SlideShare a Scribd company logo
1 of 32
INTERNAL COMBUTION ENGINE
Made by:
Assistant Professor : NAPHIS AHAMAD
MECHANICAL ENGINEERING
6/10/2017 Naphis Ahamad (ME) JIT 1
6/10/2017 Naphis Ahamad (ME) JIT 2
UNIT V
COMPRESSOR – A device which takes a definite quantity of fluid ( usually gas, and
most often air ) and deliver it at a required pressure.
Air Compressor – 1) Takes in atmospheric air,
2) Compresses it, and
3) Delivers it to a storage vessel ( i.e. Reservoir ).
Compression requires Work to be done on the gas,
Compressor must be driven by some sort of Prime Mover ( i.e. Engine )
Air Compressors
6/10/2017 NAPHIS AHAMAD(ME)JIT 3
Reciprocating Rotary
Single – acting
Double - Acting
No. of Sides of Piston
in operation
No. of Stages
for Compression
Centrifugal
Single – stage
Multi - stage
Classification
Air Compressors
6/10/2017 NAPHIS AHAMAD(ME)JIT 4
Reciprocating Compressor - Working
2. Principle of Operation
 Fig. shows single-acting piston actions in
the cylinder of a reciprocating compressor.
 The piston is driven by a crank shaft via a
connecting rod.
 At the top of the cylinder are a suction
valve and a discharge valve.
 A reciprocating compressor usually has
two, three, four, or six cylinders in it.
6/10/2017 NAPHIS AHAMAD(ME)JIT 5
Reciprocating Compressor - Working
6/10/2017 NAPHIS AHAMAD(ME)JIT 6
Reciprocating Compressor – Equation for Work
Volume
Pressure
P1
P2
V1V2
3 2 2”2’
4 1 (Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Operations : 4 – 1 : Volume V1 of air aspirated into Compressor, at P1 and T1.
1 – 2 : Air compressed according to PVn = Const. from P1 to P2.
→ Temp increase from T1 to T2.
2 – 3 : Compressed air at P2 and V2 with temperature T2 is delivered.
Reciprocating Compressor – Equation for Work
During Compression, due to the excess temperature above surrounding, the air will
exchange the heat to the surrounding.
 Compression Index, n is always less than γ, the adiabatic index.
As Compressor is a work consuming device, every effort is desired to reduce the work.
Work done = Area under P-V curve
 1 – 2” : Adiabatic Compression = Max. Work.
 1 – 2 : Polytropic Compression
 1 – 2’ : Isothermal Compression = Min. Work.
Reciprocating Compressor – Equation for Work
Thus, comparison between the Isothermal Work and the Actual Work is important.
Isothermal Efficiency, ηiso =
Isothermal Work
Actual Work
Thus, more the Isothermal Efficiency, more the actual compression approaches to the
Isothermal Compression.
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Actual Work = Wact = Area 4-1-2-3-4
Wact = Area (4-1) – Area (1-2) – Area (2-3)
 
  





















1
1
1
2211
2211
1122
2211
22
1122
11
n
VPVP
VPVP
n
VPVP
VPVP
VP
n
VPVP
VP
6/10/2017 NAPHIS AHAMAD(ME)JIT 9
 
 






























11
22
11
2211
2211
1
1
1
1
1
1
VP
VP
VP
n
n
VPVP
n
n
VPVP
n
Wiso
Reciprocating Compressor – Equation for Work
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
Now,
n
nn
P
P
V
V
VPVP
/1
2
1
1
2
2211






























n
iso
P
P
P
P
VP
n
n
W
/1
2
1
1
2
11 1
1












































 n
n
iso
P
P
P
P
VP
n
n
P
P
P
P
VP
n
n
W
/1
1
2
1
2
11
/1
2
1
1
2
11
1
1
1
1
Reciprocating Compressor – Equation for Work
P1
P2
V1V2
3 2 2”2’
4 1(Polytropic)
(Adiabatic)
(Isothermal)
CVP n

CVP 
CVP 
The solution of this equation is always negative.
This shows that Work is done ON the Compressor.

























n
n
iso
P
P
mRT
n
n
W
1
1
2
1 1
1Delivery Temperature,
n
n
P
P
TT
1
1
2
12

































n
n
iso
P
P
VP
n
n
W
1
1
2
11 1
1
Reciprocating Compressor – Equation for Work
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Clearance Volume :
Volume that remains inside the cylinder
after the piston reaches the end of its
inward stroke.
Thus, Effective Stroke Volume = V1 – V4
Actual Work = Wact = Area 1-2-3-4
Wact = Area (5-1-2-6) – Area (5-4-3-6)
6/10/2017 NAPHIS AHAMAD(ME)JIT 12
Reciprocating Compressor – Equation for Work








































n
m
n
m
act
P
P
VP
n
n
P
P
VP
n
n
W
1
1
2
41
1
1
2
11
1
1
1
1
 






















n
act
P
P
P
P
VVP
n
n
W
/1
2
1
1
2
411 1
1







































n
m
n
m
act
P
P
VP
n
n
P
P
VP
n
n
W
1
4
3
44
1
1
2
11 1
1
1
1
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
But, P4 = P1 and P3 = P2
Reciprocating Compressor – Volumetric Efficiency
Volumetric Efficiency :
Ratio of free air delivered to the displacement of the compressor.
Ratio of Effective Swept Volume to Swept Volume.
Volumetric Efficiency =
Effective Swept Volume
Swept Volume
V1 – V4
V1 – V3
=
Vc
Vs
= = γ
Clearance Volume
Swept Volume
Clearance Ratio =
Presence of Clearance Volume
Volumetric Efficiency less than 1. ( 60 – 85 % )
P1
P2
V1V4
6 2
5 1
CVP n

3
4
V3
Effective Swept Volume, V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
( 4 – 10 % )
6/10/2017 NAPHIS AHAMAD(ME)JIT 14
Reciprocating Compressor – Volumetric Efficiency
↑ Pr. Ratio ↑ Effect of Clearance Volume
….Clearance air expansion through greater volume before intake


Cylinder bore and stroke is fixed.
Effective Swept Volume (V1 – V4) ↓ with ↑ Pr. Ratio
↓ Volumetric Efficiency

   
     
   
    3
4
31
3
31
3
3
3
31
4
31
3
31
4
31
3
31
4331
31
41
1
1
1
V
V
VV
V
VV
V
V
V
VV
V
VV
V
VV
V
VV
V
VV
VVVV
VV
VV
vol




















P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-
V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Volumetric Efficiency

















































11
11
11
11
/1
4
3
/1
4
3
31
3
4
3
31
3
4
3
31
3
n
vol
n
vol
vol
vol
P
P
P
P
VV
V
V
V
VV
V
V
V
VV
V




P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V3=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Multistage
High Pressure required by Single – Stage :
 1. Requires heavy working parts.
2. Has to accommodate high pressure ratios.
3. Increased balancing problems.
4. High Torque fluctuations.
5. Requires heavy Flywheel installations.
This demands for MULTI – STAGING…!!
Reciprocating Compressor – Multistage
Series arrangement of cylinders, in which the compressed air from earlier cylinder (i.e.
discharge) becomes the intake air for the next cylinder (i.e. inlet).
Intercooler :
Compressed air is cooled
between cylinders.
L.P. = Low Pressure
I.P. = Intermediate
Pressure
H.P. = High Pressure
L.P.
Cylinder
I.P.
Cylinder
H.P.
Cylinder
Intercooler
Intercooler
Air Intake
Air Delivery
6/10/2017 NAPHIS AHAMAD(ME)JIT 18
Reciprocating Compressor – Multistage
Intake Pr.
P1 or Ps
Delivery Pr.
P3 or Pd
3
2
9 5
4
1
CVP n

8
7
6
Intermediate Pr.
P2 CVP 
Without Intercooling
Perfect Intercooling
L.P.
H.P.
Volume
Overall Pr. Range : P1 – P3
Single – stage cycle : 8-1-5-6
Without Intercooling :
L.P. : 8-1-4-7
H.P. : 7-4-5-6
With Intercooling :
L.P. : 8-1-4-7
H.P. : 7-2-3-6
Perfect Intercooling : After initial compression in L.P. cylinder, air is cooled in the
Intercooler to its original temperature, before entering H.P. cylinder
i.e. T2 = T1 OR
Points 1 and 2 are on SAME Isothermal line.
6/10/2017 NAPHIS AHAMAD(ME)JIT 19
Reciprocating Compressor – Multistage
Ideal Conditions for Multi – Stage Compressors :
A. Single – Stage Compressor :
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Single – stage cycle : 8-1-5-6



















1
1
5
11 1
1
n
n
P
P
VP
n
n
W
Delivery Temperature,
n
n
P
P
TT
1
1
5
15








6/10/2017 NAPHIS AHAMAD(ME)JIT 20
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
B. Two – Stage Compressor (Without Intercooling) :
Without Intercooling :
L.P. : 8-1-4-7
H.P. : 7-4-5-6








































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
4
5
44
1
1
4
11
1
1
1
1
This is SAME as that of Work done in Single – Stage.
Delivery Temperature also remains SAME.
Without Intercooling 
6/10/2017 NAPHIS AHAMAD(ME)JIT 21
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
C. Two – Stage Compressor (With Perfect Intercooling) :
With Intercooling :
L.P. : 8-1-4-7-8
H.P. : 7-2-3-6-7








































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
2
3
22
1
1
4
11
1
1
1
1
Delivery Temperature,
12
1
2
3
1
1
2
3
23 , TTas
P
P
T
P
P
TT
n
n
n
n














6/10/2017 NAPHIS AHAMAD(ME)JIT 22
Reciprocating Compressor – Multistage
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
C. Two – Stage Compressor (With Perfect Intercooling) :
With Intercooling :
L.P. : 8-1-4-7-8
H.P. : 7-2-3-6-7


























n
n
n
n
P
P
P
P
VP
n
n
W
1
2
3
1
1
2
11 2
1
Now, T2 = T1
P2V2 = P1V1
Also P4 = P2
Shaded Area 2-4-5-3-2 : Work Saving due to Intercooler…!!
Reciprocating Compressor – Multistage
Condition for Min. Work :
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Intermediate Pr. P2 → P1 : Area 2-4-5-3-2 → 0
Intermediate Pr. P2 → P3 : Area 2-4-5-3-2 → 0
 There is an Optimum P2 for which Area 2-4-5-3-2 is
maximum,
i.e. Work is minimum…!!


























n
n
n
n
P
P
P
P
VP
n
n
W
1
2
3
1
1
2
11 2
1
0
2
1
2
3
1
1
2
2

























dP
P
P
P
P
d
dP
dW
n
n
n
n
For min. Work,
6/10/2017 NAPHIS AHAMAD(ME)JIT 24
Reciprocating Compressor – Multistage
Condition for Min. Work :
 
      0
111 1
1
2
1
3
1
1
21
1











 





 






 





 





 

n
n
n
n
n
n
n
n
P
n
n
PP
n
n
P
0
2
1
2
3
1
1
2
2

























dP
P
P
P
P
d
dP
dW
n
n
n
n
 
 
  




 





 

 n
n
n
n
n
PP
P
P 1
3112
2
/1
2
   31
2
2 PPP 
2
3
1
2
312
P
P
P
P
ORPPP 
CVP 
3
2
9 5
4
1
CVP n

8
7
6
L.P.
H.P.
Reciprocating Compressor – Multistage
P2 obtained with this condition (Pr. Ratio per stage is equal) is the Ideal Intermediate Pr.
Which, with Perfect Intercooling, gives Minimum Work, Wmin.
 






















n
n
P
PP
VP
n
n
W
1
1
2/1
31
11 1
1
2




















n
n
P
P
VP
n
n
W
1
1
2
11 1
1
2





















n
n
P
P
VP
n
n
W
2
1
1
3
11 1
1
2
Equal Work per cylinder…!!
Reciprocating Compressor – Efficiency
How to Increase Isothermal Efficiency ?
A. Spray Injection : Assimilation of water into the compressor cylinder towards the
compression stroke.
Object is to cool the air for next operation.
Demerits : 1. Requires special gear for injection.
2. Injected water interferes with the cylinder lubrication.
3. Damage to cylinder walls and valves.
ater must be separated before delivery of air.
B. Water Jacketing : Circulating water around the cylinder to help for cooling the
air during compression.
6/10/2017 NAPHIS AHAMAD(ME)JIT 27
Reciprocating Compressor – Efficiency
How to Increase Isothermal Efficiency ?
C. Inter – Cooling : For high speed and high Pr. Ratio compressors.
Compressed air from earlier stage is cooled to its original
temperature before passing it to the next stage.
D. External Fins : For small capacity compressors, fins on external surfaces are useful.
E. Cylinder Proportions : Short stroke and large bore provides much greater surface
for cooling.
Cylinder head surface is far more effective than barrel surface.
6/10/2017 NAPHIS AHAMAD(ME)JIT 28
Reciprocating Compressor – Efficiency
Clearance Volume : Consists of two spaces.
1. Space between cylinder end & the piston to allow for wear.
2. Space for reception of valves.
High – class H.P. compressors : Clearance Vol. = 3 % of Swept Vol.
: Lead (Pb) fuse wire used to measure the gap between
cylinder end and piston.
Low – grade L.P. compressors : Clearance Vol. = 6 % of Swept Vol.
: Flattened ball of putty used to measure the gap
between cylinder end and piston.
Effect of Clearance Vol. :
Vol. taken in per stroke < Swept Vol. ↑ Size of compressor
↑ Power to drive compressor.

6/10/2017 NAPHIS AHAMAD(ME)JIT 29
P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V4=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Work Done







































n
n
n
n
P
P
VP
n
n
P
P
VP
n
n
W
1
4
3
44
1
1
2
11 1
1
1
1
Assumption : Compression and Expansion follow same Law.
Work / cycle = Area 1-2-3-4-1
P3 = P2 and P4 = P1








































n
n
a
n
n
P
P
VP
n
n
P
P
VVP
n
n
W
1
1
2
1
1
1
2
411
1
1
1)(
1
6/10/2017 NAPHIS AHAMAD(ME)JIT 30
P1
P2
V1V4
6 2
5 1
3
4
V3
Effective Swept Volume,
V1-V4
Swept Volume, V1-V4=Vs
Total Volume, V1
Clearance Volume,
V3=Vc
Reciprocating Compressor – Work Done




















n
n
P
P
TRm
n
n
W
1
1
2
11 1
1
m1 is the actual mass of air delivered.
Work done / kg of air delivered :




















n
n
P
P
TR
n
n
W
1
1
2
1 1
1
6/10/2017 NAPHIS AHAMAD(ME)JIT 31
Rotary compressors
These compressors use rotors in place of pistons, giving a pulsating free
discharge air. These rotors are power driven. They have the following
advantages over reciprocating compressors:
oThey require a lower starting torque
oThey give a continuous, pulsation free discharge air
oThey generally provide higher output
oThey require smaller foundations, vibrate less, and have lesser
parts, which means less failure rate
6/10/2017 NAPHIS AHAMAD(ME)JIT 32

More Related Content

What's hot

Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of Compressor
SLA1987
 
steam turbine govering system
steam turbine govering systemsteam turbine govering system
steam turbine govering system
mitravanu mishra
 
Gas Turbine Training Power Point -Sample
Gas Turbine Training Power Point -SampleGas Turbine Training Power Point -Sample
Gas Turbine Training Power Point -Sample
Ali Rafiei
 

What's hot (20)

Vapour power cycle a
Vapour power cycle aVapour power cycle a
Vapour power cycle a
 
Reciprocating Compressor
Reciprocating CompressorReciprocating Compressor
Reciprocating Compressor
 
centrifugal compressors overview
centrifugal compressors overviewcentrifugal compressors overview
centrifugal compressors overview
 
Basics of Compressor
Basics of CompressorBasics of Compressor
Basics of Compressor
 
Gas turbines
Gas turbinesGas turbines
Gas turbines
 
Rankine cycle
Rankine cycleRankine cycle
Rankine cycle
 
compressor notes.pdf
compressor notes.pdfcompressor notes.pdf
compressor notes.pdf
 
Centrifugal Compressor
Centrifugal CompressorCentrifugal Compressor
Centrifugal Compressor
 
Centrifugal compressor
Centrifugal compressorCentrifugal compressor
Centrifugal compressor
 
Gas turbines
Gas turbinesGas turbines
Gas turbines
 
Basics of Gas Turbine Power Plant
Basics of Gas Turbine Power PlantBasics of Gas Turbine Power Plant
Basics of Gas Turbine Power Plant
 
Air compressor
Air compressorAir compressor
Air compressor
 
steam turbine govering system
steam turbine govering systemsteam turbine govering system
steam turbine govering system
 
Gas power cycles
Gas power cyclesGas power cycles
Gas power cycles
 
Gas turbines
Gas turbinesGas turbines
Gas turbines
 
Lecture-1- Compressor and its Types.ppt
Lecture-1- Compressor and its Types.pptLecture-1- Compressor and its Types.ppt
Lecture-1- Compressor and its Types.ppt
 
Chapter 5 Fundamentals of Refrigeration
Chapter 5  Fundamentals of RefrigerationChapter 5  Fundamentals of Refrigeration
Chapter 5 Fundamentals of Refrigeration
 
Gas Turbine Training Power Point -Sample
Gas Turbine Training Power Point -SampleGas Turbine Training Power Point -Sample
Gas Turbine Training Power Point -Sample
 
Gas turbine course
Gas turbine courseGas turbine course
Gas turbine course
 
Thermodynamics cycles
Thermodynamics cyclesThermodynamics cycles
Thermodynamics cycles
 

Similar to compressor

Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
VJTI Production
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf
Nilesh839639
 

Similar to compressor (20)

Aircompressor unit 5
Aircompressor unit 5Aircompressor unit 5
Aircompressor unit 5
 
Air compressor
Air compressorAir compressor
Air compressor
 
Air Compressors Operation.ppt
Air Compressors Operation.pptAir Compressors Operation.ppt
Air Compressors Operation.ppt
 
Air Compressor
Air CompressorAir Compressor
Air Compressor
 
07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.ppt07-EC-II-Nafees P- Khan.ppt
07-EC-II-Nafees P- Khan.ppt
 
ProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdfProjectreportMMC_16101_compressor_01.pdf
ProjectreportMMC_16101_compressor_01.pdf
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
Buenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptxBuenafe_Air-Compressor.pptx
Buenafe_Air-Compressor.pptx
 
AIR COMPRESSOR.ppt
AIR COMPRESSOR.pptAIR COMPRESSOR.ppt
AIR COMPRESSOR.ppt
 
Unit no 3 air compressor
Unit no 3 air compressorUnit no 3 air compressor
Unit no 3 air compressor
 
Se prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressorSe prod thermo_chapter_2_compressor
Se prod thermo_chapter_2_compressor
 
Compressor
CompressorCompressor
Compressor
 
Compressor
CompressorCompressor
Compressor
 
RECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptxRECIPROCATING_COMPRESSOR.pptx
RECIPROCATING_COMPRESSOR.pptx
 
LECTURE Notes on compressor
LECTURE Notes on compressorLECTURE Notes on compressor
LECTURE Notes on compressor
 
Kompresor.pptx
Kompresor.pptxKompresor.pptx
Kompresor.pptx
 
Air compressors
Air compressorsAir compressors
Air compressors
 
3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf3110006_BME_Chapter 9_Air Compressor (1).pdf
3110006_BME_Chapter 9_Air Compressor (1).pdf
 
010
010010
010
 
Air compressor efficiency.
Air compressor efficiency.Air compressor efficiency.
Air compressor efficiency.
 

More from naphis ahamad

More from naphis ahamad (20)

I c engine
I c engine I c engine
I c engine
 
Si engines.ppt naphis converted
Si engines.ppt naphis convertedSi engines.ppt naphis converted
Si engines.ppt naphis converted
 
Si engines.ppt naphis
Si engines.ppt naphisSi engines.ppt naphis
Si engines.ppt naphis
 
cooling and lubrication system
cooling and lubrication systemcooling and lubrication system
cooling and lubrication system
 
spark egnition engine
spark egnition enginespark egnition engine
spark egnition engine
 
basics of Internal combution engine
basics of Internal combution enginebasics of Internal combution engine
basics of Internal combution engine
 
compression egnition engine engine
compression egnition engine enginecompression egnition engine engine
compression egnition engine engine
 
PROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCESPROPERTIES OF PURE SUBSTANCES
PROPERTIES OF PURE SUBSTANCES
 
first law of thermodynamics and second law
first law of thermodynamics and second lawfirst law of thermodynamics and second law
first law of thermodynamics and second law
 
BASIC THERMODYNAMICS
BASIC THERMODYNAMICSBASIC THERMODYNAMICS
BASIC THERMODYNAMICS
 
Entropy
EntropyEntropy
Entropy
 
Vapour compression refrigeration system
Vapour compression refrigeration systemVapour compression refrigeration system
Vapour compression refrigeration system
 
Vapour absorption system
Vapour absorption systemVapour absorption system
Vapour absorption system
 
Air refrigerationsystem
Air refrigerationsystemAir refrigerationsystem
Air refrigerationsystem
 
Air conditioning
Air conditioningAir conditioning
Air conditioning
 
Air conditioning equipment
Air conditioning equipmentAir conditioning equipment
Air conditioning equipment
 
Thermodynamics relations
Thermodynamics relationsThermodynamics relations
Thermodynamics relations
 
Gas turbine
Gas turbineGas turbine
Gas turbine
 
Steam engine
Steam engineSteam engine
Steam engine
 
Boiler
BoilerBoiler
Boiler
 

Recently uploaded

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
chumtiyababu
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Recently uploaded (20)

Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Wadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptxWadi Rum luxhotel lodge Analysis case study.pptx
Wadi Rum luxhotel lodge Analysis case study.pptx
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 

compressor

  • 1. INTERNAL COMBUTION ENGINE Made by: Assistant Professor : NAPHIS AHAMAD MECHANICAL ENGINEERING 6/10/2017 Naphis Ahamad (ME) JIT 1
  • 2. 6/10/2017 Naphis Ahamad (ME) JIT 2 UNIT V
  • 3. COMPRESSOR – A device which takes a definite quantity of fluid ( usually gas, and most often air ) and deliver it at a required pressure. Air Compressor – 1) Takes in atmospheric air, 2) Compresses it, and 3) Delivers it to a storage vessel ( i.e. Reservoir ). Compression requires Work to be done on the gas, Compressor must be driven by some sort of Prime Mover ( i.e. Engine ) Air Compressors 6/10/2017 NAPHIS AHAMAD(ME)JIT 3
  • 4. Reciprocating Rotary Single – acting Double - Acting No. of Sides of Piston in operation No. of Stages for Compression Centrifugal Single – stage Multi - stage Classification Air Compressors 6/10/2017 NAPHIS AHAMAD(ME)JIT 4
  • 5. Reciprocating Compressor - Working 2. Principle of Operation  Fig. shows single-acting piston actions in the cylinder of a reciprocating compressor.  The piston is driven by a crank shaft via a connecting rod.  At the top of the cylinder are a suction valve and a discharge valve.  A reciprocating compressor usually has two, three, four, or six cylinders in it. 6/10/2017 NAPHIS AHAMAD(ME)JIT 5
  • 6. Reciprocating Compressor - Working 6/10/2017 NAPHIS AHAMAD(ME)JIT 6
  • 7. Reciprocating Compressor – Equation for Work Volume Pressure P1 P2 V1V2 3 2 2”2’ 4 1 (Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Operations : 4 – 1 : Volume V1 of air aspirated into Compressor, at P1 and T1. 1 – 2 : Air compressed according to PVn = Const. from P1 to P2. → Temp increase from T1 to T2. 2 – 3 : Compressed air at P2 and V2 with temperature T2 is delivered.
  • 8. Reciprocating Compressor – Equation for Work During Compression, due to the excess temperature above surrounding, the air will exchange the heat to the surrounding.  Compression Index, n is always less than γ, the adiabatic index. As Compressor is a work consuming device, every effort is desired to reduce the work. Work done = Area under P-V curve  1 – 2” : Adiabatic Compression = Max. Work.  1 – 2 : Polytropic Compression  1 – 2’ : Isothermal Compression = Min. Work.
  • 9. Reciprocating Compressor – Equation for Work Thus, comparison between the Isothermal Work and the Actual Work is important. Isothermal Efficiency, ηiso = Isothermal Work Actual Work Thus, more the Isothermal Efficiency, more the actual compression approaches to the Isothermal Compression. P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Actual Work = Wact = Area 4-1-2-3-4 Wact = Area (4-1) – Area (1-2) – Area (2-3)                           1 1 1 2211 2211 1122 2211 22 1122 11 n VPVP VPVP n VPVP VPVP VP n VPVP VP 6/10/2017 NAPHIS AHAMAD(ME)JIT 9
  • 10.                                   11 22 11 2211 2211 1 1 1 1 1 1 VP VP VP n n VPVP n n VPVP n Wiso Reciprocating Compressor – Equation for Work P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  Now, n nn P P V V VPVP /1 2 1 1 2 2211                               n iso P P P P VP n n W /1 2 1 1 2 11 1 1
  • 11.                                              n n iso P P P P VP n n P P P P VP n n W /1 1 2 1 2 11 /1 2 1 1 2 11 1 1 1 1 Reciprocating Compressor – Equation for Work P1 P2 V1V2 3 2 2”2’ 4 1(Polytropic) (Adiabatic) (Isothermal) CVP n  CVP  CVP  The solution of this equation is always negative. This shows that Work is done ON the Compressor.                          n n iso P P mRT n n W 1 1 2 1 1 1Delivery Temperature, n n P P TT 1 1 2 12                                  n n iso P P VP n n W 1 1 2 11 1 1
  • 12. Reciprocating Compressor – Equation for Work P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc Clearance Volume : Volume that remains inside the cylinder after the piston reaches the end of its inward stroke. Thus, Effective Stroke Volume = V1 – V4 Actual Work = Wact = Area 1-2-3-4 Wact = Area (5-1-2-6) – Area (5-4-3-6) 6/10/2017 NAPHIS AHAMAD(ME)JIT 12
  • 13. Reciprocating Compressor – Equation for Work                                         n m n m act P P VP n n P P VP n n W 1 1 2 41 1 1 2 11 1 1 1 1                         n act P P P P VVP n n W /1 2 1 1 2 411 1 1                                        n m n m act P P VP n n P P VP n n W 1 4 3 44 1 1 2 11 1 1 1 1 P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc But, P4 = P1 and P3 = P2
  • 14. Reciprocating Compressor – Volumetric Efficiency Volumetric Efficiency : Ratio of free air delivered to the displacement of the compressor. Ratio of Effective Swept Volume to Swept Volume. Volumetric Efficiency = Effective Swept Volume Swept Volume V1 – V4 V1 – V3 = Vc Vs = = γ Clearance Volume Swept Volume Clearance Ratio = Presence of Clearance Volume Volumetric Efficiency less than 1. ( 60 – 85 % ) P1 P2 V1V4 6 2 5 1 CVP n  3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc ( 4 – 10 % ) 6/10/2017 NAPHIS AHAMAD(ME)JIT 14
  • 15. Reciprocating Compressor – Volumetric Efficiency ↑ Pr. Ratio ↑ Effect of Clearance Volume ….Clearance air expansion through greater volume before intake   Cylinder bore and stroke is fixed. Effective Swept Volume (V1 – V4) ↓ with ↑ Pr. Ratio ↓ Volumetric Efficiency                    3 4 31 3 31 3 3 3 31 4 31 3 31 4 31 3 31 4331 31 41 1 1 1 V V VV V VV V V V VV V VV V VV V VV V VV VVVV VV VV vol                     P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1- V3=Vs Total Volume, V1 Clearance Volume, V3=Vc
  • 16. Reciprocating Compressor – Volumetric Efficiency                                                  11 11 11 11 /1 4 3 /1 4 3 31 3 4 3 31 3 4 3 31 3 n vol n vol vol vol P P P P VV V V V VV V V V VV V     P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V3=Vs Total Volume, V1 Clearance Volume, V3=Vc
  • 17. Reciprocating Compressor – Multistage High Pressure required by Single – Stage :  1. Requires heavy working parts. 2. Has to accommodate high pressure ratios. 3. Increased balancing problems. 4. High Torque fluctuations. 5. Requires heavy Flywheel installations. This demands for MULTI – STAGING…!!
  • 18. Reciprocating Compressor – Multistage Series arrangement of cylinders, in which the compressed air from earlier cylinder (i.e. discharge) becomes the intake air for the next cylinder (i.e. inlet). Intercooler : Compressed air is cooled between cylinders. L.P. = Low Pressure I.P. = Intermediate Pressure H.P. = High Pressure L.P. Cylinder I.P. Cylinder H.P. Cylinder Intercooler Intercooler Air Intake Air Delivery 6/10/2017 NAPHIS AHAMAD(ME)JIT 18
  • 19. Reciprocating Compressor – Multistage Intake Pr. P1 or Ps Delivery Pr. P3 or Pd 3 2 9 5 4 1 CVP n  8 7 6 Intermediate Pr. P2 CVP  Without Intercooling Perfect Intercooling L.P. H.P. Volume Overall Pr. Range : P1 – P3 Single – stage cycle : 8-1-5-6 Without Intercooling : L.P. : 8-1-4-7 H.P. : 7-4-5-6 With Intercooling : L.P. : 8-1-4-7 H.P. : 7-2-3-6 Perfect Intercooling : After initial compression in L.P. cylinder, air is cooled in the Intercooler to its original temperature, before entering H.P. cylinder i.e. T2 = T1 OR Points 1 and 2 are on SAME Isothermal line. 6/10/2017 NAPHIS AHAMAD(ME)JIT 19
  • 20. Reciprocating Compressor – Multistage Ideal Conditions for Multi – Stage Compressors : A. Single – Stage Compressor : CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. Single – stage cycle : 8-1-5-6                    1 1 5 11 1 1 n n P P VP n n W Delivery Temperature, n n P P TT 1 1 5 15         6/10/2017 NAPHIS AHAMAD(ME)JIT 20
  • 21. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. B. Two – Stage Compressor (Without Intercooling) : Without Intercooling : L.P. : 8-1-4-7 H.P. : 7-4-5-6                                         n n n n P P VP n n P P VP n n W 1 4 5 44 1 1 4 11 1 1 1 1 This is SAME as that of Work done in Single – Stage. Delivery Temperature also remains SAME. Without Intercooling  6/10/2017 NAPHIS AHAMAD(ME)JIT 21
  • 22. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. C. Two – Stage Compressor (With Perfect Intercooling) : With Intercooling : L.P. : 8-1-4-7-8 H.P. : 7-2-3-6-7                                         n n n n P P VP n n P P VP n n W 1 2 3 22 1 1 4 11 1 1 1 1 Delivery Temperature, 12 1 2 3 1 1 2 3 23 , TTas P P T P P TT n n n n               6/10/2017 NAPHIS AHAMAD(ME)JIT 22
  • 23. Reciprocating Compressor – Multistage CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. C. Two – Stage Compressor (With Perfect Intercooling) : With Intercooling : L.P. : 8-1-4-7-8 H.P. : 7-2-3-6-7                           n n n n P P P P VP n n W 1 2 3 1 1 2 11 2 1 Now, T2 = T1 P2V2 = P1V1 Also P4 = P2 Shaded Area 2-4-5-3-2 : Work Saving due to Intercooler…!!
  • 24. Reciprocating Compressor – Multistage Condition for Min. Work : CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P. Intermediate Pr. P2 → P1 : Area 2-4-5-3-2 → 0 Intermediate Pr. P2 → P3 : Area 2-4-5-3-2 → 0  There is an Optimum P2 for which Area 2-4-5-3-2 is maximum, i.e. Work is minimum…!!                           n n n n P P P P VP n n W 1 2 3 1 1 2 11 2 1 0 2 1 2 3 1 1 2 2                          dP P P P P d dP dW n n n n For min. Work, 6/10/2017 NAPHIS AHAMAD(ME)JIT 24
  • 25. Reciprocating Compressor – Multistage Condition for Min. Work :         0 111 1 1 2 1 3 1 1 21 1                                            n n n n n n n n P n n PP n n P 0 2 1 2 3 1 1 2 2                          dP P P P P d dP dW n n n n                       n n n n n PP P P 1 3112 2 /1 2    31 2 2 PPP  2 3 1 2 312 P P P P ORPPP  CVP  3 2 9 5 4 1 CVP n  8 7 6 L.P. H.P.
  • 26. Reciprocating Compressor – Multistage P2 obtained with this condition (Pr. Ratio per stage is equal) is the Ideal Intermediate Pr. Which, with Perfect Intercooling, gives Minimum Work, Wmin.                         n n P PP VP n n W 1 1 2/1 31 11 1 1 2                     n n P P VP n n W 1 1 2 11 1 1 2                      n n P P VP n n W 2 1 1 3 11 1 1 2 Equal Work per cylinder…!!
  • 27. Reciprocating Compressor – Efficiency How to Increase Isothermal Efficiency ? A. Spray Injection : Assimilation of water into the compressor cylinder towards the compression stroke. Object is to cool the air for next operation. Demerits : 1. Requires special gear for injection. 2. Injected water interferes with the cylinder lubrication. 3. Damage to cylinder walls and valves. ater must be separated before delivery of air. B. Water Jacketing : Circulating water around the cylinder to help for cooling the air during compression. 6/10/2017 NAPHIS AHAMAD(ME)JIT 27
  • 28. Reciprocating Compressor – Efficiency How to Increase Isothermal Efficiency ? C. Inter – Cooling : For high speed and high Pr. Ratio compressors. Compressed air from earlier stage is cooled to its original temperature before passing it to the next stage. D. External Fins : For small capacity compressors, fins on external surfaces are useful. E. Cylinder Proportions : Short stroke and large bore provides much greater surface for cooling. Cylinder head surface is far more effective than barrel surface. 6/10/2017 NAPHIS AHAMAD(ME)JIT 28
  • 29. Reciprocating Compressor – Efficiency Clearance Volume : Consists of two spaces. 1. Space between cylinder end & the piston to allow for wear. 2. Space for reception of valves. High – class H.P. compressors : Clearance Vol. = 3 % of Swept Vol. : Lead (Pb) fuse wire used to measure the gap between cylinder end and piston. Low – grade L.P. compressors : Clearance Vol. = 6 % of Swept Vol. : Flattened ball of putty used to measure the gap between cylinder end and piston. Effect of Clearance Vol. : Vol. taken in per stroke < Swept Vol. ↑ Size of compressor ↑ Power to drive compressor.  6/10/2017 NAPHIS AHAMAD(ME)JIT 29
  • 30. P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V4=Vs Total Volume, V1 Clearance Volume, V3=Vc Reciprocating Compressor – Work Done                                        n n n n P P VP n n P P VP n n W 1 4 3 44 1 1 2 11 1 1 1 1 Assumption : Compression and Expansion follow same Law. Work / cycle = Area 1-2-3-4-1 P3 = P2 and P4 = P1                                         n n a n n P P VP n n P P VVP n n W 1 1 2 1 1 1 2 411 1 1 1)( 1 6/10/2017 NAPHIS AHAMAD(ME)JIT 30
  • 31. P1 P2 V1V4 6 2 5 1 3 4 V3 Effective Swept Volume, V1-V4 Swept Volume, V1-V4=Vs Total Volume, V1 Clearance Volume, V3=Vc Reciprocating Compressor – Work Done                     n n P P TRm n n W 1 1 2 11 1 1 m1 is the actual mass of air delivered. Work done / kg of air delivered :                     n n P P TR n n W 1 1 2 1 1 1 6/10/2017 NAPHIS AHAMAD(ME)JIT 31
  • 32. Rotary compressors These compressors use rotors in place of pistons, giving a pulsating free discharge air. These rotors are power driven. They have the following advantages over reciprocating compressors: oThey require a lower starting torque oThey give a continuous, pulsation free discharge air oThey generally provide higher output oThey require smaller foundations, vibrate less, and have lesser parts, which means less failure rate 6/10/2017 NAPHIS AHAMAD(ME)JIT 32