica una mínima cantidad de esfuerzo
cortante. Esta propiedad depende de la presión y de la temperatura. Los fluidos de alta viscosidad
presentan una cierta resistencia a fluir y los de baja viscosidad fluyen con facilidad.
Viscosidad Dinámica o Absoluta (μ): Es la propiedad física que caracteriza la resistencia al flujo
de los fluidos, se deriva como consecuencia del principio de Newton. En general la viscosidad de
los fluidos incompresibles disminuye al aumentar la temperatura, mientras que en los gases
sucede lo contrario. Las unidades utilizadas para medirlas dependen del sistema que se utilice
(tabla 1).
Tabla 1. Unidades de la viscosidad dinámica.
Unidades en el Sistema
Internacional (SI)
Unidades en el sistema
CGS
Unidades en el sistemaingles
𝐾𝑔 ∗ 𝑠
𝑚
ó
𝑁 ∗ 𝑠
𝑚2
= 𝑃𝑎 ∗ 𝑠
𝑔. 𝑠
𝑐𝑚
= 𝑝𝑜𝑖𝑠𝑒 𝑅𝑒𝑦𝑛 =
𝑙𝑏𝑓 ∗ 𝑠
𝑖𝑛2
𝑜
𝑙𝑏𝑓 ∗ 𝑠
𝑓𝑡2
Viscosidad Cinemática (ν): Se define como la relación entre viscosidad dinámica y la densidad
de la masa. Sus unidades también dependen del sistema que se utilice (tabla 2).
𝜈 =
𝜇
𝜌
Donde:
𝜈 = viscosidad cinemática.
𝜇= viscosidad.
𝜌= densidad.
Tabla 2. Unidades de la viscosidad cinemática.
Unidades en el Sistema
Internacional (SI)
Unidades en el sistema CGS Unidades en el sistema
ingles
𝑚2
𝑠
𝑐𝑚2
𝑠
= 𝑆𝑡𝑜𝑘𝑒
𝑖𝑛2
𝑠
𝑜
𝑓𝑡2
𝑠
Conversiones
1 𝑝𝑜𝑖𝑠𝑒 = 0.1 𝑃𝑎 ∙ 𝑠
1 𝑐𝑒𝑛𝑡𝑖𝑝𝑜𝑖𝑠𝑒 = 1 𝑚𝑃𝑎 ∙ 𝑠
4
1 𝑅𝑒𝑦𝑛 = 1
𝑙𝑏𝑓 ∙ 𝑠
𝑖𝑛2 = 6890 𝑃𝑎 ∙ 𝑠
1 𝑠𝑡𝑜𝑘𝑒 = 1
𝑐𝑚2
𝑠
= 0.0001
𝑚2
𝑠
Influencia de la temperatura
 Gases
Los gases a diferencia de los líquidos aumentan su viscosidad con la temperatura. Esto se debe
principalmente a que se aumenta la agitación o movimiento de las moléculas y además los toques
o roces con actividad y fuerza a las demás moléculas contenidas en dicho gas. Por lo tanto es
mayor la unidad de contactos en una unidad de tiempo determinado.
 Líquidos
La viscosidad en los líquidos disminuye con el aumento de su temperatura ya que tendrán mayor
tendencia al flujo y, en consecuencia, tienen índices o coeficientes de viscosidad bajos o que
tienden a disminuir. Además de que también disminuye su densidad. Por lo tanto el movimiento
de sus moléculas tiende a ir al centro donde hay un mayor movimiento de moléculas en una
misma dirección (como se dijo, a fluir mayormente).
Influencia de la presión
 Gases
El aumento de presión hace que también aumente la viscosidad, ya que reduce el espacio entre
las moléculas.
 Líquidos
El aumento de presión (sumamente elevadas) hace que aumente la viscosidad.
Fluidos newtonianos y no newtonianos
Los fluidos newtonianos son aquellos cuya viscosidad es constante, es decir, son aquellos cuyo
esfuerzo cortante es directamente proporcional al gradiente de velocidad; estos siguen la ley de
Newton, en la que la viscosidad sólo depende de la temperatura, siendo independientes del
tiempo. Los fluidos no newtonianos, se comportan inversamente con la ecuación anterior.
dy
dvx
yx  
5
Viscosímetros
Los viscosímetros son instrumentos diseñados y especializados para realizar la medición del
nivel de viscosidad de fluidos. También permiten medir otros parámetros de flujo de los fluidos.
Viscosímetro Zahn.- Se pueden utilizar para realizar una medición rápida de la viscosidad. Son
empleados normalmente para medir y controlar las propiedades de flujo en la manufactura,
procesado y aplicaciones de tintas, pinturas, adhesivos. En general son sencillos y fáciles de
manejar, aunque presentan el inconveniente de que las medidas de viscosidad no son muy
precisas.
Este instrumento se trata de una copa de acero inoxidable con un pequeño orificio perforado en
la base de la copa y tiene un asa para manipular la copa (figura 1). Existen 5 especificaciones de
copas que se denominan como Copa Zahn 1, Zahn 2, Zahn 3, Zahn 4 y Zahn 5. Cuanto mayor
es el número de copa Zahn mayor será la viscosidad del líquido que se empleará, por lo cual una
copa Zahn 1 se empleará cuando se tiene un líquido con baja viscosidad. Cada copa Zahn es
suministrada con una tabla de conversión con el tiempo de flujo en segundos (en décimas de
segundo) para medir la viscosidad en centiStokes. Los diámetros de cada orificio según el calibre
de las copas se muestran en la tabla 2.
Tabla 3. Diámetro del orificio de las copas según su calibre.
No. de copa 1 2 3 4 5
Diámetro del orificio (mm) 2.0 2.7 3.8 4.3 5.3
Figura 1. Viscosímetro Zahn
Viscosímetro Brookfield.- Su funcionamiento se basa en el principio de la viscosimetría
rotacional, mide la viscosidad captando el par de torsión necesario para hacer girar a velocidad
constante un husillo inmerso en la muestra del fluido a estudiar.
El par de torsión es proporcional a la resistencia viscosa sobre el eje sumergido, y en
consecuencia, a la viscosidad del fluido.
Los viscosímetros Brookfield son de fácil instalación y gran versatilidad y para su manejo no se
necesitan grandes conocimientos operativos (figura 2).
6
Figura 2. Viscosímetro Brookfield.
Estos viscosímetros están compuestos por:
 Cuerpo del viscosímetro: Está constituido por un motor eléctrico y un dial de lectura.
 Vástagos intercambiables: También llamados “husillos”, se enumeran del 1 al 7, siendo 1 el
más grueso, tiene su eje, una señal que indica el nivel de inmersión en el líquido.
 Soporte: Para permitir sostener el aparato y desplazarlo en un plano vertical.
 Vasos: De 90 a 92 mm de diámetro y 116 a 160 mm de altura.
Viscosímetro Stormer.- Es un viscosímetro rotativo introducido en la industria de pinturas de los
países anglosajones desde hace decenios. Su construcción sumamente robusta, su fácil modo
de empleo y una alta precisión de los resultados, hacen aconsejable su aplicación tanto en
laboratorios industriales como en laboratorios de desarrollo (figura 3). Si bien no es útil para la
medición de masas,pegamentos y productos de alta viscosidad aparente, el aparato es apto para
medir la consistencia de productos en el campo de viscosidades intermedias de 50 a 5000 CP.
Este consta de dos cilindros, uno fijo y uno móvil con un medidor a forma de reloj que cuenta las
revoluciones generadas por un pequeño tambor giratorio, el cual rota o gira dentro del cilindro
móvil. Este mecanismo se genera a partir de una pequeña pesa, la cual acciona un movimiento
giratorio del tambor en base a la gravedad. El tiempo que tarda en dar 100 revoluciones, se
relaciona con la viscosidad del fluido.
Para determinar la viscosidad dinámica de la muestra, se utiliza
una ecuación en relación con la masa utilizada. Esta ecuación
corresponde al modelo (ajuste de curva) de las curvas de
calibración estándar para 100 revoluciones suministradas por el
fabricante del viscosímetro Stormer y las unidades de
viscosidad vienen dadas en centipoises
Figura 3. Viscosímetro Stormer
7
Viscosímetro ostwald
Es quizás el modelo que más se ha utilizado en la medida
de viscosidades absolutas y relativas en líquidos puros y
biológicos, en sus mezclas y, especialmente, en fluidos
newtonianos. Se basa en la ley de Poisseuille que permite
conocer la velocidad de flujo de un líquido a través de un
tubo, en función de la diferencia de presiones bajo las que
se establece el desplazamiento. La simplificación del
tratamiento numérico facilita la expresión que se aplica en
la medida experimental.
hr = t’/t.r
en donde hr representa la viscosidad relativa del líquido
problema, respecto al agua u otro líquido, t’ y t los tiempos
de flujo del estándar y del líquido, respectivamente, y r la
densidad.
La fuerza de fricción entre dos láminas contiguas de un
fluido es F = h S dv / dr, en donde S representa la
superficie en contacto separadas a una distancia dr y con
gradiente de velocidad dv/dr. La constante de
proporcionalidad, h, posee unas dimensiones de
(masa)(longitud)-1(tiempo)-1. Su unidad en el sistema SI
es kg.m-1s-1. En el sistema CGS se llama poise y es igual
a una décima parte de la unidad SI.
El viscosímetro de Ostwald es de vidrio. Posee un
ensanchamiento en forma de ampolla provista de sendos
enrases, conectado a un tubo capilar vertical que se une a
un segundo ensanchamiento destinado a la colocación de
la muestra en una primera operación, y del agua o líquido
de referencia en otra operación complementaria. El
conjunto se introduce en un baño termostático para fijar la
8
temperatura con precisión. Es indispensable la concreción
de este valor, porque la magnitud de la viscosidad, o de su
inverso la fluidez, son altamente dependientes de la
temperatura, como fue demostrado por Arrhenius, y
anteriormente por el español J. de Guzmán Carrancio
(1913). La dependencia se expresa como:
h = A exp(DEvis/RT)
en donde DEvis representa la barrera de energía que se
precisa vencer para que se produzca un flujo elemental.
Material, equipo y reactivos
Viscosímetro Material y equipo Reactivo
Stormer 2 Vaso de ppt 500 ml Glicerina
1 Termómetro
1
2
Cronometro
Guantes
Brookfield 2 Probetas 100 ml agua
Aceite de cocina
Zahn 2 Vaso de ppt 500 ml Glicerina
1 Termómetro Aceite de coco
1 Cronometro
Ostwald
7
2
1
1
5
Lentes
Vaso de ppt
Termómetro
cronometro
lentes
500 ml
Alcohol etílico
acetona
Procedimiento:
a) Viscosímetro Brookfield
1. Limpiar los materiales a utilizar y ordenar el equipo.
2. Montar el viscosímetro. Primero se acomoda el eje a la base ajustando la rosquilla.
9
3. Nivelar el viscosímetro a nivel adecuado (que la burbuja quede en el centro) con ayuda
de las rosquillas de la base, refiriéndose a la burbuja colocada detrás del instrumento.
Este es un paso muy importante, ya que con un mal nivel la lectura puede ser errónea.
4. Calibrar el equipo. Esto debe de hacerse sin husillo. Primero se enciende el equipo
(power switch on) asegurándose de que el motor este apagado (motor switch off).
Después se presiona la tecla SPDL que nos pedirá dos dígitos, referidos al número de
husillo a utilizar. En este caso es el husillo #1 con clave 61. Lo siguiente es presionar
cualquier tecla de medición de viscosidad ya sea %, CPS o SS. Por último se presiona
la tecla AUTO ZERO para que de esta forma la máquina se calibre al valor cero y se
escoge la tecla de medición de viscosidad a usar.
Series LV
Calibre de husillo Entrada SPDL
1 61
2 62
3 63
4 64
5 65
5. Se coloca el acople con doble tornillo en la base del rotor, este sirve para sostener el
envase que contiene la muestra.
6. Colocar el husillo con cuidado de no aplicar mucha fuerza al rotor ya que se puede
descalibrar el equipo e incluso descomponerlo, con una mano se sostiene el rotor y con
la otra el husillo.
7. Esperar a que las cifras regresen a ceros.
8. Colocar la sustancia en la probeta de 100 ml cuidando de que el husillo quede
sumergido hasta la marca.(Nota.- Entre más viscosasea la sustancia,las revoluciones
por minuto usadas deben ser menores).
9. Prender el motor y esperar a la lectura de viscosidad.
10. Lavar probeta y husillo para siguiente medición.
b) Viscosímetro Zahn
1. Lavar cada una de las copas a utilizar (copa del número 2 y 4) así como la zona de
trabajo. La copa del número 2 será para el aceite de coco y la 4 para la glicerina. Las
copas se lavan con agua y jabón ya sea por primera vez o para cambiar de sustancia.
2. Agregar cada sustancia a un vaso de precipitado de 500 ml.
10
3. Medir con un termómetro la temperatura de cada sustancia. Limpiar al cambiar de
sustancia y al terminar. Dicha temperatura debe de estar en 25 °C ± 2°C
4. Se sumerge la copa adecuada dentro del vaso de precipitado de 1 a 5 minutos con el
fin de alcanzar el equilibrio térmico para que luego de ese tiempo, en posición vertical
se retire la copa de la sustancia de forma suave y rápida.
5. Tomar el tiempo con el cronometro a partir de que el fondo de la copa deje de estar
en contacto con la superficie del líquido. (tiempo de flujo).
6. Dejar de tomar el tiempo cuando se observe el primer punto de quiebre. Tomar nota
del tiempo y repetir dos veces más con la misma sustancia.
7. Repetir el procedimiento para la otra copa.
8. Lavar material.
Viscosímetro Stormer
1. Limpiar los materiales a utilizar y ordenar el equipo.
2. Conectar la plancha con el fin de calentar agua en un vaso de precipitado de 500 ml,
verificar con el termómetro que la temperatura se llegue y se mantenga en 100 °C
3. Eliminar los roces que puedan existir entre el rotor y el cilindro fijo.
4. Desplazar el cilindro fijo hacia el rotor hasta llegar al tope de la guía, fijándolo en esta
posición.
5. Soltar el freno (m=50 gr) un cuarto de giro nivelando el sistema, este movimiento es
transmitido al cilindro móvil generando un esfuerzo de corte en la superficie de la
muestra debido a la velocidad. Poner atención a un ruido metálico, si es así, aflojar los
tornillos de ajuste que sujetan el cilindro exterior. Este desplazamiento se lleva a cabo
para eliminar el ruido metálico.
6. Ajustar los tornillos que sujetan al cilindro exterior, siempre por pares diametrales
opuestos evitando el desplazamiento del cilindro.
7. Subir el porta pesas hasta su máximo nivel.
8. Soltar el freno nuevamente para verificar que ya no se produzca ruido metálico.
9. Tomar un punto de referencia en el tacómetroy liberar el freno hasta que la aguja este
a 4 o 5 espacios antes del punto de referencia. Se recomienda el cero.
10. Soltar la plataforma móvil para descenderla.
11. Introducir el agua en el cilindro exterior hasta el nivel de las aletas internas del cilindro.
Colocar el cilindro fijo en el cilindro móvil o rotor (en su lugar original). Poner la muestra
11
a analizar en el cilindro fijo hasta los topes que se encuentran. Elevar plataforma y
ajustar tornillo.
12. Instalar termómetro y tomar la temperatura inicial (y las sucesivas) de la muestra una
vez hecho esto retirar el termómetro y limpiarlo.
13. Soltar el freno de la polea y cuando la aguja del tacómetro pase por cero, iniciar a
tomar el tiempo. Detenerlo cuando pase por el punto de referencia (cero).
14. Registrar el tiempo. Nota: Cuando seutiliza un peso de 100gr y el tiempo es registrado
menor a 20 segundos. Repetir pero sólo con el porta pesas de (50gr).
15. Repetir el paso 9,10, 12, 13 y 14 nueve veces más para poder ver el comportamiento
de la viscosidad con el descenso de la temperatura.
16. Limpiar el cilindro fijo y tirar el agua del cilindro exterior.
Viscosímetro ostwald
1. Limpiar los materiales a utilizar y ordenar el equipo.
2. Agregar cada sustancia a un vaso de precipitado de 500 ml.
3. Medir con un termómetro la temperatura de cada sustancia. Limpiar al
cambiar de sustancia y al terminar. Dicha temperatura debe de estar en 25
°C ± 2°C.
4. Agregar la sustancia al viscosímetro hasta la mitad del bulbo inferior
5. Succionar con la perilla la sustancia hasta llegar a la línea marcada
6. Empezar al tomar en tiempo cuando empieza a caer la sustancia al la bulb
inferiror.
12
Cálculos, resultados y gráficas
Viscosímetro Stormer:
Obtención de ecuación de la recta para un peso de 50 gramos.
Para obtener la ecuación de la recta a partir de los puntos P y Q se utiliza la siguiente fórmula:
𝑦 − 𝑦1 = 𝑚( 𝑥 − 𝑥1)
A su vez, la pendiente m se obtiene con la fórmula:
𝑚 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1
Por lo tanto, la ecuación para encontrar la ecuación de la recta es:
𝑦 = (
𝑦2 − 𝑦1
𝑥2 − 𝑥1
)( 𝑥 − 𝑥1)+ 𝑦1
Sea 𝑦 viscosidad, y 𝑥 tiempo; y sustituyendo por el valor de los puntos P y Q:
𝑦 = (
350 − 200
250 − 150
) ( 𝑥 − 150) + 200
𝑦 = (1.5)( 𝑥 − 150) + 200
𝑦 = 1.5𝑥 − 25
Esta ecuación se utilizó para comparar la viscosidad en condiciones de temperatura similares.
13
Para los demás viscosímetros, las mediciones tablas y cálculos están hechos
en Excel.
Brookfield
Sustancia # Temperatura Cp Kg/m*s
Glicerina 1 22 504 0.504
Aceite cocina Marqués 1 23 56 0.056
2 34 40 0.04
14
Conclusiones
Al realizar diferentes pruebas se logro ver que mientras la temperatura fuera aumentada
la viscosidad disminuía y podemos entender que la viscosidad se relaciona mucho con la
temperatura.
Bibliografías
 Mott Robert. (2006). “Mecánica de fluidos”. Pearson. 6 ed.

Fuentes electrónicas
 http://www.scribd.com
 http://www.adendorf.net/copa-zahn-para-viscosidad-de-tintas-p-108.html
http://www.twilight.mx/Viscosimetros/Viscosimetros-Zahn.html
zahn
sustancia # temperatura No.copa cst pa*s
aceite de coco 1 20 4 14.8 0.135
glicerina 2 25 2 3.5 0.0441
1 cp=1 cst*densidad las densidades se sacaron de internet
1poise=100cp
1poise=.1pa*s
ostwald
sustancia # temperatura tiempo poises kg*m/s
aceton 1 25 46.66 0.00032 0.00032
alcohol etilico 2 25 2,55.96 0.0058 0.0058
hr = t’/t.r t y t'=tiempos del estandar y del agua respectivamente
la densidad del agua se saco de tablas r= densida
poises=kg*m/s

Más contenido relacionado

La actualidad más candente

Distribuciones de tiempos_de_residencia_en_reactores_quimicos
Distribuciones de tiempos_de_residencia_en_reactores_quimicosDistribuciones de tiempos_de_residencia_en_reactores_quimicos
Distribuciones de tiempos_de_residencia_en_reactores_quimicosDany Hdz
 
Practica 6 Ley de Fick
Practica 6 Ley de FickPractica 6 Ley de Fick
Practica 6 Ley de FickDiego Rivers
 
Reporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosReporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosGustavo Salazar
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-artNorman Rivera
 
Reporte practica 2 Potencia de una bomba centrifuga
Reporte practica 2 Potencia de una bomba centrifugaReporte practica 2 Potencia de una bomba centrifuga
Reporte practica 2 Potencia de una bomba centrifugaBeyda Rolon
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoJasminSeufert
 
Equipo para extracción líquido líquido
Equipo para extracción líquido líquidoEquipo para extracción líquido líquido
Equipo para extracción líquido líquidomarconuneze
 
Reporte practica 5 Reducción de tamaño
Reporte practica 5 Reducción de tamañoReporte practica 5 Reducción de tamaño
Reporte practica 5 Reducción de tamañoBeyda Rolon
 

La actualidad más candente (20)

Torres de enfriamiento
Torres de enfriamientoTorres de enfriamiento
Torres de enfriamiento
 
Reporte reactor-cstr
Reporte reactor-cstrReporte reactor-cstr
Reporte reactor-cstr
 
Practica no-5
Practica no-5Practica no-5
Practica no-5
 
Lechos porosos
Lechos porososLechos porosos
Lechos porosos
 
Distribuciones de tiempos_de_residencia_en_reactores_quimicos
Distribuciones de tiempos_de_residencia_en_reactores_quimicosDistribuciones de tiempos_de_residencia_en_reactores_quimicos
Distribuciones de tiempos_de_residencia_en_reactores_quimicos
 
Practica 6 Ley de Fick
Practica 6 Ley de FickPractica 6 Ley de Fick
Practica 6 Ley de Fick
 
Fluidización
FluidizaciónFluidización
Fluidización
 
Practica perfil de temperatura
Practica perfil de temperaturaPractica perfil de temperatura
Practica perfil de temperatura
 
Practica de tamizado
Practica de tamizadoPractica de tamizado
Practica de tamizado
 
Reporte practica-1 Viscosimetros
Reporte practica-1 ViscosimetrosReporte practica-1 Viscosimetros
Reporte practica-1 Viscosimetros
 
Humidificacion adiabatica
Humidificacion adiabaticaHumidificacion adiabatica
Humidificacion adiabatica
 
Velocidad de reaccion
Velocidad de reaccionVelocidad de reaccion
Velocidad de reaccion
 
Transferencia de-masa-art
Transferencia de-masa-artTransferencia de-masa-art
Transferencia de-masa-art
 
Reporte practica 2 Potencia de una bomba centrifuga
Reporte practica 2 Potencia de una bomba centrifugaReporte practica 2 Potencia de una bomba centrifuga
Reporte practica 2 Potencia de una bomba centrifuga
 
Apunte 2 cinetica
Apunte 2 cineticaApunte 2 cinetica
Apunte 2 cinetica
 
1235971715.psicrometria
1235971715.psicrometria1235971715.psicrometria
1235971715.psicrometria
 
Práctica no.8 equipo número. 2
Práctica no.8 equipo número. 2 Práctica no.8 equipo número. 2
Práctica no.8 equipo número. 2
 
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y TurbulentoPractica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
Practica 3 Perfiles de Velocidad en Flujo Laminar y Turbulento
 
Equipo para extracción líquido líquido
Equipo para extracción líquido líquidoEquipo para extracción líquido líquido
Equipo para extracción líquido líquido
 
Reporte practica 5 Reducción de tamaño
Reporte practica 5 Reducción de tamañoReporte practica 5 Reducción de tamaño
Reporte practica 5 Reducción de tamaño
 

Destacado

CAIDA DE PRESION ECUACION DE BERNOUILLI
CAIDA DE PRESION ECUACION DE BERNOUILLICAIDA DE PRESION ECUACION DE BERNOUILLI
CAIDA DE PRESION ECUACION DE BERNOUILLIEduardoBGuardado
 
Practica 1-curva-caracteristica-de-la-bomba-copia
Practica 1-curva-caracteristica-de-la-bomba-copiaPractica 1-curva-caracteristica-de-la-bomba-copia
Practica 1-curva-caracteristica-de-la-bomba-copiaFelipe Huizar
 
Italialaiset maaliskuu
Italialaiset maaliskuuItalialaiset maaliskuu
Italialaiset maaliskuuLaila Bröcker
 
3Com 03-0172-300
3Com 03-0172-3003Com 03-0172-300
3Com 03-0172-300savomir
 
3Com 1694-210-050-2.00
3Com 1694-210-050-2.003Com 1694-210-050-2.00
3Com 1694-210-050-2.00savomir
 
Evaluation Question 2
Evaluation Question 2Evaluation Question 2
Evaluation Question 2j7ralph
 
Compresor de archivos mzf
Compresor de archivos mzfCompresor de archivos mzf
Compresor de archivos mzfMaria Zas
 
Technology Enhanced Learning and Innovative pedagogy
Technology Enhanced Learning and Innovative pedagogyTechnology Enhanced Learning and Innovative pedagogy
Technology Enhanced Learning and Innovative pedagogyDavid Biggins
 

Destacado (14)

Practica 2
Practica 2Practica 2
Practica 2
 
CAIDA DE PRESION ECUACION DE BERNOUILLI
CAIDA DE PRESION ECUACION DE BERNOUILLICAIDA DE PRESION ECUACION DE BERNOUILLI
CAIDA DE PRESION ECUACION DE BERNOUILLI
 
SEPARACION POR FLOTACION
SEPARACION POR FLOTACIONSEPARACION POR FLOTACION
SEPARACION POR FLOTACION
 
Practica 1-curva-caracteristica-de-la-bomba-copia
Practica 1-curva-caracteristica-de-la-bomba-copiaPractica 1-curva-caracteristica-de-la-bomba-copia
Practica 1-curva-caracteristica-de-la-bomba-copia
 
Italialaiset maaliskuu
Italialaiset maaliskuuItalialaiset maaliskuu
Italialaiset maaliskuu
 
Question 1
Question 1Question 1
Question 1
 
Edukits
EdukitsEdukits
Edukits
 
3Com 03-0172-300
3Com 03-0172-3003Com 03-0172-300
3Com 03-0172-300
 
3Com 1694-210-050-2.00
3Com 1694-210-050-2.003Com 1694-210-050-2.00
3Com 1694-210-050-2.00
 
Evaluation Question 2
Evaluation Question 2Evaluation Question 2
Evaluation Question 2
 
Da vincicode
Da vincicodeDa vincicode
Da vincicode
 
Buscar v, filtros y macros
Buscar v, filtros y macrosBuscar v, filtros y macros
Buscar v, filtros y macros
 
Compresor de archivos mzf
Compresor de archivos mzfCompresor de archivos mzf
Compresor de archivos mzf
 
Technology Enhanced Learning and Innovative pedagogy
Technology Enhanced Learning and Innovative pedagogyTechnology Enhanced Learning and Innovative pedagogy
Technology Enhanced Learning and Innovative pedagogy
 

Similar a Practica determinacion-deviscosidad

Similar a Practica determinacion-deviscosidad (20)

Práctica I Completo
Práctica I CompletoPráctica I Completo
Práctica I Completo
 
Práctica I
Práctica IPráctica I
Práctica I
 
Práctica I
Práctica IPráctica I
Práctica I
 
Medición Viscosidad
Medición ViscosidadMedición Viscosidad
Medición Viscosidad
 
viscosidad
viscosidad viscosidad
viscosidad
 
Práctica 5
Práctica 5Práctica 5
Práctica 5
 
La viscosidad
La viscosidad La viscosidad
La viscosidad
 
Practica No.5
Practica No.5Practica No.5
Practica No.5
 
Reporte practica 7 Medición de Viscosidades
Reporte practica 7 Medición de ViscosidadesReporte practica 7 Medición de Viscosidades
Reporte practica 7 Medición de Viscosidades
 
Reologia
ReologiaReologia
Reologia
 
Practica1 fluidos viscosidad dinamica
Practica1 fluidos viscosidad dinamicaPractica1 fluidos viscosidad dinamica
Practica1 fluidos viscosidad dinamica
 
Uso del viscosimetro.
Uso del viscosimetro.Uso del viscosimetro.
Uso del viscosimetro.
 
Practica 5 guia viscosidad y tension superficial version 2021
Practica 5 guia viscosidad y tension superficial  version 2021Practica 5 guia viscosidad y tension superficial  version 2021
Practica 5 guia viscosidad y tension superficial version 2021
 
Viscosímetro de Saybolt
Viscosímetro de SayboltViscosímetro de Saybolt
Viscosímetro de Saybolt
 
Medicion de viscosidades
Medicion de viscosidadesMedicion de viscosidades
Medicion de viscosidades
 
Viscocidad definición y generalidades
Viscocidad definición y generalidadesViscocidad definición y generalidades
Viscocidad definición y generalidades
 
Practica#1 medicion de viscosidades
Practica#1  medicion de viscosidadesPractica#1  medicion de viscosidades
Practica#1 medicion de viscosidades
 
Lab 01 mecanica de fluidos- grupo 02
Lab 01 mecanica de fluidos- grupo 02Lab 01 mecanica de fluidos- grupo 02
Lab 01 mecanica de fluidos- grupo 02
 
Practica 1 flujo de fluidos
Practica 1 flujo de fluidosPractica 1 flujo de fluidos
Practica 1 flujo de fluidos
 
Subir
SubirSubir
Subir
 

Más de Luis Blancas Wong (20)

Practica #12
Practica #12Practica #12
Practica #12
 
Practica 11
Practica 11Practica 11
Practica 11
 
Practica 6
Practica 6Practica 6
Practica 6
 
Practica #9
Practica #9Practica #9
Practica #9
 
Practica #10
Practica #10Practica #10
Practica #10
 
Practica #7
Practica #7 Practica #7
Practica #7
 
Practica #8
Practica #8Practica #8
Practica #8
 
Practica #6
Practica #6Practica #6
Practica #6
 
Practica 2: Lechos Empacados
Practica 2: Lechos EmpacadosPractica 2: Lechos Empacados
Practica 2: Lechos Empacados
 
Presentación1
Presentación1Presentación1
Presentación1
 
Pruebas de-hipotesis-equipo
Pruebas de-hipotesis-equipoPruebas de-hipotesis-equipo
Pruebas de-hipotesis-equipo
 
Encuesta (1)
Encuesta (1)Encuesta (1)
Encuesta (1)
 
Mt 2
Mt 2Mt 2
Mt 2
 
Celda solar 2
Celda solar 2Celda solar 2
Celda solar 2
 
Celda solar 1
Celda solar 1Celda solar 1
Celda solar 1
 
Analisis
AnalisisAnalisis
Analisis
 
Unidad 1 mt
Unidad 1 mtUnidad 1 mt
Unidad 1 mt
 
Adeee
AdeeeAdeee
Adeee
 
Unidad 1 mt
Unidad 1 mtUnidad 1 mt
Unidad 1 mt
 
Analisis de datos experimentales.
Analisis de datos experimentales.Analisis de datos experimentales.
Analisis de datos experimentales.
 

Último

analisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfanalisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfJOHELSANCHEZINCA
 
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfMecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfaaaaaaaaaaaaaaaaa
 
concreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaconcreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaamira520031
 
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUBROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUSharonRojas28
 
Presentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxPresentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxwilliam atao contreras
 
Diseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaDiseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaLuisAlfredoPascualPo
 
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfPPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfANGHELO JJ. MITMA HUAMANÌ
 
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambiental
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambientalModulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambiental
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambientalAcountsStore1
 
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍCALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍArquitecto Chile
 
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...AmeliaJul
 
Cuadro de las web 1.0, 2.0 y 3.0 pptx
Cuadro de las web 1.0, 2.0 y 3.0     pptxCuadro de las web 1.0, 2.0 y 3.0     pptx
Cuadro de las web 1.0, 2.0 y 3.0 pptxecarmariahurtado
 
TAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasTAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasroberto264045
 
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalModulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalAcountsStore1
 
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)EmanuelMuoz11
 
Método inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenasMétodo inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenas182136
 
IA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxIA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxcecymendozaitnl
 
gabriela marcano estructura iii historia del concreto
gabriela marcano  estructura iii historia del concretogabriela marcano  estructura iii historia del concreto
gabriela marcano estructura iii historia del concretoGabrielaMarcano12
 
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfPrincipios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfYADIRAXIMENARIASCOSV
 
Poder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestPoder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestSilvia España Gil
 
1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientosMaicoPinelli
 

Último (20)

analisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdfanalisis matematico 2 elon lages lima .pdf
analisis matematico 2 elon lages lima .pdf
 
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdfMecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
Mecánica vectorial para ingenieros estática. Beer - Johnston. 11 Ed.pdf
 
concreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historicaconcreto pretensado y postensado- reseña historica
concreto pretensado y postensado- reseña historica
 
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERUBROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
BROCHURE EDIFICIO MULTIFAMILIAR LIMA. PERU
 
Presentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptxPresentación de Ciencia, Cultura y Progreso.pptx
Presentación de Ciencia, Cultura y Progreso.pptx
 
Diseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra RinaDiseño de Algoritmos Paralelos con la maestra Rina
Diseño de Algoritmos Paralelos con la maestra Rina
 
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdfPPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
PPT_Conferencia OBRAS PUBLICAS x ADMNISTRACION DIRECTA.pdf
 
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambiental
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambientalModulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambiental
Modulo 5 - Monitoreo de Ruido Ambiental de monitoreo ambiental
 
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍCALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
CALCULISTA AGUA POTABLE ALCANTARILLADO RURAL CURACAVÍ
 
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
aplicacion-del-metodo-cientifico-de-roberto-hernandez-carlos-fernandez-y-pila...
 
Cuadro de las web 1.0, 2.0 y 3.0 pptx
Cuadro de las web 1.0, 2.0 y 3.0     pptxCuadro de las web 1.0, 2.0 y 3.0     pptx
Cuadro de las web 1.0, 2.0 y 3.0 pptx
 
TAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gasTAREA 1 - Parada de Planta compresoras de gas
TAREA 1 - Parada de Planta compresoras de gas
 
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambientalModulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
Modulo 4 - Monitoreo Hidrobiológico de monitoreo ambiental
 
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
Fundamentos - Curso Desarrollo Web (HTML, JS, PHP, JS, SQL)
 
Método inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenasMétodo inductivo.pdf-lizzeh cuellar cardenas
Método inductivo.pdf-lizzeh cuellar cardenas
 
IA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptxIA T3 Elaboración e interpretación de planos.pptx
IA T3 Elaboración e interpretación de planos.pptx
 
gabriela marcano estructura iii historia del concreto
gabriela marcano  estructura iii historia del concretogabriela marcano  estructura iii historia del concreto
gabriela marcano estructura iii historia del concreto
 
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdfPrincipios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
Principios de Circuitos Eléctricos (Thomas L. Floyd) (Z-Library).pdf
 
Poder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfestPoder puedo, pero no lo haré - T3chfest
Poder puedo, pero no lo haré - T3chfest
 
1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos1_Tipos Básicos de Motores - funcionamientos
1_Tipos Básicos de Motores - funcionamientos
 

Practica determinacion-deviscosidad

  • 1. Instituto Tecnológico de Mexicali Ingeniería Química Materia: Laboratorio Integral I Tema: Práctica Medición de la viscosidad Integrantes: Blancas Wong Luis Adolfo 12490708 Blanchet guardado Jesús Eduardo 14490773 Torres tinoco josua Fernando 13490889 Juárez Zavala rebeca Celina 15490304 Huizar Zavala Felipe de Jesús 12490398 Nombre del profesor Norman Edilberto Rivera Pazos Mexicali, B.C. a 17 de marzo de 2017
  • 2. 1 Índice Práctica Título: “Medición de la viscosidad” Objetivo Introducción Marco teórico Viscosidad Conversiones Influencia de la temperatura Influencia de la presión Fluidos newtonianos y no newtonianos Viscosímetros Material, equipo y reactivos Procedimiento Cálculos Bibliografía
  • 3. 2 Práctica I Título: “Medición de la viscosidad” Objetivo: Medir experimentalmente la viscosidad de dos sustancias (glicerina y aceite de ricino), a diferentes condiciones, con la utilización de tres viscosímetros distintos, para así desarrollar la capacidad de utilización y manejo de dichos viscosímetros. Objetivos específicos:  Medir la viscosidad de una sustancia a diferentes temperaturas utilizando el viscosímetro Stormer, tal que se obtenga información necesaria para generar una ecuación matemática para calcular la viscosidad.  Medir la viscosidad de aceites delgados en viscosímetros Zahn con diferentes calibres.  Aprender a montar y/o utilizar los diversos viscosímetros disponibles.  Comparación de la viscosidad obtenida en cada viscosímetro, buscando que los valores se parezcan lo más posible. Introducción Cuando hablamos en temas de ingeniería, se dice que un fluido es una sustanciaque se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Los fluidos no pueden considerarse siempre como ideales debido a su viscosidad. La viscosidad es muy importante en los procesos porque da una referencia del esfuerzo necesario para que un fluido se mueva, así como las pérdidas relacionadas con la fricción y deformación. Un ingeniero al saber estas propiedades puede crear un proceso más eficiente o mejorar una ya existente. Es debido a la importancia de la viscosidad que en esta práctica nos dedicaremos a estudiarla, ya sea teóricamente así comola opción experimental de la medición de la viscosidadcon distintos viscosímetros.
  • 4. 3 Marco teórico Viscosidad La viscosidad es la propiedad más importante de los fluidos y esta se define como la resistencia que ejercen los fluidos al ser deformados cuando se les aplica una mínima cantidad de esfuerzo cortante. Esta propiedad depende de la presión y de la temperatura. Los fluidos de alta viscosidad presentan una cierta resistencia a fluir y los de baja viscosidad fluyen con facilidad. Viscosidad Dinámica o Absoluta (μ): Es la propiedad física que caracteriza la resistencia al flujo de los fluidos, se deriva como consecuencia del principio de Newton. En general la viscosidad de los fluidos incompresibles disminuye al aumentar la temperatura, mientras que en los gases sucede lo contrario. Las unidades utilizadas para medirlas dependen del sistema que se utilice (tabla 1). Tabla 1. Unidades de la viscosidad dinámica. Unidades en el Sistema Internacional (SI) Unidades en el sistema CGS Unidades en el sistemaingles 𝐾𝑔 ∗ 𝑠 𝑚 ó 𝑁 ∗ 𝑠 𝑚2 = 𝑃𝑎 ∗ 𝑠 𝑔. 𝑠 𝑐𝑚 = 𝑝𝑜𝑖𝑠𝑒 𝑅𝑒𝑦𝑛 = 𝑙𝑏𝑓 ∗ 𝑠 𝑖𝑛2 𝑜 𝑙𝑏𝑓 ∗ 𝑠 𝑓𝑡2 Viscosidad Cinemática (ν): Se define como la relación entre viscosidad dinámica y la densidad de la masa. Sus unidades también dependen del sistema que se utilice (tabla 2). 𝜈 = 𝜇 𝜌 Donde: 𝜈 = viscosidad cinemática. 𝜇= viscosidad. 𝜌= densidad. Tabla 2. Unidades de la viscosidad cinemática. Unidades en el Sistema Internacional (SI) Unidades en el sistema CGS Unidades en el sistema ingles 𝑚2 𝑠 𝑐𝑚2 𝑠 = 𝑆𝑡𝑜𝑘𝑒 𝑖𝑛2 𝑠 𝑜 𝑓𝑡2 𝑠 Conversiones 1 𝑝𝑜𝑖𝑠𝑒 = 0.1 𝑃𝑎 ∙ 𝑠 1 𝑐𝑒𝑛𝑡𝑖𝑝𝑜𝑖𝑠𝑒 = 1 𝑚𝑃𝑎 ∙ 𝑠
  • 5. 4 1 𝑅𝑒𝑦𝑛 = 1 𝑙𝑏𝑓 ∙ 𝑠 𝑖𝑛2 = 6890 𝑃𝑎 ∙ 𝑠 1 𝑠𝑡𝑜𝑘𝑒 = 1 𝑐𝑚2 𝑠 = 0.0001 𝑚2 𝑠 Influencia de la temperatura  Gases Los gases a diferencia de los líquidos aumentan su viscosidad con la temperatura. Esto se debe principalmente a que se aumenta la agitación o movimiento de las moléculas y además los toques o roces con actividad y fuerza a las demás moléculas contenidas en dicho gas. Por lo tanto es mayor la unidad de contactos en una unidad de tiempo determinado.  Líquidos La viscosidad en los líquidos disminuye con el aumento de su temperatura ya que tendrán mayor tendencia al flujo y, en consecuencia, tienen índices o coeficientes de viscosidad bajos o que tienden a disminuir. Además de que también disminuye su densidad. Por lo tanto el movimiento de sus moléculas tiende a ir al centro donde hay un mayor movimiento de moléculas en una misma dirección (como se dijo, a fluir mayormente). Influencia de la presión  Gases El aumento de presión hace que también aumente la viscosidad, ya que reduce el espacio entre las moléculas.  Líquidos El aumento de presión (sumamente elevadas) hace que aumente la viscosidad. Fluidos newtonianos y no newtonianos Los fluidos newtonianos son aquellos cuya viscosidad es constante, es decir, son aquellos cuyo esfuerzo cortante es directamente proporcional al gradiente de velocidad; estos siguen la ley de Newton, en la que la viscosidad sólo depende de la temperatura, siendo independientes del tiempo. Los fluidos no newtonianos, se comportan inversamente con la ecuación anterior. dy dvx yx  
  • 6. 5 Viscosímetros Los viscosímetros son instrumentos diseñados y especializados para realizar la medición del nivel de viscosidad de fluidos. También permiten medir otros parámetros de flujo de los fluidos. Viscosímetro Zahn.- Se pueden utilizar para realizar una medición rápida de la viscosidad. Son empleados normalmente para medir y controlar las propiedades de flujo en la manufactura, procesado y aplicaciones de tintas, pinturas, adhesivos. En general son sencillos y fáciles de manejar, aunque presentan el inconveniente de que las medidas de viscosidad no son muy precisas. Este instrumento se trata de una copa de acero inoxidable con un pequeño orificio perforado en la base de la copa y tiene un asa para manipular la copa (figura 1). Existen 5 especificaciones de copas que se denominan como Copa Zahn 1, Zahn 2, Zahn 3, Zahn 4 y Zahn 5. Cuanto mayor es el número de copa Zahn mayor será la viscosidad del líquido que se empleará, por lo cual una copa Zahn 1 se empleará cuando se tiene un líquido con baja viscosidad. Cada copa Zahn es suministrada con una tabla de conversión con el tiempo de flujo en segundos (en décimas de segundo) para medir la viscosidad en centiStokes. Los diámetros de cada orificio según el calibre de las copas se muestran en la tabla 2. Tabla 3. Diámetro del orificio de las copas según su calibre. No. de copa 1 2 3 4 5 Diámetro del orificio (mm) 2.0 2.7 3.8 4.3 5.3 Figura 1. Viscosímetro Zahn Viscosímetro Brookfield.- Su funcionamiento se basa en el principio de la viscosimetría rotacional, mide la viscosidad captando el par de torsión necesario para hacer girar a velocidad constante un husillo inmerso en la muestra del fluido a estudiar. El par de torsión es proporcional a la resistencia viscosa sobre el eje sumergido, y en consecuencia, a la viscosidad del fluido. Los viscosímetros Brookfield son de fácil instalación y gran versatilidad y para su manejo no se necesitan grandes conocimientos operativos (figura 2).
  • 7. 6 Figura 2. Viscosímetro Brookfield. Estos viscosímetros están compuestos por:  Cuerpo del viscosímetro: Está constituido por un motor eléctrico y un dial de lectura.  Vástagos intercambiables: También llamados “husillos”, se enumeran del 1 al 7, siendo 1 el más grueso, tiene su eje, una señal que indica el nivel de inmersión en el líquido.  Soporte: Para permitir sostener el aparato y desplazarlo en un plano vertical.  Vasos: De 90 a 92 mm de diámetro y 116 a 160 mm de altura. Viscosímetro Stormer.- Es un viscosímetro rotativo introducido en la industria de pinturas de los países anglosajones desde hace decenios. Su construcción sumamente robusta, su fácil modo de empleo y una alta precisión de los resultados, hacen aconsejable su aplicación tanto en laboratorios industriales como en laboratorios de desarrollo (figura 3). Si bien no es útil para la medición de masas,pegamentos y productos de alta viscosidad aparente, el aparato es apto para medir la consistencia de productos en el campo de viscosidades intermedias de 50 a 5000 CP. Este consta de dos cilindros, uno fijo y uno móvil con un medidor a forma de reloj que cuenta las revoluciones generadas por un pequeño tambor giratorio, el cual rota o gira dentro del cilindro móvil. Este mecanismo se genera a partir de una pequeña pesa, la cual acciona un movimiento giratorio del tambor en base a la gravedad. El tiempo que tarda en dar 100 revoluciones, se relaciona con la viscosidad del fluido. Para determinar la viscosidad dinámica de la muestra, se utiliza una ecuación en relación con la masa utilizada. Esta ecuación corresponde al modelo (ajuste de curva) de las curvas de calibración estándar para 100 revoluciones suministradas por el fabricante del viscosímetro Stormer y las unidades de viscosidad vienen dadas en centipoises Figura 3. Viscosímetro Stormer
  • 8. 7 Viscosímetro ostwald Es quizás el modelo que más se ha utilizado en la medida de viscosidades absolutas y relativas en líquidos puros y biológicos, en sus mezclas y, especialmente, en fluidos newtonianos. Se basa en la ley de Poisseuille que permite conocer la velocidad de flujo de un líquido a través de un tubo, en función de la diferencia de presiones bajo las que se establece el desplazamiento. La simplificación del tratamiento numérico facilita la expresión que se aplica en la medida experimental. hr = t’/t.r en donde hr representa la viscosidad relativa del líquido problema, respecto al agua u otro líquido, t’ y t los tiempos de flujo del estándar y del líquido, respectivamente, y r la densidad. La fuerza de fricción entre dos láminas contiguas de un fluido es F = h S dv / dr, en donde S representa la superficie en contacto separadas a una distancia dr y con gradiente de velocidad dv/dr. La constante de proporcionalidad, h, posee unas dimensiones de (masa)(longitud)-1(tiempo)-1. Su unidad en el sistema SI es kg.m-1s-1. En el sistema CGS se llama poise y es igual a una décima parte de la unidad SI. El viscosímetro de Ostwald es de vidrio. Posee un ensanchamiento en forma de ampolla provista de sendos enrases, conectado a un tubo capilar vertical que se une a un segundo ensanchamiento destinado a la colocación de la muestra en una primera operación, y del agua o líquido de referencia en otra operación complementaria. El conjunto se introduce en un baño termostático para fijar la
  • 9. 8 temperatura con precisión. Es indispensable la concreción de este valor, porque la magnitud de la viscosidad, o de su inverso la fluidez, son altamente dependientes de la temperatura, como fue demostrado por Arrhenius, y anteriormente por el español J. de Guzmán Carrancio (1913). La dependencia se expresa como: h = A exp(DEvis/RT) en donde DEvis representa la barrera de energía que se precisa vencer para que se produzca un flujo elemental. Material, equipo y reactivos Viscosímetro Material y equipo Reactivo Stormer 2 Vaso de ppt 500 ml Glicerina 1 Termómetro 1 2 Cronometro Guantes Brookfield 2 Probetas 100 ml agua Aceite de cocina Zahn 2 Vaso de ppt 500 ml Glicerina 1 Termómetro Aceite de coco 1 Cronometro Ostwald 7 2 1 1 5 Lentes Vaso de ppt Termómetro cronometro lentes 500 ml Alcohol etílico acetona Procedimiento: a) Viscosímetro Brookfield 1. Limpiar los materiales a utilizar y ordenar el equipo. 2. Montar el viscosímetro. Primero se acomoda el eje a la base ajustando la rosquilla.
  • 10. 9 3. Nivelar el viscosímetro a nivel adecuado (que la burbuja quede en el centro) con ayuda de las rosquillas de la base, refiriéndose a la burbuja colocada detrás del instrumento. Este es un paso muy importante, ya que con un mal nivel la lectura puede ser errónea. 4. Calibrar el equipo. Esto debe de hacerse sin husillo. Primero se enciende el equipo (power switch on) asegurándose de que el motor este apagado (motor switch off). Después se presiona la tecla SPDL que nos pedirá dos dígitos, referidos al número de husillo a utilizar. En este caso es el husillo #1 con clave 61. Lo siguiente es presionar cualquier tecla de medición de viscosidad ya sea %, CPS o SS. Por último se presiona la tecla AUTO ZERO para que de esta forma la máquina se calibre al valor cero y se escoge la tecla de medición de viscosidad a usar. Series LV Calibre de husillo Entrada SPDL 1 61 2 62 3 63 4 64 5 65 5. Se coloca el acople con doble tornillo en la base del rotor, este sirve para sostener el envase que contiene la muestra. 6. Colocar el husillo con cuidado de no aplicar mucha fuerza al rotor ya que se puede descalibrar el equipo e incluso descomponerlo, con una mano se sostiene el rotor y con la otra el husillo. 7. Esperar a que las cifras regresen a ceros. 8. Colocar la sustancia en la probeta de 100 ml cuidando de que el husillo quede sumergido hasta la marca.(Nota.- Entre más viscosasea la sustancia,las revoluciones por minuto usadas deben ser menores). 9. Prender el motor y esperar a la lectura de viscosidad. 10. Lavar probeta y husillo para siguiente medición. b) Viscosímetro Zahn 1. Lavar cada una de las copas a utilizar (copa del número 2 y 4) así como la zona de trabajo. La copa del número 2 será para el aceite de coco y la 4 para la glicerina. Las copas se lavan con agua y jabón ya sea por primera vez o para cambiar de sustancia. 2. Agregar cada sustancia a un vaso de precipitado de 500 ml.
  • 11. 10 3. Medir con un termómetro la temperatura de cada sustancia. Limpiar al cambiar de sustancia y al terminar. Dicha temperatura debe de estar en 25 °C ± 2°C 4. Se sumerge la copa adecuada dentro del vaso de precipitado de 1 a 5 minutos con el fin de alcanzar el equilibrio térmico para que luego de ese tiempo, en posición vertical se retire la copa de la sustancia de forma suave y rápida. 5. Tomar el tiempo con el cronometro a partir de que el fondo de la copa deje de estar en contacto con la superficie del líquido. (tiempo de flujo). 6. Dejar de tomar el tiempo cuando se observe el primer punto de quiebre. Tomar nota del tiempo y repetir dos veces más con la misma sustancia. 7. Repetir el procedimiento para la otra copa. 8. Lavar material. Viscosímetro Stormer 1. Limpiar los materiales a utilizar y ordenar el equipo. 2. Conectar la plancha con el fin de calentar agua en un vaso de precipitado de 500 ml, verificar con el termómetro que la temperatura se llegue y se mantenga en 100 °C 3. Eliminar los roces que puedan existir entre el rotor y el cilindro fijo. 4. Desplazar el cilindro fijo hacia el rotor hasta llegar al tope de la guía, fijándolo en esta posición. 5. Soltar el freno (m=50 gr) un cuarto de giro nivelando el sistema, este movimiento es transmitido al cilindro móvil generando un esfuerzo de corte en la superficie de la muestra debido a la velocidad. Poner atención a un ruido metálico, si es así, aflojar los tornillos de ajuste que sujetan el cilindro exterior. Este desplazamiento se lleva a cabo para eliminar el ruido metálico. 6. Ajustar los tornillos que sujetan al cilindro exterior, siempre por pares diametrales opuestos evitando el desplazamiento del cilindro. 7. Subir el porta pesas hasta su máximo nivel. 8. Soltar el freno nuevamente para verificar que ya no se produzca ruido metálico. 9. Tomar un punto de referencia en el tacómetroy liberar el freno hasta que la aguja este a 4 o 5 espacios antes del punto de referencia. Se recomienda el cero. 10. Soltar la plataforma móvil para descenderla. 11. Introducir el agua en el cilindro exterior hasta el nivel de las aletas internas del cilindro. Colocar el cilindro fijo en el cilindro móvil o rotor (en su lugar original). Poner la muestra
  • 12. 11 a analizar en el cilindro fijo hasta los topes que se encuentran. Elevar plataforma y ajustar tornillo. 12. Instalar termómetro y tomar la temperatura inicial (y las sucesivas) de la muestra una vez hecho esto retirar el termómetro y limpiarlo. 13. Soltar el freno de la polea y cuando la aguja del tacómetro pase por cero, iniciar a tomar el tiempo. Detenerlo cuando pase por el punto de referencia (cero). 14. Registrar el tiempo. Nota: Cuando seutiliza un peso de 100gr y el tiempo es registrado menor a 20 segundos. Repetir pero sólo con el porta pesas de (50gr). 15. Repetir el paso 9,10, 12, 13 y 14 nueve veces más para poder ver el comportamiento de la viscosidad con el descenso de la temperatura. 16. Limpiar el cilindro fijo y tirar el agua del cilindro exterior. Viscosímetro ostwald 1. Limpiar los materiales a utilizar y ordenar el equipo. 2. Agregar cada sustancia a un vaso de precipitado de 500 ml. 3. Medir con un termómetro la temperatura de cada sustancia. Limpiar al cambiar de sustancia y al terminar. Dicha temperatura debe de estar en 25 °C ± 2°C. 4. Agregar la sustancia al viscosímetro hasta la mitad del bulbo inferior 5. Succionar con la perilla la sustancia hasta llegar a la línea marcada 6. Empezar al tomar en tiempo cuando empieza a caer la sustancia al la bulb inferiror.
  • 13. 12 Cálculos, resultados y gráficas Viscosímetro Stormer: Obtención de ecuación de la recta para un peso de 50 gramos. Para obtener la ecuación de la recta a partir de los puntos P y Q se utiliza la siguiente fórmula: 𝑦 − 𝑦1 = 𝑚( 𝑥 − 𝑥1) A su vez, la pendiente m se obtiene con la fórmula: 𝑚 = 𝑦2 − 𝑦1 𝑥2 − 𝑥1 Por lo tanto, la ecuación para encontrar la ecuación de la recta es: 𝑦 = ( 𝑦2 − 𝑦1 𝑥2 − 𝑥1 )( 𝑥 − 𝑥1)+ 𝑦1 Sea 𝑦 viscosidad, y 𝑥 tiempo; y sustituyendo por el valor de los puntos P y Q: 𝑦 = ( 350 − 200 250 − 150 ) ( 𝑥 − 150) + 200 𝑦 = (1.5)( 𝑥 − 150) + 200 𝑦 = 1.5𝑥 − 25 Esta ecuación se utilizó para comparar la viscosidad en condiciones de temperatura similares.
  • 14. 13 Para los demás viscosímetros, las mediciones tablas y cálculos están hechos en Excel. Brookfield Sustancia # Temperatura Cp Kg/m*s Glicerina 1 22 504 0.504 Aceite cocina Marqués 1 23 56 0.056 2 34 40 0.04
  • 15. 14 Conclusiones Al realizar diferentes pruebas se logro ver que mientras la temperatura fuera aumentada la viscosidad disminuía y podemos entender que la viscosidad se relaciona mucho con la temperatura. Bibliografías  Mott Robert. (2006). “Mecánica de fluidos”. Pearson. 6 ed.  Fuentes electrónicas  http://www.scribd.com  http://www.adendorf.net/copa-zahn-para-viscosidad-de-tintas-p-108.html http://www.twilight.mx/Viscosimetros/Viscosimetros-Zahn.html zahn sustancia # temperatura No.copa cst pa*s aceite de coco 1 20 4 14.8 0.135 glicerina 2 25 2 3.5 0.0441 1 cp=1 cst*densidad las densidades se sacaron de internet 1poise=100cp 1poise=.1pa*s ostwald sustancia # temperatura tiempo poises kg*m/s aceton 1 25 46.66 0.00032 0.00032 alcohol etilico 2 25 2,55.96 0.0058 0.0058 hr = t’/t.r t y t'=tiempos del estandar y del agua respectivamente la densidad del agua se saco de tablas r= densida poises=kg*m/s