Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.

Data Processing-Presentation

A presentation given by Atul Vishwakarma, Associate Lead, Leadcap Ventures.

  • Sé el primero en comentar

Data Processing-Presentation

  1. 2. Atul Vishwakarma Data Processing…?
  2. 3. Data & Data Set: The information that you collect from an experiment, survey, or archival source is referred to as your data. Most generally, data can be defined as a list of numbers possessing meaningful relations. A data set is a representation of data, defining a set of variables" that are measured on a set of cases." Variable: A variable is any characteristic of an object that can be represented as a number. The values that the variable takes will vary when measurements are made on different objects or at different times. Case: Recorded information about an object we observe a case.
  3. 4. Every row is a single case Every column is a variable
  4. 5. Data Processing: Data processing most often refers to processes that convert data into information or knowledge. Information: Information is defined as either a meaningful answer to a query or a meaningful stimulus that can consider into further queries.
  5. 6. <ul><li>Steps of Data Processing: </li></ul><ul><li>Objective </li></ul><ul><li>Questionnaire </li></ul><ul><li>Field Survey </li></ul><ul><li>Data Entry </li></ul><ul><li>Data Processing </li></ul><ul><li>Information’s in tables and chart formats </li></ul>
  6. 7. <ul><li>Elements of Data Processing: </li></ul><ul><li>Data Coding </li></ul><ul><li>Data Editing/Cleaning </li></ul><ul><li>Data Validation </li></ul><ul><li>Data Classification </li></ul><ul><li>Attributes </li></ul><ul><li>Class-Intervals </li></ul><ul><li>Data Tabulation </li></ul><ul><li>Statistical Analysis </li></ul><ul><li>Computer graphics </li></ul><ul><li>Data Warehousing </li></ul><ul><li>Data Mining </li></ul>
  7. 8. <ul><li>Tabulation: </li></ul><ul><li>Tables must be clear and easy to read </li></ul><ul><li>Must have a title which describes the data in the table. </li></ul><ul><li>Columns and rows should be clearly headed. </li></ul><ul><li>Units should be displayed in column / row headings only. </li></ul><ul><li>Missing values should be displayed as -, and zeros as 0. They should be no blanks in a table conveying experimental results. </li></ul><ul><li>Numbers should be listed neatly below each other and should be to the same number of decimal places. </li></ul><ul><li>Table should be made logical, clear, accurate and simple as possible. </li></ul>5.7 50 - 40 2.4 30 1.6 20 7.3 10 6.8 0 Rate of Urine Production (mL / min) Time (min)
  8. 9. SOME PROBLEMS IN PROCESSING: a) The Problem Concerning “Don’t Know” or DK/NA responses. b) Use of Percentages %
  9. 10. Softwares: SPSS SAS Quantum Quanvert Stata Strata Systat Euler Matlab Minitab
  10. 11. Data Processing using Quantum, SPSS etc..
  11. 12. Data File Formats: SPSS: *.sav Excel: *xls ASCII: *.asc, *.dat Programming in Quantum: Exporting data in ASCII format. Programming according to questionnaire (Drafting Set File) Outputs in *.csv formats
  12. 13. A single variable. Cross Checking
  13. 14. Atul Vishwakarma Leadcap Ventures [email_address]