Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
Made By:-
S.Y. M-2
Shah Nisarg (130410119098)
Shah Kushal(130410119094)
Shah Maulin(130410119095)
Shah Meet(130410119096)
...
Topics
 Definition of Laplace Transform
 Linearity of the Laplace Transform
 Laplace Transform of some Elementary Funct...
Definition of Laplace Transform
 Let f(t) be a given function of t defined for all
then the Laplace Transform ot f(t) den...
Linearity of the Laplace Transform
 If L{f(t)}= and then for any
constants a and b
)(sf )()]([ sgtgL 
)]([)]([)]()([ tgb...
Laplace Transform of some Elementary
Functions
asif
a-s
1
)(
e.)e(
Definition-By:Proof
a-s
1
)L(e(2)
)0(,
s
1
1.)1(
Defini...
|a|s,
a-s
s
at]L[coshly,(5)Similar
|a|s,
a-s
a
11
2
1
)]()([
2
1
2
e
Lat)L(sinh
definitionBy
2
e
atcoshand
2
e
atsinhhave-...
0s,
as
s
at]L[cosand
as
a
at]L[sin
getweparts,imaginaryandrealEquating
as
a
i
as
s
as
ias
1
)L(e1
]e[]sin[cos
sincose
Form...
   n!1n0,1,2...n
n!
)(or
0,n-1n,
1
)(
1
ust,.)-L(:Proof
n!
or
1
)()8(
1
0
1
1
0
1)1(
1
0
0
11









...
First Shifting Theorem
)(f]f(t)L[e,
)(f]f(t)L[e
)(f)(f
ra-swhere)(e
)(e
)(ef(t)]L[e
DefinitionByProof
)(f]f(t)L[ethen,(s)f...
22)-(s
2-s
)4cosL(e
2s
s
L(cosh2t)
)2coshL(e(1)
43)(s
3s
)4cosL(e
4s
s
L(cos4t)
)4cosL(e(1)
:
22
2t
22
2t
22
3t-
22
3t-

...
Inverse Laplace Transform
)()}({L
bydenotedisand(s)foftransformlaplaceinverse
thecalledisf(t)then(s),fL[f(t)]If-Definition...
2
1
2
1
12
1
)2(
2
1
)1(
1
2
1
C
than0s
2
1
B
than-2s
-1A
than-1s
2)1)(sc(s1)(s)B(s2)(s)A(s1
)2()1())(2)(1(
1
2)(s)1)(s(s
...
Laplace Transform of Derivatives &
Integral
 
f(u)du(s)f
1
LAlso
(s)f
1
f(u)duLthen(s),fL{f(t)}If
f(t)ofnintegratiotheof...
22
2
22
3
22
2n
s
a
at)L(sin
at)L(sins
s
a-
a-at)L(sinssinat}L{-a
thisfroma(0)f0,f(0)Also
sinat-a(t)fandatcosa(t)fsinat th...
Differentiation & Integration of Laplace
Transform











0
n
n
nn
ds(s)f
t
f(t)
Lthen
,transformLaplaceh...
3
2
2
2
2at2
at2
)(
2
)(
1
1
)1()e(-:Sol
)e(:
as
asds
d
asds
d
tL
tLExample































































ss
s
s
s
ds
t
t
LExample
s...
Evaluation of Integrals By Laplace
Transform






















1
)1()cos(
1
)(cos
cos)cos(
cos...
Convolution Theorem
g(t)*f(t)
g*fu)-g(tf(u)(s)}g(s)f{L
theng(t)(s)}g{Landf(t)(s)}f{LIf
t
0
1-
-1-1




 
)1(e
e
.e
.
)1(
1
)1(
1
.
1
)1(
1
n theoremconvolutioby
)(
1
1
(s)gand)(
1
(s)fhavewe:
)1(
1
:
t
0
t
0
t
0
2
1
1
2
1
2...
Application to Differential Equations
04L(y))yL(
sidebothontranformLaplaceTaking
.
.
(0)y-(0)ys-y(0)s-Y(s)s(t))yL(
(0)y-sy...
tt
s
s
2sin
2
3
2cos
4s
6
4s
Y(s)
transformlaplaceinverseTaking
4s
6
Y(s)
06-s-4)Y(s)(s
04(Y(s))(0)y-sy(0)-Y(s)s
22
2
2
2
...
Laplace Transform of Periodic Functions
 



p
0
st
0)(sf(t)dte
e-1
1
L{f(t)}
ispperiodwith
f(t)functionperiodicco...


























































...
Unit Step Function
s
1
L{u(t)}
0aif
e
s
1
s
e
(1)dte(0)dte
a)dt-u(tea)}-L{u(t
at1,
at0,a)-u(t
as-
a
st-
a
st-
a
0
st-
0
st...
Second Shifting Theorem
a))L(f(tea))-u(tL(f(t)-Corr.
L(f(t))e
(s)fea))-u(ta)-L(f(t
then(s)fL(f(t))If
as-
as
as-





 
)(cos)2(
)2(cos)2()2(L
)()()(L
theroemshiftingsecondBy
(ii)L
33
1
}{.
}{)]2(L[e
2,ef(t)
)]2((i)L[e
22
1
22
2
1-
1-
22
...
Dirac Delta function
1))((
))((
0
1
0lim
0







tL
eatL
tε, a
εat, a
ε
at, -a)δ(t
as
ε


 sin3tcos3t2ex(t)
sin3t2ecos3t2ex
inversionon
92)(s
6
92)(s
2)2(s
134ss
102s
x
2(1)x13x(0)]-x4[s(0)]x-sx(0)x[s
haveweTra...
Laplace transform and its applications
Próxima SlideShare
Cargando en…5
×

Laplace transform and its applications

18.304 visualizaciones

Publicado el

Laplace transform and its applications

Publicado en: Educación
  • DOWNLOAD FULL BOOKS INTO AVAILABLE FORMAT ......................................................................................................................... ......................................................................................................................... 1.DOWNLOAD FULL PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL PDF EBOOK here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL EPUB Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... 1.DOWNLOAD FULL doc Ebook here { https://tinyurl.com/y8nn3gmc } ......................................................................................................................... ......................................................................................................................... ......................................................................................................................... .............. Browse by Genre Available eBooks ......................................................................................................................... Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult,
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí
  • Oh it the great lecture.Thanks so much.
       Responder 
    ¿Estás seguro?    No
    Tu mensaje aparecerá aquí

Laplace transform and its applications

  1. 1. Made By:- S.Y. M-2 Shah Nisarg (130410119098) Shah Kushal(130410119094) Shah Maulin(130410119095) Shah Meet(130410119096) Shah Mirang(130410119097) Laplace Transform And Its Applications
  2. 2. Topics  Definition of Laplace Transform  Linearity of the Laplace Transform  Laplace Transform of some Elementary Functions  First Shifting Theorem  Inverse Laplace Transform  Laplace Transform of Derivatives & Integral  Differentiation & Integration of Laplace Transform  Evaluation of Integrals By Laplace Transform  Convolution Theorem  Application to Differential Equations  Laplace Transform of Periodic Functions  Unit Step Function  Second Shifting Theorem  Dirac Delta Function
  3. 3. Definition of Laplace Transform  Let f(t) be a given function of t defined for all then the Laplace Transform ot f(t) denoted by L{f(t)} or or F(s) or is defined as provided the integral exists,where s is a parameter real or complex. 0t )(sf )(s dttfessFsftfL st )()()()()}({ 0     
  4. 4. Linearity of the Laplace Transform  If L{f(t)}= and then for any constants a and b )(sf )()]([ sgtgL  )]([)]([)]()([ tgbLtfaLtbgtafL  )]([)]([)}()({ )()( )]()([)}()({ Definition-By:Proof 00 0 tgbLtfaLtbgtafL dttgebdttfea dttbgtafetbgtafL stst st           
  5. 5. Laplace Transform of some Elementary Functions asif a-s 1 )( e.)e( Definition-By:Proof a-s 1 )L(e(2) )0(, s 1 1.)1( Definition-By:Proof s 1 L(1)(1) 0 )( 0 )( 0 atat at 00                              as e dtedteL s s e dteL tas tasst st st
  6. 6. |a|s, a-s s at]L[coshly,(5)Similar |a|s, a-s a 11 2 1 )]()([ 2 1 2 e Lat)L(sinh definitionBy 2 e atcoshand 2 e atsinhhave-We:Proof a-s a at]L[sinh(4) -as, 1 ]L[e3)( 22 22 at atat 22 at-                                asas eLeL e ee as atat at atat
  7. 7. 0s, as s at]L[cosand as a at]L[sin getweparts,imaginaryandrealEquating as a i as s as ias 1 )L(e1 ]e[]sin[cos sincose Formula]s[Euler'sincosethatknow-We:Proof 0s, as s at]L[cosand as a at]L[sin(6) 2222 222222 at iat iat ix 2222                                as ias LatiatL atiat xix 
  8. 8.    n!1n0,1,2...n n! )(or 0,n-1n, 1 )( 1 ust,.)-L(:Proof n! or 1 )()8( 1 0 1 1 0 1)1( 1 0 0 11                                        n n nx n n nu n n u nstn nn n S tL ndxxe S n tL duue S s du s u e puttingdttet SS n tL
  9. 9. First Shifting Theorem )(f]f(t)L[e, )(f]f(t)L[e )(f)(f ra-swhere)(e )(e )(ef(t)]L[e DefinitionByProof )(f]f(t)L[ethen,(s)fL[f(t)]If shifting-stheorem,shiftingFirst-Theorem at- at 0 rt- 0 a)t-(s- 0 st-at at asSimilarly as asr dttf dttf dttfe as at              
  10. 10. 22)-(s 2-s )4cosL(e 2s s L(cosh2t) )2coshL(e(1) 43)(s 3s )4cosL(e 4s s L(cos4t) )4cosL(e(1) : 22 2t 22 2t 22 3t- 22 3t-           t t t t Eg
  11. 11. Inverse Laplace Transform )()}({L bydenotedisand(s)foftransformlaplaceinverse thecalledisf(t)then(s),fL[f(t)]If-Definition 1- tfsf  
  12. 12. 2 1 2 1 12 1 )2( 2 1 )1( 1 2 1 C than0s 2 1 B than-2s -1A than-1s 2)1)(sc(s1)(s)B(s2)(s)A(s1 )2()1())(2)(1( 1 2)(s)1)(s(s 1 L)1( 21 1 1                                     tt ee sss L If If If s C s B s A sss L
  13. 13. Laplace Transform of Derivatives & Integral   f(u)du(s)f 1 LAlso (s)f 1 f(u)duLthen(s),fL{f(t)}If f(t)ofnintegratiotheoftransformLaplace (0)(0)....ffs-f(0)s-(s)fs(t)}L{f f(0)-(s)fsf(0)-sL{f(t)}(t)}fL{ and0f(t)elimprovidedexists,(t)}fL{then continous,piecewiseis(t)fand0tallforcontinousisf(t)If f(t)ofderivativetheoftransformLaplace t 0 1- t 0 1-n2-n1-nnn st t                      s s
  14. 14. 22 2 22 3 22 2n s a at)L(sin at)L(sins s a- a-at)L(sinssinat}L{-a thisfroma(0)f0,f(0)Also sinat-a(t)fandatcosa(t)fsinat thenf(t)Let:Sol atsinoftransformlaplaceDeriveExample a a a         )1( 1 )( 1 cos cosf(u)-Here:Sol cos 2 0 0                   ss sf s uduL u uduLEg t t
  15. 15. Differentiation & Integration of Laplace Transform            0 n n nn ds(s)f t f(t) Lthen ,transformLaplacehas t f(t) and(s)fL{f(t)}If TransformsLaplaceofnIntegratio 1,2,3,...nwhere,(s)]f[ ds d (-1)f(t)]L[tthen(s)fL{f(t)}If TranformLaplaceofationDifferenti
  16. 16. 3 2 2 2 2at2 at2 )( 2 )( 1 1 )1()e(-:Sol )e(: as asds d asds d tL tLExample                    
  17. 17.                                            ss s s s ds t t LExample s 11 11 1 s 22 cottan 2 tantan tan 1 .t)L(sin-:Sol sin
  18. 18. Evaluation of Integrals By Laplace Transform                       1 )1()cos( 1 )(cos cos)cos( cos)(3 )()}({ cos-:Example 2 2 0 0 0 3 s s ds d ttL s s tL tdttettL tttfs dttfetfL tdtte st st t 25 2 100 8 )19( 19 cos cos )1( 1 )cos( )1( 2)1( 1 2 0 3 0 22 2 22 22                        tdtte tdtte s s ttL s ss t st
  19. 19. Convolution Theorem g(t)*f(t) g*fu)-g(tf(u)(s)}g(s)f{L theng(t)(s)}g{Landf(t)(s)}f{LIf t 0 1- -1-1    
  20. 20.   )1(e e .e . )1( 1 )1( 1 . 1 )1( 1 n theoremconvolutioby )( 1 1 (s)gand)( 1 (s)fhavewe: )1( 1 : t 0 t 0 t 0 2 1 1 2 1 2 2 1                                             t eue dueu dueu ss L ss L ss L eL s tL s HereSol ss LExample tuu t u t ut t
  21. 21. Application to Differential Equations 04L(y))yL( sidebothontranformLaplaceTaking . . (0)y-(0)ys-y(0)s-Y(s)s(t))yL( (0)y-sy(0)-Y(s)s(t))yL( y(0)-sY(s)(t))yL( Y(s)L(y(t)) 6(0)y1y(0)04yy: 23 2      eg
  22. 22. tt s s 2sin 2 3 2cos 4s 6 4s Y(s) transformlaplaceinverseTaking 4s 6 Y(s) 06-s-4)Y(s)(s 04(Y(s))(0)y-sy(0)-Y(s)s 22 2 2 2          
  23. 23. Laplace Transform of Periodic Functions      p 0 st 0)(sf(t)dte e-1 1 L{f(t)} ispperiodwith f(t)functionperiodiccontinouspiecewiseaoftransformlaplaceThe 0tallforf(t)p)f(t if0)p( periodithfunction wperiodicbetosaidisf(t)Afunction-Definition ps-
  24. 24.                                                               2w sπ hcot ws w e e . e1 e1 . ws w e1 ws w . e1 1 L[F(t)] e1 ws w wcoswt)ssinwt( ws e sinwtdteNow tallforf(t) w π tfand w π t0forsinwtf(t) 0t|sinwt|f(t) ofionrectificatwave-fulltheoftransformlaplacetheFind 22 2w sπ 2w sπ w sπ w sπ 22 w sπ 22 w sπ w sπ 22 2 w π 0 w π 0 22 st st
  25. 25. Unit Step Function s 1 L{u(t)} 0aif e s 1 s e (1)dte(0)dte a)dt-u(tea)}-L{u(t at1, at0,a)-u(t as- a st- a st- a 0 st- 0 st-                   
  26. 26. Second Shifting Theorem a))L(f(tea))-u(tL(f(t)-Corr. L(f(t))e (s)fea))-u(ta)-L(f(t then(s)fL(f(t))If as- as as-     
  27. 27.   )(cos)2( )2(cos)2()2(L )()()(L theroemshiftingsecondBy (ii)L 33 1 }{. }{)]2(L[e 2,ef(t) )]2((i)L[e 22 1 22 2 1- 1- 22 2 1- )3(2 )62( 362 )2(323t- 3t- -3t ttu ttu s s Ltu s se atuatfsfe s se s e s e eLee eLetu a tuExample s as s s s ts ts                                            
  28. 28. Dirac Delta function 1))(( ))(( 0 1 0lim 0        tL eatL tε, a εat, a ε at, -a)δ(t as ε  
  29. 29.  sin3tcos3t2ex(t) sin3t2ecos3t2ex inversionon 92)(s 6 92)(s 2)2(s 134ss 102s x 2(1)x13x(0)]-x4[s(0)]x-sx(0)x[s haveweTransform,LaplaceTaking 0(0)xand2x(0)0,t(t),213xx4x 0(0)xand2x(0)0,at therew (t)213xx4xequationthe-Solve:Example 2t 2t-2t- 222 2                   

×