Poblacion

6.590 visualizaciones

Publicado el

ing Basualdo-uni

0 comentarios
3 recomendaciones
Estadísticas
Notas
  • Sé el primero en comentar

Sin descargas
Visualizaciones
Visualizaciones totales
6.590
En SlideShare
0
De insertados
0
Número de insertados
5
Acciones
Compartido
0
Descargas
400
Comentarios
0
Recomendaciones
3
Insertados 0
No insertados

No hay notas en la diapositiva.

Poblacion

  1. 1. UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA CIVIL TEMA : POBLACION DE DISEÑO MÉTODOS DE CÁLCULO POBLACIONAL 2013
  2. 2. POBLACION FUTURA Debemos tener presente que las poblaciones crecen por nacimiento, decrecen por muertes, crecen o decrecen por migración. Los censos se determinan a partir de estas consideraciones, llevándose a cabo aproximadamente cada 10-12 años por el INEI. Estos datos censales son utilizados, en la aplicación de los métodos de cálculo poblacional. Para el calculo poblacional de un sistema de abastecimiento de agua, se debe conocer el periodo de diseño.
  3. 3. Población de Diseño Las obras de agua potable y alcantarillado no se diseñan para satisfacer sólo una necesidad del momento actual sino que deben prever el crecimiento de la población en un periodo de tiempo prudencial que varía entre 10 y 40 años; siendo necesario estimar cuál será la población futura al final de este periodo. Con la población de diseño se determina la demanda de agua para el final del periodo de diseño.
  4. 4. FACTORES QUE AFECTAN EL CRECIMIENTO DE UNA LOCALIDAD Condiciones topográficas. Facilidades de expansión urbana. Precio de los terrenos. Planos urbanisticos (zonificación). Facilidades de transporte. Hábitos y condiciones socio-económicas de la población. Existencia de los servicios básicos.
  5. 5. METODOS DE CALCULO POBLACIONAL Los métodos más utilizados en la estimación de la población futura son: 1.- Métodos Analíticos Aritmético Interés Simple Interés Compuesto Parábola de Segundo Grado Incrementos Variables Logístico o Saturación 2.- Métodos Gráficos Gráfico Simple o de proyección Gráfico Comporativo 3.- Método Racional
  6. 6. Métodos de Cálculo Poblacional • 1.−   Métodos Analíticos Suponen que el cálculo de la población para una región dada es ajustable una curva matemática. Es evidente que este ajuste dependerá de las características de los valores de población censada, así como de los intervalos de tiempo en que éstos se han medido. • 2.−   Métodos Gráficos Son aquellos que mediante procedimientos gráficos estiman valores de población, ya sea en función de datos censales anteriores de la región o considerando los datos de poblaciones de crecimiento similar a la que se está estudiando.  • 3.−   Método Racional En este caso para determinar la población, se realiza un estudio socio- económico del lugar considerando el crecimiento vegetativo que es en función de los nacimientos, defunciones, inmigraciones, emigraciones y población flotante.
  7. 7. El método más utilizado para el cálculo de la población futura en las zonas rurales es el analítico y con más frecuencia el de crecimiento aritmético. Este método se utiliza para el cálculo de poblaciones bajo la consideración de que éstas van cambiando en la forma de una progresión aritmética y que se encuentran cerca del límite de saturación.
  8. 8. •  Método Aritmético Este método supone que el crecimiento de la población varia siguiendo una progresión aritmética, de acuerdo a la fórmula siguiente: Donde: Pf = Población futura. Po = Población inicial. r = Tasa de crecimiento t = Tiempo en años comprendido entre Pf y Po n = Número de datos de la información censal El valor de r, se puede calcular con los datos recopilados en el estudio de campo así mismo también de la información censal de periodos anteriores. trPP of ⋅+= 1 1 1 1 − − − = ∑ = = + + n tt PP r ni i ii ii
  9. 9. •  Método de Interés Simple Este método da valores bajos es decir aplicable para poblaciones que se encuentran en proceso de franco crecimiento por que se trata de que la población crece como un capital sujeto a un interés simple : Donde: Pf = Población futura Po = Población inicial r = Tasa de crecimiento t = Tiempo en años comprendido entre Pf y Po n = Número de datos de la información censal t)r(1PP of ⋅+= 1 1 1 1 1 − − − = ∑ = = + + n tt P P r ni i ii i i
  10. 10. •  Método de Interés Compuesto Este método da valores más altos es decir aplicaple para poblaciones que se encuentran en la etapa de iniciacióno por que se trata de que la población crece como un capital sujeto a un interés compuesto. Donde: Pf = Población futura. Po = Población inicial. r = Tasa de crecimiento t = Tiempo en años comprendido entre Pf y Po n = Número de datos de la información censal t of )r(1PP += 1 1 1 1 1 − − = ∑ = = − + + n P P r ni i tit i i i
  11. 11. •  Método deIncrementos Variables Este método basado en las diferenciación numérica para generar un polinomio de interpolación, se necesitan por lo menos cuatro datos equidistantes en el tiempo Donde: Pf = Población futura. Po = Población del último dato censal. m = Número de intervalos entre Pf y Po(décadas) Promedio de los primeros incrementos Promedio de los segundos incrementos ... !3 )2)(1( !2 )1( 321 +∆ −− +∆ − +∆+= P mmm P mm Pmof PP 10 1 ii tt m − = + =∆ P1 =∆ P2 iii PPP −=∆ +11 iiii PPPP +−=∆ ++ 122 2
  12. 12. •  Método de la parábola de 2do. Grado P = At2 + Bt + C P = Pob. genérica A,B,C = Constantes de la parábola t = Tiempo
  13. 13.  •  Método Logístico o de Saturación Considere que hay un momento en que para con determinado tiempo (propio de cada país) se logra una población de saturación. Este método está afectado por varios factores, como: el área disponible, topografía. t P Pob. Sat.(Ps) Ejm.: San Francisco New York
  14. 14. La ecuación que rige el método es el correspondiente a la reacción química unimolecular. Pf = Población futura PS = Población de saturación t = Tiempo en décadas a, b = Constantes propias de la ecuación bta s e P + + = 1 fP
  15. 15. Se requiere de 3 datos equidistantes: P0 = Pob. En el tiempo t0 d P1 = Pob. En el tiempo t1 d P2 = Pob. En el tiempo t2 Luego : ( ) 2 120 20 2 12102 PPP PPPPPP − +− =sP       − = 0 0 P PP Ln s a ( ) ( )      − − = 01 101 PPP PPP Ln d s s b
  16. 16.  Condiciones de aplicación del método 1 202 120 2 P PP PPP ≥ + ⇒〈Si1º 1 202 120 2 P PP PPP ≤ + ⇒〉Si2º ( ) ( ) ( ) 1 2020 20201 20120 20 2 1210 2 2 0 0 P PPPP PPPPP PPPPP PPPPPP 〉 + 〉+ 〈+− 〈+− 2 2
  17. 17. • 2.−   Métodos Gráficos Simple o de proyección Comparativo • 3.−   Método Racional Pf = Población futura en el tiempo tf Po = Población inicial en el tiempo to N = Nacimientos en el intervalo (tf – to) D = Defunciones en el intervalo (tf – to) I = Inmigración en el intervalo (tf – to) E = Emigración en el intervalo (tf – to) N – D = Saldo vegetativo I – E = Saldo migratorio )()( EIDNPo −+−+=fP
  18. 18. ARITMETICO I. SIMPLE I.COMPUST. n Año P(hab) ti+1-ti(años) ti+1-ti(déca.) Pi+1-Pi Pi(ti+1 -ti) (Pi+1/Pi)1/(ti+1- ti) ri ri ri 1 1970 68000 2 1980 92000 10 1 24000 680000 1.352941176 2400 0.0353 0.3529 3 1990 130000 10 1 38000 920000 1.413043478 3800 0.0413 0.4130 4 2000 175000 10 1 45000 1300000 1.346153846 4500 0.0346 0.3462 Po = 175000 hab tf - to = 2020 - 2000 = 20 años rPROMEDIO 3566.6667 0.0371 0.3707 M ARITMETICO Pf = Po + rPROMEDIO(tf - to) P2020 = 175000 +3566.6667*20 = 246333 M. INTERES SIMPLE Pf = Po (1+ rPROMEDIO(tf - to)) P2020 = 175000*(1+0.0371*20) = 304749 M. INTERES COMPUESTO Pf = Po (1+ rPROMEDIO)(tf - to) P2020 = 175000*(1+0.3707)^2 = 328799   MMétodétodos de Cálculo Poblacionalos de Cálculo Poblacional

×