SlideShare una empresa de Scribd logo
1 de 60
Steam Power PlantSolar
Lounge
Nishkam Dhiman
Asst Prof : Electrical and Electronics
Engineering
Chitkara University, Punjab
Fluidised Bed Combustion
• A fluidised bed combustion may be defined as the bed of solid particles
behaving as a fluid.
Principle:
• When a gas is passed through a packed bed of finely divided solid
particles, it experiences a pressure drop across the bed.
• At low gas velocities, this pressure drop is small and does not disturb the
particles. But if the gas velocity is increased further, a stage is reached,
when particles are suspended in the gas stream and packed bed becomes
a ‘Fluidised Bed’
• With the further increase in gas velocity, the bed becomes turbulent and
rapid mixing of particles occurs.
• The behaviour of this mixture of solid particles and gas is like fluid.
Burning of fuel in such a state is known as fluidised bed combustion.
Working
1. On distributor plate are fed fuel and inhert material
dolomite(CaMg(CO 3) and from bottom air is suspended.
2. The high velocity of air keeps the solid feed material in suspending
condition during burning.
3. The generated heat is rapidly transferred to the water passing
through the tubes immersed in the bed and generated steam is taken
out.
4. During burning sulphur di oxide formed is absorbed by the dolomite
and prevents its escape with the exhaust gases. The molten slag is
tapped from the top of the bed.
5. The primary objective of the inhert material is to control the temp
of the bed, it accounts 90% of the bed volume.
It should remain in motion with the fuel and at high temp to tune
800°C .
Advantages
• 1. As a result of better heat transfer the unit size and capital cost are
reduced.
• 2. It can respond rapidly to change in load demand.
• 3. Low combustion temperatures 800-950°C inhibits the formation of
nitric oxide and nitrogen oxide.
• 4. Since combustion temperature is low the corrosion of tube is reduced.
• 5. There is no need to crush the coal to a pulverized form so cost of
crushing is reduced.
• 6. Pollution is controlled as combustion of high sulphur content can be
used.
• 7. FBC can use solid, liquid or gaseous fuel.
• 8. Combustion temp can be controlled accurately.
• 9. 70% ash containing coal can be burned in FBC, conventional combustion
system becomes unstable even with above 48% ash.
Boilers
• A boiler may be defined as a closed vessel in
which steam is produced from water by
combustion of fuel.
• The performance of a boiler is measured in terms
of its evaporative capacity which is also called as
“Boiler Power”. It is defined as the amount of
steam produced in kg/hour. It may also be
expressed in kg of steam per kg of fuel burnt or
kg/hr/m2 of heating surface.
• Boilers are classified according to the following
criteria:
1. According to the position of the principle axis
• Vertical
• Horizontal
• Inclined
2. According to flow of water and hot gases.
• Water tube (Babcock, Wilcox, Striling, Yarrow Boiler)
• Fire tube(Cochran, Lancashire, Locomotive)
3. According to position of furnace
• Internally fired – furnace/fire is inside the boiler shell – (Cochran,
Lancashire)
• Externally fired- (Babcock, Wilcox, Striling, Yarrow Boiler)
4. According to application
• Stationary
• Mobile (Marine, Locomotive…)
5. According to circulating water
• Natural circulation (circulation of water takes place due to natural
convention currents produced by application of heat) Lancashire,
Babcock, Wilcox boiler.
• Forced circulation (Water circulation is done by forced pump) Velox,
Lamont, Benson boilers.
• 6. According to steam pressure
• Low pressure – Produce steam at a pressure below 80bar, Cochran,
Cornish, Lancashire, Locomotive boilers
• High pressure - at a pressure 80 bar and above-Babcock, Wilcox,
Velox, Lamont, Benson boilers.
Water Tube Boilers
In water tube boilers,
water is circulated
through tubes and
hot products of
combustion flow over
these tubes
Water Tube Boilers
• Water tube boilers can further be classified as follows:
• Horizontal straight tube boilers
• Bent tube boilers
• Cyclone fired boilers
• Water tube boilers have the following advantages:
• High pressures (about 140 kg/cm2) can be obtained
• Large heating surfaces can be obtained by use of large
number of tubes – therefore steam can be generated
easily.
• Efficiency is higher because of high velocity of water in
tubes which improves heat transfer
Fire Tube Boilers
• In fire tube boilers, the
hot combustion gases
pass through the tubes,
which are surrounded
by water
Fire Tube Boilers
• Fire tube boilers can further be classified as follows:
• External furnace
• Internal furnace
• Fire tube boilers have the following advantages:
• Low cost
• Fluctuations of steam demand can be easily met
• Compact in size
• Disadvantage of fire tube boilers is that they contain more
water in the drum and if the flue gas circulation is poor,
they can not quickly meet the steam demand. For the same
output, the outer shell of fire tube boiler is much larger
than the shell of a water tube boiler
Cochran Boiler
• Vertical multitubular boiler, has a number of
horizontal fire tubes.
• Shell diameter: 2.75m
• Height: 5.79
• Working Pressure: 6.5bar(1bar = 100,000 Pa)
(max: 15bar)
• Steam capacity: 3500kg/h max 4000
• Heating surface: 120m2
• Efficiency: 70 to 75%
Babcock and Wilcox water-tube boiler
• Horizontal straight tube boiler, stationary or
marine purpose.
Diameter of drum: 1.22 to 1.83m
Length: 6.096 to 9.144m
Size of water tubes : 7.62 to 10.16cm
Size of super heater tubes: 3.84 to 5.71cm
Working pressure: 40bar(max)
Steaming capacity: 40000kg/h (max)
Efficiency: 60 to 80%
Angle of inclination of tubes: 15deg.
Locomotive Boiler
• It is mainly employed in locomotives although
it may be used as stationary boiler.
• It is compact in size and its capacity for steam
production is quite high for its size and can
raise the amount of heat quickly.
Dimensions and specifications:
Working
• It consists of cylindrical barrel with rectangular fire box at one end
and smoke box at other end. Coal is introduced through the fire
hole into the gate which is placed at the bottom of fire box.
• The hot gasses generated are deflected by an arch of fire bricks, so
that the walls of the fire box may be heated properly.
• Fire box is entirely surrounded by water.
• The hot gasses pass from fire box to smoke box by series of fire
tubes, then they are discharged to atmosphere.
• Heat of hot gasses is transmitted to water, the steam generated is
collected over the water surface.
• Superheater.
• Here natural draught cant be used as it need high chimney height,
the forced draught is created by the exhaust steam.
• Merits
1. High steam capacity.
2. Low construction cost.
3. Low installation cost.
4. Compact.
• Demerits
1. Chances of corrosion.
2. Difficult to clean some water spaces.
3. Overload cause overheating.
4. Practical limitations of pressure and capacity.
Accessories used in steam power plants
• Accessories are the auxiliary plants required for
steam boilers for their proper operation and for
the increase of their efficiency.
1. Feed Pumps:
Feed pump is pump which is used to deliver feed
water to the boiler.
a) Reciprocatory pumps consists of cylinder and
piston, these are continuously run by steam
from the same boiler to which water is to be fed.
b) Rotary Pumps are centrifugal type are either run
by small steam turbine or by an electric motor.
Economiser
• An economiser is a device in which the waste
heat of the flue gases is utilised for heating the
feed water.
1. Independent type: It is installed in the chamber
apart from the boiler settings. The camber is
situated ate the passage of the flow of the flue
gasses from boiler to chimney.
2. Integral type: it is the part of the boiler heating
surface and is installed in within the boiler
settings
Advantages of Economiser
• The Temperature range between various parts
of the boiler is reduced which results in
reduction of stresses due to unequal
expansion.
• If the boiler is fed with cold water, it may
result in chilling the boiler metal.
• Evaporation capacity of boiler is increased.
• Overall efficiency of boiler is increased.
Air Preheater
• The function of the air
pre-heater is to increase
the temperature of air
before it
enters the furnace. It is
generally placed after
the economizer; so the
flue gases pass through
the economizer and
then to the air
preheater.
Super heater
• The function of a super heater is to increase the
temperature of the steam above its saturation
point. The super heater is very important
accessory of a boiler and can be used both on
fire-tube and water-tube boilers. The small
boilers are not commonly provided with a super
heater.
• Super heaters are located in the path of the
furnance gases so that the heat is recovered by
the superhearter from the hot gases,
• Advantages
• Steam consumption of engine or turbine is
reduced.
• Erosion of turbine blade is eliminated.
• Efficiency of steam plant is increased.
Types of Superheaters
• Convective Superheaters: Makes the use of
heat of flue gases.
• Radiant Superheaters: It is placed in the
furnace and the wall tubes receives heat from
burning fuel through radiant process. It is used
where high amount of superheat temperature
is required.
Reheater
• In a reheat turbine the
steam first enters high
speed turbine so its
temp and pressure
reduces before entering
low speed turbine so a
reheater is used to
reheat the cooled
steam.
Feed Water Heaters
• A feed water heater is a power plant component
used to pre-heat water delivered to
a steam generating boiler. Preheating the feed
water reduces the irreversibilities involved in
steam generation and therefore improves
the thermodynamic efficiency of the system. This
reduces plant operating costs and also helps to
avoid thermal shock to the boiler metal when the
feed water is introduced back into the steam
cycle.
Condenser
• The main purposes of the condenser are to condense the exhaust
steam from the turbine for reuse in the cycle and to maximize
turbine efficiency by maintaining proper vacuum.
• As the operating pressure of the condenser is lowered (vacuum is
increased), the enthalpy drop of the expanding steam in the turbine
will also increase. This will increase the amount of available work
from the turbine (electrical output). By lowering the condenser
operating pressure, the following will occur :
• (a) Increased turbine output
• (b) Increased plant efficiency
• (c) Reduced steam flow (for a given plant output)
It is therefore very advantageous to operate the condenser at the
lowest possible pressure
• There are two primary types of condensers
that can be used in a power plant :
• (a) Direct Contact
• (b) Surface
• Direct contact condensers condense the
turbine exhaust steam by mixing it directly
with cooling water
• Steam surface condensers are the most commonly used
condensers in modern power plants. The exhaust steam
from the turbine flows on the shell side (under vacuum) of
the condenser, while the plant’s circulating water flows in
the tube side.
• The source of the circulating water can be either a closed-
loop (i.e. cooling tower, spray pond, etc.) or once through
(i.e. from a lake, ocean, or river).
• The condensed steam from the turbine, called condensate,
is collected in the bottom of the condenser, which is called
a hotwell.
• The condensate is then pumped back to the steam
generator to repeat the cycle.
Condenser
Evaporators
• These are used to supply of pure water as make up feed for
the boilers. Raw water is evaporated by using extracted
steam then condensed to give distilled and pure feed water.
• The film type evaporators: In this type water is sprayed on
the surface of tubes through which steam is passed. As the
water falls on the surface of the heated tubes it evaporates.
• The submerged type evaporators: In this type the bundle of
tubes is submerged in water. Vapors formed in the shell
pass out of the shell through a moisture separator and
enter a feed water condenser.
Cooling Tower
• Cooling Towers have one function :
• Remove heat from the water discharged from the
condenser so that the water can be discharged to the
river or recirculated and reused.
• The importance of the cooling tower is felt when the
cooling water from the condenser has to be cooled.
• The cooling water after condensing the steam,
becomes hot and it has to be cooled as it belongs to a
closed system.
• The Cooling towers do the job of decreasing the
temperature of the cooling water after condensing the
steam in the condenser.
• When water is reused in the process, it is
pumped to the top of the cooling tower and will
then flow down through plastic or wood shells,
much like a honeycomb found in a bee‟s nest.
• The water will emit heat as it is downward
flowing which mixes with the above air flow,
which in turn cools the water. Part of this water
will also evaporate, causing it to lose even more
heat.
Natural Draft cooling tower
• Natural draft towers are typically about 120 m
high, depending on the differential pressure
between the cold outside air and the hot humid
air on the inside of the tower as the driving force.
No fans are used.
• Mechanical draft towers uses fans (one or more)
to move large quantities of air through the tower.
They are two different classes :
• (a) Forced draft cooling towers
• (b) Induced draft cooling towers
Turbines
• A steam turbine is a mechanical device that
extracts thermal energy from pressurized
steam, and converts it into rotary motion.
• A steam turbine is a prime mover in which the
potential energy of the steam is transferred
into the kinetic energy, and later in its turn is
transformed into mechanical energy of the
rotation of the turbine shaft.
Classification of Steam Turbines
Action of steam
A. Impulse
B. Reaction
C. Combination of impulse and reaction.
According to number of pressure stages
A. Single stage turbine : with one or more velocity stages usually of
small power capacity, used for driving centrifugal pumps, blowers etc
B. Multi Stage turbine: Wide range of capacities from large to small.
According to direction of steam flow
A. Axial Turbine: Steam flows in a direction parallel to axis of the
turbine.
B. Radial Turbine: Steam flows in a direction perpendicular to the axis
of the turbine
According to method of governing
A. Turbines with throttle governing: fresh steam enters through one
or more simultaneously operated throttle valves.
B. Turbines with nozzle governing: fresh steam enters through two or
more consecutively operated regulators
According to steam conditions at inlet to the turbine
A. Low pressure turbines, 1.2 to 2 ata
B. Medium pressure turbines, 40 ata
C. High pressure turbines, above 40 ata
D. Very high pressure turbines, 170 ata and higher at temp of 550deg
C
E. Turbines of supercritical pressure, 225ata and above
According to their usages in Industry
A. Stationary turbines with constant speed of
rotation: alternators
B. Stationary turbines with variable speed of
rotation : turbo-blowers, pumps
C. Non stationary turbines with variable speed:
steamers, ships, locomotives
• The interior of a turbine comprises several
sets of blades, or “buckets” as they are more
commonly referred to. One set of stationary
blades is connected to the casing and one set
of rotating blades is connected to the shaft.
• The sets intermesh with certain minimum
clearances, with the size and configuration of
sets varying to efficiently exploit the
expansion of steam at each stage.
• The main difference lies in
the way the steam expands
while it moves through
them.
• In Impulse turbine steam
expands in the nozzles and
its pressures does not alter
as it moves over blades.
• In reaction type the steam
expands continuously as it
passes over the blades and
thus there is gradual fall in
pressure during expansion.
Nozzles
• A steam nozzle is
defined as a passage of
varying crossection,
through which heat
energy of steam is
converted to kinetic
energy. It produces a
steam jet with high
velocity to drive steam
turbines.
Impulse Turbines
• An impulse turbine has fixed nozzles that orient the steam flow into high speed
jets.
• These jets contain significant kinetic energy, which the rotor blades, shaped like
buckets, convert into shaft rotation as the steam jet changes direction.
• A pressure drop occurs across only the stationary blades, with a net increase in
steam velocity across the stage.
• As the steam flows through the nozzle its pressure falls from inlet pressure to the
exit
• Steam Power Plant pressure (atmospheric pressure, or more usually, the
condenser vacuum). Due to this higher ratio of expansion of steam in the nozzle
the steam leaves the nozzle with a very high velocity.
• The steam leaving the moving blades is a large portion of the maximum velocity of
the steam when leaving the nozzle.
• The loss of energy due to this higher exit velocity is commonly called the “carry
over velocity” or “leaving loss”.
Reaction Turbines
• In the reaction turbine, the rotor blades themselves are arranged to
form convergent nozzles. This type of turbine makes use of the
reaction force produced as the steam accelerates through the
nozzles formed by the rotor.
• Steam is directed onto the rotor by the fixed vanes of the stator. It
leaves the stator as a jet that fills the entire circumference of the
rotor.
• The steam then changes direction and increases its speed relative
to the speed of the blades.
• A pressure drop occurs across both the stator and the rotor, with
steam accelerating through the stator and decelerating through the
rotor, with no net change in steam velocity across the stage but
with a decrease in both pressure and temperature, reflecting the
work performed in the driving of the rotor.
Main Differences of Impulse and Reaction Turbine
• 1) In impulse turbine the water flows through the nozzles and impinges on the buckets where as in
reaction turbine the water is guided by the guide blades to flow over the moving vanes.
• 2) In impulse turbine the entire water energy is first converted in kinetic energy but there is no
energy conversion in reaction turbine.
• 3) ) In impulse turbine the water impinges on the buckets with kinetic energy where as in reaction
turbine the water glides over the moving vanes with pressure energy.
• 4) In impulse turbine the work is done only by the change in the kinetic energy of the jet but in
reaction turbine the work is done partly by the change in the velocity head, but almost entirely by
the change in pressure head.
• 5) In impulse turbine the pressure of flowing water remains unchanged and is equal to the
atmospheric pressure but in reaction turbine the pressure of flowing water is reduced after gliding
over the vanes.
• 7) In impulse turbine the water may be admitted over a part of the circumference or over the
whole circumference of the wheel but in reaction turbine the water must be admitted over the
whole circumference of the wheel.
• 8) It is possible to regulate the flow of water without loss in impulse turbine but in reaction turbine
it is not possible to regulate the flow without loss.
Steam power plant 2

Más contenido relacionado

La actualidad más candente

STEAM POWER PLANT : COMBUSTION PROCESS
STEAM POWER PLANT  : COMBUSTION PROCESS STEAM POWER PLANT  : COMBUSTION PROCESS
STEAM POWER PLANT : COMBUSTION PROCESS S.Vijaya Bhaskar
 
Impulse turbine fluid mechanics
Impulse  turbine fluid mechanicsImpulse  turbine fluid mechanics
Impulse turbine fluid mechanicskanwaldeep singh
 
Kaplan turbine
Kaplan turbineKaplan turbine
Kaplan turbineOohona
 
Boiler performance (Part 1) - Equivalent evaporation - Notes
Boiler performance (Part 1) - Equivalent evaporation - NotesBoiler performance (Part 1) - Equivalent evaporation - Notes
Boiler performance (Part 1) - Equivalent evaporation - NotesAVDHESH TYAGI
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Jay Patel
 
Turbine cycle heat rate calculation
Turbine  cycle heat rate calculationTurbine  cycle heat rate calculation
Turbine cycle heat rate calculationSHIVAJI CHOUDHURY
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier applicationdaudsangeenkhan
 
Thermal power plant
Thermal power plantThermal power plant
Thermal power plantVivek Pathak
 
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...Shubham Thakur
 

La actualidad más candente (20)

STEAM POWER PLANT
STEAM POWER PLANTSTEAM POWER PLANT
STEAM POWER PLANT
 
STEAM POWER PLANT : COMBUSTION PROCESS
STEAM POWER PLANT  : COMBUSTION PROCESS STEAM POWER PLANT  : COMBUSTION PROCESS
STEAM POWER PLANT : COMBUSTION PROCESS
 
Steam generator part 1
Steam generator part 1Steam generator part 1
Steam generator part 1
 
Impulse turbine fluid mechanics
Impulse  turbine fluid mechanicsImpulse  turbine fluid mechanics
Impulse turbine fluid mechanics
 
Kaplan turbine
Kaplan turbineKaplan turbine
Kaplan turbine
 
Boiler performance (Part 1) - Equivalent evaporation - Notes
Boiler performance (Part 1) - Equivalent evaporation - NotesBoiler performance (Part 1) - Equivalent evaporation - Notes
Boiler performance (Part 1) - Equivalent evaporation - Notes
 
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
Parson’s Turbine and condition for maximum efficiency of Parson’s reaction Tu...
 
Turbine cycle heat rate calculation
Turbine  cycle heat rate calculationTurbine  cycle heat rate calculation
Turbine cycle heat rate calculation
 
Steam power plant
Steam power plantSteam power plant
Steam power plant
 
Boiler safety protection
Boiler  safety protectionBoiler  safety protection
Boiler safety protection
 
Ash handeling1
Ash handeling1Ash handeling1
Ash handeling1
 
Boiler operation
Boiler operationBoiler operation
Boiler operation
 
Steam Turbines
Steam TurbinesSteam Turbines
Steam Turbines
 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
 
Types of turbine & thier application
Types of turbine & thier applicationTypes of turbine & thier application
Types of turbine & thier application
 
Power factor improvement
Power factor improvement Power factor improvement
Power factor improvement
 
Thermal power plant
Thermal power plantThermal power plant
Thermal power plant
 
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...
Thermal Power Plant - Full Detail About Plant and Parts (Also Contain Animate...
 
Boiler
BoilerBoiler
Boiler
 
Boilers
BoilersBoilers
Boilers
 

Destacado (6)

Nuclear reactor in india
Nuclear reactor in indiaNuclear reactor in india
Nuclear reactor in india
 
Presentation on nuclear reactor on9 10-07
Presentation on nuclear reactor on9 10-07Presentation on nuclear reactor on9 10-07
Presentation on nuclear reactor on9 10-07
 
Classification of nuclear reactors
Classification of nuclear reactorsClassification of nuclear reactors
Classification of nuclear reactors
 
Types of Nuclear Reactor
Types of Nuclear ReactorTypes of Nuclear Reactor
Types of Nuclear Reactor
 
Nuclear Reactor
Nuclear Reactor Nuclear Reactor
Nuclear Reactor
 
nuclear reactors
nuclear reactors nuclear reactors
nuclear reactors
 

Similar a Steam power plant 2

UNIT-1-Steam Power Plant.pptx
UNIT-1-Steam Power Plant.pptxUNIT-1-Steam Power Plant.pptx
UNIT-1-Steam Power Plant.pptxprakash0712
 
Steam Generator or Boilers
Steam Generator or BoilersSteam Generator or Boilers
Steam Generator or BoilersRidwanul Hoque
 
High pressure boiler
High pressure boilerHigh pressure boiler
High pressure boilerRahul Rathod
 
Introduction of Boiler
Introduction of BoilerIntroduction of Boiler
Introduction of BoilerMarine Study
 
Power plant by ejaz
Power plant by ejazPower plant by ejaz
Power plant by ejazDrEjaz1
 
Steam generators
Steam generatorsSteam generators
Steam generatorsYash Shah
 
Presentation on thermal power plant
Presentation on thermal power plantPresentation on thermal power plant
Presentation on thermal power plantRashmi Nimje
 
Power plant engineering
Power plant engineeringPower plant engineering
Power plant engineeringnareshmeb
 
Boiler, Steam Trapes, Insulation and Steam Distribution System
Boiler, Steam Trapes,  Insulation and Steam Distribution SystemBoiler, Steam Trapes,  Insulation and Steam Distribution System
Boiler, Steam Trapes, Insulation and Steam Distribution SystemWasiullah Khan
 
Steam Boilers OR Steam Generators
Steam Boilers OR Steam GeneratorsSteam Boilers OR Steam Generators
Steam Boilers OR Steam GeneratorsHrishikesh Devan
 
Boiler final
Boiler finalBoiler final
Boiler finalHet Patel
 
Steam-Power-Plant-updated.pdf engineering students
Steam-Power-Plant-updated.pdf engineering studentsSteam-Power-Plant-updated.pdf engineering students
Steam-Power-Plant-updated.pdf engineering studentsashokpradhan23
 
PPT ON THERMAL POWER PLANT (POLLUTION CONTROLLED)
PPT ON THERMAL POWER PLANT (POLLUTION  CONTROLLED)PPT ON THERMAL POWER PLANT (POLLUTION  CONTROLLED)
PPT ON THERMAL POWER PLANT (POLLUTION CONTROLLED)HIMANSHU .
 
Thermal power plant
Thermal power plantThermal power plant
Thermal power plantaman Singh
 

Similar a Steam power plant 2 (20)

UNIT-1-Steam Power Plant.pptx
UNIT-1-Steam Power Plant.pptxUNIT-1-Steam Power Plant.pptx
UNIT-1-Steam Power Plant.pptx
 
Steam Generator or Boilers
Steam Generator or BoilersSteam Generator or Boilers
Steam Generator or Boilers
 
Power Plant Boilers.pdf
Power Plant Boilers.pdfPower Plant Boilers.pdf
Power Plant Boilers.pdf
 
Steam generator (boiler) vamshi
Steam generator (boiler) vamshiSteam generator (boiler) vamshi
Steam generator (boiler) vamshi
 
High pressure boiler
High pressure boilerHigh pressure boiler
High pressure boiler
 
Introduction of Boiler
Introduction of BoilerIntroduction of Boiler
Introduction of Boiler
 
Power plant by ejaz
Power plant by ejazPower plant by ejaz
Power plant by ejaz
 
Steam generators
Steam generatorsSteam generators
Steam generators
 
Presentation on thermal power plant
Presentation on thermal power plantPresentation on thermal power plant
Presentation on thermal power plant
 
Power plant engineering
Power plant engineeringPower plant engineering
Power plant engineering
 
boilers
boilersboilers
boilers
 
Boiler, Steam Trapes, Insulation and Steam Distribution System
Boiler, Steam Trapes,  Insulation and Steam Distribution SystemBoiler, Steam Trapes,  Insulation and Steam Distribution System
Boiler, Steam Trapes, Insulation and Steam Distribution System
 
MET 214 Module 7
MET 214 Module 7MET 214 Module 7
MET 214 Module 7
 
MET 214 Module 7
MET 214 Module 7MET 214 Module 7
MET 214 Module 7
 
Steam Boilers OR Steam Generators
Steam Boilers OR Steam GeneratorsSteam Boilers OR Steam Generators
Steam Boilers OR Steam Generators
 
Boiler final
Boiler finalBoiler final
Boiler final
 
Steam plan
Steam planSteam plan
Steam plan
 
Steam-Power-Plant-updated.pdf engineering students
Steam-Power-Plant-updated.pdf engineering studentsSteam-Power-Plant-updated.pdf engineering students
Steam-Power-Plant-updated.pdf engineering students
 
PPT ON THERMAL POWER PLANT (POLLUTION CONTROLLED)
PPT ON THERMAL POWER PLANT (POLLUTION  CONTROLLED)PPT ON THERMAL POWER PLANT (POLLUTION  CONTROLLED)
PPT ON THERMAL POWER PLANT (POLLUTION CONTROLLED)
 
Thermal power plant
Thermal power plantThermal power plant
Thermal power plant
 

Más de Nishkam Dhiman

Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plantsNishkam Dhiman
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plantNishkam Dhiman
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plantsNishkam Dhiman
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic inductionNishkam Dhiman
 
Ac and dc meters and kirchoff's laws
Ac and dc meters and kirchoff's lawsAc and dc meters and kirchoff's laws
Ac and dc meters and kirchoff's lawsNishkam Dhiman
 
Basics of electrical engineering
Basics of electrical engineeringBasics of electrical engineering
Basics of electrical engineeringNishkam Dhiman
 

Más de Nishkam Dhiman (12)

The Punjabi Culture
The Punjabi Culture  The Punjabi Culture
The Punjabi Culture
 
Combined operation of power plants
Combined operation of power plantsCombined operation of power plants
Combined operation of power plants
 
Cogeneration
CogenerationCogeneration
Cogeneration
 
Nuclear power plants
Nuclear power plantsNuclear power plants
Nuclear power plants
 
Hydro electric power plant
Hydro electric power plantHydro electric power plant
Hydro electric power plant
 
Gas turbine power plants
Gas turbine power plantsGas turbine power plants
Gas turbine power plants
 
Diesel power plant
Diesel power plantDiesel power plant
Diesel power plant
 
Electric Motors
Electric MotorsElectric Motors
Electric Motors
 
Magnets and magnetism
Magnets and magnetismMagnets and magnetism
Magnets and magnetism
 
Electromagnetic induction
Electromagnetic inductionElectromagnetic induction
Electromagnetic induction
 
Ac and dc meters and kirchoff's laws
Ac and dc meters and kirchoff's lawsAc and dc meters and kirchoff's laws
Ac and dc meters and kirchoff's laws
 
Basics of electrical engineering
Basics of electrical engineeringBasics of electrical engineering
Basics of electrical engineering
 

Último

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 

Último (20)

Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 

Steam power plant 2

  • 1. Steam Power PlantSolar Lounge Nishkam Dhiman Asst Prof : Electrical and Electronics Engineering Chitkara University, Punjab
  • 2. Fluidised Bed Combustion • A fluidised bed combustion may be defined as the bed of solid particles behaving as a fluid. Principle: • When a gas is passed through a packed bed of finely divided solid particles, it experiences a pressure drop across the bed. • At low gas velocities, this pressure drop is small and does not disturb the particles. But if the gas velocity is increased further, a stage is reached, when particles are suspended in the gas stream and packed bed becomes a ‘Fluidised Bed’ • With the further increase in gas velocity, the bed becomes turbulent and rapid mixing of particles occurs. • The behaviour of this mixture of solid particles and gas is like fluid. Burning of fuel in such a state is known as fluidised bed combustion.
  • 3.
  • 4. Working 1. On distributor plate are fed fuel and inhert material dolomite(CaMg(CO 3) and from bottom air is suspended. 2. The high velocity of air keeps the solid feed material in suspending condition during burning. 3. The generated heat is rapidly transferred to the water passing through the tubes immersed in the bed and generated steam is taken out. 4. During burning sulphur di oxide formed is absorbed by the dolomite and prevents its escape with the exhaust gases. The molten slag is tapped from the top of the bed. 5. The primary objective of the inhert material is to control the temp of the bed, it accounts 90% of the bed volume. It should remain in motion with the fuel and at high temp to tune 800°C .
  • 5. Advantages • 1. As a result of better heat transfer the unit size and capital cost are reduced. • 2. It can respond rapidly to change in load demand. • 3. Low combustion temperatures 800-950°C inhibits the formation of nitric oxide and nitrogen oxide. • 4. Since combustion temperature is low the corrosion of tube is reduced. • 5. There is no need to crush the coal to a pulverized form so cost of crushing is reduced. • 6. Pollution is controlled as combustion of high sulphur content can be used. • 7. FBC can use solid, liquid or gaseous fuel. • 8. Combustion temp can be controlled accurately. • 9. 70% ash containing coal can be burned in FBC, conventional combustion system becomes unstable even with above 48% ash.
  • 6. Boilers • A boiler may be defined as a closed vessel in which steam is produced from water by combustion of fuel. • The performance of a boiler is measured in terms of its evaporative capacity which is also called as “Boiler Power”. It is defined as the amount of steam produced in kg/hour. It may also be expressed in kg of steam per kg of fuel burnt or kg/hr/m2 of heating surface. • Boilers are classified according to the following criteria:
  • 7. 1. According to the position of the principle axis • Vertical • Horizontal • Inclined 2. According to flow of water and hot gases. • Water tube (Babcock, Wilcox, Striling, Yarrow Boiler) • Fire tube(Cochran, Lancashire, Locomotive) 3. According to position of furnace • Internally fired – furnace/fire is inside the boiler shell – (Cochran, Lancashire) • Externally fired- (Babcock, Wilcox, Striling, Yarrow Boiler)
  • 8. 4. According to application • Stationary • Mobile (Marine, Locomotive…) 5. According to circulating water • Natural circulation (circulation of water takes place due to natural convention currents produced by application of heat) Lancashire, Babcock, Wilcox boiler. • Forced circulation (Water circulation is done by forced pump) Velox, Lamont, Benson boilers. • 6. According to steam pressure • Low pressure – Produce steam at a pressure below 80bar, Cochran, Cornish, Lancashire, Locomotive boilers • High pressure - at a pressure 80 bar and above-Babcock, Wilcox, Velox, Lamont, Benson boilers.
  • 9. Water Tube Boilers In water tube boilers, water is circulated through tubes and hot products of combustion flow over these tubes
  • 10. Water Tube Boilers • Water tube boilers can further be classified as follows: • Horizontal straight tube boilers • Bent tube boilers • Cyclone fired boilers • Water tube boilers have the following advantages: • High pressures (about 140 kg/cm2) can be obtained • Large heating surfaces can be obtained by use of large number of tubes – therefore steam can be generated easily. • Efficiency is higher because of high velocity of water in tubes which improves heat transfer
  • 11. Fire Tube Boilers • In fire tube boilers, the hot combustion gases pass through the tubes, which are surrounded by water
  • 12. Fire Tube Boilers • Fire tube boilers can further be classified as follows: • External furnace • Internal furnace • Fire tube boilers have the following advantages: • Low cost • Fluctuations of steam demand can be easily met • Compact in size • Disadvantage of fire tube boilers is that they contain more water in the drum and if the flue gas circulation is poor, they can not quickly meet the steam demand. For the same output, the outer shell of fire tube boiler is much larger than the shell of a water tube boiler
  • 13. Cochran Boiler • Vertical multitubular boiler, has a number of horizontal fire tubes. • Shell diameter: 2.75m • Height: 5.79 • Working Pressure: 6.5bar(1bar = 100,000 Pa) (max: 15bar) • Steam capacity: 3500kg/h max 4000 • Heating surface: 120m2 • Efficiency: 70 to 75%
  • 14.
  • 15. Babcock and Wilcox water-tube boiler • Horizontal straight tube boiler, stationary or marine purpose. Diameter of drum: 1.22 to 1.83m Length: 6.096 to 9.144m Size of water tubes : 7.62 to 10.16cm Size of super heater tubes: 3.84 to 5.71cm Working pressure: 40bar(max) Steaming capacity: 40000kg/h (max) Efficiency: 60 to 80% Angle of inclination of tubes: 15deg.
  • 16.
  • 17. Locomotive Boiler • It is mainly employed in locomotives although it may be used as stationary boiler. • It is compact in size and its capacity for steam production is quite high for its size and can raise the amount of heat quickly.
  • 19.
  • 20.
  • 21. Working • It consists of cylindrical barrel with rectangular fire box at one end and smoke box at other end. Coal is introduced through the fire hole into the gate which is placed at the bottom of fire box. • The hot gasses generated are deflected by an arch of fire bricks, so that the walls of the fire box may be heated properly. • Fire box is entirely surrounded by water. • The hot gasses pass from fire box to smoke box by series of fire tubes, then they are discharged to atmosphere. • Heat of hot gasses is transmitted to water, the steam generated is collected over the water surface. • Superheater. • Here natural draught cant be used as it need high chimney height, the forced draught is created by the exhaust steam.
  • 22. • Merits 1. High steam capacity. 2. Low construction cost. 3. Low installation cost. 4. Compact. • Demerits 1. Chances of corrosion. 2. Difficult to clean some water spaces. 3. Overload cause overheating. 4. Practical limitations of pressure and capacity.
  • 23. Accessories used in steam power plants • Accessories are the auxiliary plants required for steam boilers for their proper operation and for the increase of their efficiency. 1. Feed Pumps: Feed pump is pump which is used to deliver feed water to the boiler. a) Reciprocatory pumps consists of cylinder and piston, these are continuously run by steam from the same boiler to which water is to be fed. b) Rotary Pumps are centrifugal type are either run by small steam turbine or by an electric motor.
  • 24.
  • 25. Economiser • An economiser is a device in which the waste heat of the flue gases is utilised for heating the feed water. 1. Independent type: It is installed in the chamber apart from the boiler settings. The camber is situated ate the passage of the flow of the flue gasses from boiler to chimney. 2. Integral type: it is the part of the boiler heating surface and is installed in within the boiler settings
  • 26.
  • 27. Advantages of Economiser • The Temperature range between various parts of the boiler is reduced which results in reduction of stresses due to unequal expansion. • If the boiler is fed with cold water, it may result in chilling the boiler metal. • Evaporation capacity of boiler is increased. • Overall efficiency of boiler is increased.
  • 28. Air Preheater • The function of the air pre-heater is to increase the temperature of air before it enters the furnace. It is generally placed after the economizer; so the flue gases pass through the economizer and then to the air preheater.
  • 29.
  • 30. Super heater • The function of a super heater is to increase the temperature of the steam above its saturation point. The super heater is very important accessory of a boiler and can be used both on fire-tube and water-tube boilers. The small boilers are not commonly provided with a super heater. • Super heaters are located in the path of the furnance gases so that the heat is recovered by the superhearter from the hot gases,
  • 31. • Advantages • Steam consumption of engine or turbine is reduced. • Erosion of turbine blade is eliminated. • Efficiency of steam plant is increased.
  • 32. Types of Superheaters • Convective Superheaters: Makes the use of heat of flue gases. • Radiant Superheaters: It is placed in the furnace and the wall tubes receives heat from burning fuel through radiant process. It is used where high amount of superheat temperature is required.
  • 33.
  • 34. Reheater • In a reheat turbine the steam first enters high speed turbine so its temp and pressure reduces before entering low speed turbine so a reheater is used to reheat the cooled steam.
  • 35.
  • 36. Feed Water Heaters • A feed water heater is a power plant component used to pre-heat water delivered to a steam generating boiler. Preheating the feed water reduces the irreversibilities involved in steam generation and therefore improves the thermodynamic efficiency of the system. This reduces plant operating costs and also helps to avoid thermal shock to the boiler metal when the feed water is introduced back into the steam cycle.
  • 37.
  • 38. Condenser • The main purposes of the condenser are to condense the exhaust steam from the turbine for reuse in the cycle and to maximize turbine efficiency by maintaining proper vacuum. • As the operating pressure of the condenser is lowered (vacuum is increased), the enthalpy drop of the expanding steam in the turbine will also increase. This will increase the amount of available work from the turbine (electrical output). By lowering the condenser operating pressure, the following will occur : • (a) Increased turbine output • (b) Increased plant efficiency • (c) Reduced steam flow (for a given plant output) It is therefore very advantageous to operate the condenser at the lowest possible pressure
  • 39. • There are two primary types of condensers that can be used in a power plant : • (a) Direct Contact • (b) Surface • Direct contact condensers condense the turbine exhaust steam by mixing it directly with cooling water
  • 40. • Steam surface condensers are the most commonly used condensers in modern power plants. The exhaust steam from the turbine flows on the shell side (under vacuum) of the condenser, while the plant’s circulating water flows in the tube side. • The source of the circulating water can be either a closed- loop (i.e. cooling tower, spray pond, etc.) or once through (i.e. from a lake, ocean, or river). • The condensed steam from the turbine, called condensate, is collected in the bottom of the condenser, which is called a hotwell. • The condensate is then pumped back to the steam generator to repeat the cycle.
  • 42. Evaporators • These are used to supply of pure water as make up feed for the boilers. Raw water is evaporated by using extracted steam then condensed to give distilled and pure feed water. • The film type evaporators: In this type water is sprayed on the surface of tubes through which steam is passed. As the water falls on the surface of the heated tubes it evaporates. • The submerged type evaporators: In this type the bundle of tubes is submerged in water. Vapors formed in the shell pass out of the shell through a moisture separator and enter a feed water condenser.
  • 43. Cooling Tower • Cooling Towers have one function : • Remove heat from the water discharged from the condenser so that the water can be discharged to the river or recirculated and reused. • The importance of the cooling tower is felt when the cooling water from the condenser has to be cooled. • The cooling water after condensing the steam, becomes hot and it has to be cooled as it belongs to a closed system. • The Cooling towers do the job of decreasing the temperature of the cooling water after condensing the steam in the condenser.
  • 44. • When water is reused in the process, it is pumped to the top of the cooling tower and will then flow down through plastic or wood shells, much like a honeycomb found in a bee‟s nest. • The water will emit heat as it is downward flowing which mixes with the above air flow, which in turn cools the water. Part of this water will also evaporate, causing it to lose even more heat.
  • 45. Natural Draft cooling tower • Natural draft towers are typically about 120 m high, depending on the differential pressure between the cold outside air and the hot humid air on the inside of the tower as the driving force. No fans are used. • Mechanical draft towers uses fans (one or more) to move large quantities of air through the tower. They are two different classes : • (a) Forced draft cooling towers • (b) Induced draft cooling towers
  • 46.
  • 47. Turbines • A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion. • A steam turbine is a prime mover in which the potential energy of the steam is transferred into the kinetic energy, and later in its turn is transformed into mechanical energy of the rotation of the turbine shaft.
  • 48. Classification of Steam Turbines Action of steam A. Impulse B. Reaction C. Combination of impulse and reaction. According to number of pressure stages A. Single stage turbine : with one or more velocity stages usually of small power capacity, used for driving centrifugal pumps, blowers etc B. Multi Stage turbine: Wide range of capacities from large to small. According to direction of steam flow A. Axial Turbine: Steam flows in a direction parallel to axis of the turbine. B. Radial Turbine: Steam flows in a direction perpendicular to the axis of the turbine
  • 49. According to method of governing A. Turbines with throttle governing: fresh steam enters through one or more simultaneously operated throttle valves. B. Turbines with nozzle governing: fresh steam enters through two or more consecutively operated regulators According to steam conditions at inlet to the turbine A. Low pressure turbines, 1.2 to 2 ata B. Medium pressure turbines, 40 ata C. High pressure turbines, above 40 ata D. Very high pressure turbines, 170 ata and higher at temp of 550deg C E. Turbines of supercritical pressure, 225ata and above
  • 50. According to their usages in Industry A. Stationary turbines with constant speed of rotation: alternators B. Stationary turbines with variable speed of rotation : turbo-blowers, pumps C. Non stationary turbines with variable speed: steamers, ships, locomotives
  • 51.
  • 52. • The interior of a turbine comprises several sets of blades, or “buckets” as they are more commonly referred to. One set of stationary blades is connected to the casing and one set of rotating blades is connected to the shaft. • The sets intermesh with certain minimum clearances, with the size and configuration of sets varying to efficiently exploit the expansion of steam at each stage.
  • 53. • The main difference lies in the way the steam expands while it moves through them. • In Impulse turbine steam expands in the nozzles and its pressures does not alter as it moves over blades. • In reaction type the steam expands continuously as it passes over the blades and thus there is gradual fall in pressure during expansion.
  • 54. Nozzles • A steam nozzle is defined as a passage of varying crossection, through which heat energy of steam is converted to kinetic energy. It produces a steam jet with high velocity to drive steam turbines.
  • 55.
  • 56.
  • 57. Impulse Turbines • An impulse turbine has fixed nozzles that orient the steam flow into high speed jets. • These jets contain significant kinetic energy, which the rotor blades, shaped like buckets, convert into shaft rotation as the steam jet changes direction. • A pressure drop occurs across only the stationary blades, with a net increase in steam velocity across the stage. • As the steam flows through the nozzle its pressure falls from inlet pressure to the exit • Steam Power Plant pressure (atmospheric pressure, or more usually, the condenser vacuum). Due to this higher ratio of expansion of steam in the nozzle the steam leaves the nozzle with a very high velocity. • The steam leaving the moving blades is a large portion of the maximum velocity of the steam when leaving the nozzle. • The loss of energy due to this higher exit velocity is commonly called the “carry over velocity” or “leaving loss”.
  • 58. Reaction Turbines • In the reaction turbine, the rotor blades themselves are arranged to form convergent nozzles. This type of turbine makes use of the reaction force produced as the steam accelerates through the nozzles formed by the rotor. • Steam is directed onto the rotor by the fixed vanes of the stator. It leaves the stator as a jet that fills the entire circumference of the rotor. • The steam then changes direction and increases its speed relative to the speed of the blades. • A pressure drop occurs across both the stator and the rotor, with steam accelerating through the stator and decelerating through the rotor, with no net change in steam velocity across the stage but with a decrease in both pressure and temperature, reflecting the work performed in the driving of the rotor.
  • 59. Main Differences of Impulse and Reaction Turbine • 1) In impulse turbine the water flows through the nozzles and impinges on the buckets where as in reaction turbine the water is guided by the guide blades to flow over the moving vanes. • 2) In impulse turbine the entire water energy is first converted in kinetic energy but there is no energy conversion in reaction turbine. • 3) ) In impulse turbine the water impinges on the buckets with kinetic energy where as in reaction turbine the water glides over the moving vanes with pressure energy. • 4) In impulse turbine the work is done only by the change in the kinetic energy of the jet but in reaction turbine the work is done partly by the change in the velocity head, but almost entirely by the change in pressure head. • 5) In impulse turbine the pressure of flowing water remains unchanged and is equal to the atmospheric pressure but in reaction turbine the pressure of flowing water is reduced after gliding over the vanes. • 7) In impulse turbine the water may be admitted over a part of the circumference or over the whole circumference of the wheel but in reaction turbine the water must be admitted over the whole circumference of the wheel. • 8) It is possible to regulate the flow of water without loss in impulse turbine but in reaction turbine it is not possible to regulate the flow without loss.