Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Clustering coefficients for correlation networks

41 visualizaciones

Publicado el

Presentation slides for
Naoki Masuda, Michiko Sakaki, Takahiro Ezaki, Takamitsu Watanabe.
Frontiers in Neuroinformatics, 12, 7 (2018).

Publicado en: Ciencias
  • Sé el primero en comentar

  • Sé el primero en recomendar esto

Clustering coefficients for correlation networks

  1. 1. Clustering coefficients for correlation networks Naoki Masuda, Michiko Sakaki, Takahiro Ezaki, Takamitsu Watanabe Reference: Masuda, Sakaki, Ezaki, Watanabe. Frontiers in Neuroinformatics, 12, 7 (2018).
  2. 2. Correlation matrix • A major form of multivariate data • Connection between i and j = strength of correlation between i and j • Pearson (or other) correlation • Measurements: time series, feature vector, questionnaires across human/animal subjects etc. • Financial time series, neuroimaging, genetic data, climate networks etc. • Conventional approaches • Principal component analysis • Factor analysis • Random matrix theory • Markowitz’s optimal portfolio
  3. 3. Correlation networks • To benefit from network analysis tools • Two conventional approaches • (1) Thresholding • (2) Weighted networks • Problems: • False positives (pseudo correlation) • Loss of information by thresholding • Arbitrariness of the threshold choice • Negative correlation in the case of weighted networks 0.2 for EPSRC corrmat -0.1 0.35 0.15 0.1 0.2 Figure 1: Thresholding of a correlation matrix into a network. A threshold of 0.12 is applied as an example. A different threshold value yields a different network in general. 1 2 3 4 1 2 3 4 0 B B @ 1 0.35 0.1 0.1 0.35 1 0.2 0.15 0.1 0.2 1 0.2 0.1 0.15 0.2 1 1 C C A = correlation matrix thresholded network i lj
  4. 4. Aim • Less biased analysis methods for correlation networks • For community detection, see: MacMahon & Garlaschelli, Physical Review X, 5, 021006, 2015. • We do this for the clustering coefficient in this study.
  5. 5. False positive problem in the clustering coefficient • If nodes i and j are correlated and i and ℓ are correlated, j and ℓ would be as well. • The problem persists for weighted networks. • Clustering coefficient tends to be inflated if we apply conventional unweighted/weighted networks to correlation matrices (Zalesky et al., 2012) i lj
  6. 6. Idea • Use the partial correlation (3 ways) • We don’t use the partial correlation matrix (N ways) to make our clustering coefficient a local quantity (like the conventional clustering coefficients). i lj ⇢partial (j, ` | i) = ⇢(j, `) ⇢(i, j)⇢(i, `) p 1 ⇢2(i, j) p 1 ⇢2(i, `)
  7. 7. Def 1 Local clustering coefficient at node i Global: Note: We use the absolute value of the partial cor. Ccor,A i = P 1j<`N j,`6=i ⇢(i, j)⇢(i, `)⇢partial (j, ` | i) P 1j<`N j,`6=i |⇢(i, j)⇢(i, `)| Ccor,A = 1 N NX i=1 Ccor,A i ⇢partial (j, ` | i) = ⇢(j, `) ⇢(i, j)⇢(i, `) p 1 ⇢2(i, j) p 1 ⇢2(i, `)
  8. 8. Def 2 For multivariate Gaussian, where Ccor,M = 1 N NX i=1 Ccor,M i Ccor,M i = P 1j<`N j,`6=i |⇢(i, j)⇢(i, `)| ⇥ I(Xj, X` | Xi) 1+ln 2⇡ 2 P 1j<`N j,`6=i |⇢(i, j)⇢(i, `)| . I(Xj, X` | Xi) = h(Xj, Xi) + h(X`, Xi) h(Xi) h(Xj, X`, Xi) h(X↵1 , . . . , X↵d ) = d 2 (1 + ln 2⇡) + 1 2 ln det cov0 cov0 ij = E ⇥ X↵i X↵j ⇤ I(Xj, X` | Xi) = 1 2 ⇥ ln 1 ⇢2 (i, j) + ln 1 ⇢2 (i, `) ln 1 ⇢2 (i, j) ⇢2 (i, `) ⇢2 (j, `) + 2⇢(i, j)⇢(i, `)⇢(j, `) ⇤ Partial mutual information Then, simplify Local Global
  9. 9. Numerical illustrations • Data: functional magnetic resonance imaging (fMRI) data (brain activity) • Nathan Klein Institute’s Rockland Sample • open resource • 18-85 years, healthy • N=30 nodes using a famous brain atlas (Power et al., 2011) • Biological interest: age dependence
  10. 10. r = -0.377 r = -0.311r = 0.020 r = -0.397
  11. 11. Effect of node strength (s+) regressed out r = -0.224 r = -0.259 (P = 0.0076) (P = 0.0019)
  12. 12. Local clustering coef vs node strenegth Weighted clustering coefsOur clustering coefs i lj
  13. 13. Other results • More correlated with the age than conventional unweighted/weighted clustering coefficients • Partial correlation matrix and then conventional clustering coefficients does not help. • Two other similar definitions of clustering coefficients. • Qualitatively the same results
  14. 14. Conclusions • Network analysis of correlation matrices • Two clustering coefficients tailored to correlation matrices • Future: • Other networks (e.g. financial, genetic) • Different brain networks/contexts • Ref: Masuda, Sakaki, Ezaki, Watanabe. Frontiers in Neuroinformatics, 12, 7 (2018).

×