Publicidad

Conjuntos Keiber Duran.pptx

30 de Mar de 2023
Publicidad

Más contenido relacionado

Publicidad

Conjuntos Keiber Duran.pptx

  1. República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Universitaria Universidad Politécnica Territorial Andrés Eloy Blanco Conjuntos Keiber Duran Ci: 26165260 Seccion DL0203
  2. ¿Definición de Conjuntos? En matemáticas, un conjunto es una colección de elementos considerada en sí misma como un objeto. Los elementos de un conjunto, pueden ser las siguientes: personas, números, colores, letras, figuras, etc. Se dice que un elemento (o miembro) pertenece al conjunto si está definido como incluido de algún modo dentro de él. Un conjunto suele definirse mediante una propiedad que todos sus elementos poseen. Por ejemplo, para los números naturales, si se considera la propiedad de ser un número primo, el conjunto de los números primos es: P = {2, 3, 5, 7, 11, 13, …}
  3. Operaciones con Conjuntos Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión.
  4. Números Reales El conjunto de los números reales consta de números naturales, enteros, racionales e irracionales. El conjunto de los números naturales la suma de números enteros, es el conjunto de los números que sirven para contar, se denota con N y es N = {1,2,3,4,5,...}. Son cualquier número que se encuentre o corresponda con la recta real que incluye a los números racionales y números irracionales, Por lo tanto, el dominio de los números reales se encuentra entre menos infinito y más infinito.
  5. Desigualdades A desigualdad matemática es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor, menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones matemáticas diferente según su naturaleza. Podemos sintetizar los signos de expresión de todas las desigualdades matemáticas posibles en los cinco siguientes: Desigual a: ≠ Menor que: < Menor o igual que: ≤ Mayor que: > Mayor o igual que: ≥ Existen dos tipos distintos de desigualdades dependiendo de su nivel de aceptación. Ninguna de ellas no incluye la desigualdad general (≠). Son las siguientes: Desigualdades estrictas: son aquellas que no aceptan la igualdad entre elementos. De este modo, entenderemos como desigualdades de este tipo el “mayor que” (>) o “menor que” (<). Desigualdades amplias o no estrictas: todas aquellas en las que no se especifica si uno de los elementos es mayor/menor o igual. Por lo tanto, estamos hablando de “menor o igual que” (≤), o bien “mayor o igual que” (≥).
  6. Valor Absoluto El valor que tiene un número más allá de su signo. Esto quiere decir que el valor absoluto, que también se conoce como módulo, es la magnitud numérica de la cifra sin importar si su signo es positivo o negativo. La definición del concepto indica que el valor absoluto siempre es igual o mayor que 0 y nunca es negativo. Por lo dicho anteriormente, podemos agregar que el valor absoluto de los números opuestos es el mismo; 8 y -8, de este modo, comparten el mismo valor absoluto: |8|. También se puede entender el valor absoluto como la distancia que existe entre el número y 0. El número 563 y el número -563 están, en una recta numérica, a la misma distancia del 0. Ese, por lo tanto, es el valor absoluto de ambos: |563|. La distancia que existe entre dos números reales, por otra parte, es el valor absoluto de su diferencia. Entre 8 y 5, por ejemplo, hay una distancia de 3. Esta diferencia tiene un valor absoluto de |3|.
  7. Desigualdades con Valor Absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es Cuando se resuelven desigualdades de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cuales quiera números reales a y b , si | a | < b , entonces a < b Y a > - b .
Publicidad