SlideShare a Scribd company logo
1 of 35
PRESENTED BY:
NOOPUR JOSHI
(M.Sc. BIOTECHNOLOGY)
METABOLISM
• METABOLISM is a series of interconnected chemical
reactions occurring within a cell and the chemical
compounds involved in it are termed as
METABOLITES.
• The enzymatic reactions are organized into discreet
pathways which proceed in a stepwise manner,
transforming substrates into end products through
many specific chemical intermediates.
• Metabolic pathways can be of following types:
LINEAR (Eg. Glycolysis)
CYCLIC (Eg. Citric acid cycle)
SPIRAL ( Eg. Biosynthesis of Fatty Acids)
• Metabolic pathways serve 2 functions:
Generation of energy to drive vital functions.
Synthesis of biological molecules.
METABOLIC
PATHWAYS
CATABOLIC PATHWAYS
Are involved in oxidative
breakdown of larger
complexes.
They are usually
exergonic in nature
ANABOLIC PATHWAYS
Are involved in the
synthesis of
compounds.
They are usually
endergonic in nature.
CHARACTERISTICS OF METABOLISM
1. Metabolic pathways are irreversible
2. Every metabolic pathway has a committed
first step.
3. All metabolic pathways are regulated.
4. Metabolic pathways in eukaryotic cells occur
in specific cellular locations.
GLYCOLYSIS
Glycolysis comes from a merger of two Greek words:
Glykys = sweet
Lysis = breakdown/ splitting
It is also known as Embden-Meyerhof-Parnas pathway
or EMP pathway.
INTRODUCTION
• GLYCOLYSIS is the sequence of 10 enzyme-catalyzed
reactions that converts glucose into pyruvate with
simultaneous production on of ATP.
• In this oxidative process, 1mol of glucose is partially
oxidised to 2 moles of pyruvate.
• This major pathway of glucose metabolism occurs in
the cytosol of all cell.
• This unique pathway occurs aerobically as well as
anaerobically & doesn’t involve molecular oxygen.
• It also includes formation of Lactate from Pyruvate.
• The glycolytic sequence of reactions differ from
species to species only in the mechanism of its
regulation & in the subsequent metabolic fate of
the pyruvate formed.
• In aerobic organisms, glycolysis is the prelude to
Citric acid cycle and ETC.
• Glycolysis is the central pathway for Glucose
catabolism.
Glucose
Extracellular
matrix & cell wall
polysachharide.
Glycogen,
Starch,
Sucrose
Pyruvate
Ribose-5-
phosphat
e
Oxidation via
pentose phosphate
pathway
Synthesis of
structural polymers
storage
Oxidation
via glycolysis
Major pathways of
glucose utilization.
TWO PHASES OF GLYCOLYSIS
• Glycolysis leads to breakdown of 6-C glucose
into two molecules of 3-C pyruvate with the
enzyme catalyzed reactions being bifurcated
or categorized into 2 phases:
1. Phase 1- preparatory phase
2. Phase 2- payoff phase.
PREPARATORY PHASE
• It consists of the 1st 5 steps of glycolysis in which
the glucose is enzymatically phosphorylated by ATP
to yield Fructose-1,6-biphosphate.
• This fructuse-1,6-biphosphate is then split in half to
yield 2 molecules of 3-carbon containing
Glyceraldehyde-3-phosphate/ dihyroxyacteone
phosphate.
• Thus the first phase results in cleavage of the
hexose chain.
• This cleavage requires an investment of 2 ATP
molecules to activate the glucose mole and prepare
it for its cleavage into 3-carbon compound.
PAYOFF PHASE
• This phase constitutes the last 5 reactions of
Glycolysis.
• This phase marks the release of ATP molecules
during conversion of Glyceraldehyde-3-phosphtae
to 2 moles of Pyruvate.
• Here 4 moles of ADP are phosphorylated to ATP.
Although 4 moles of ATP are formed, the net result
is only 2 moles of ATP per mole of Glucose oxidized,
since 2 moles of ATP are utilized in Phase 1.
STEPWISE EXPLAINATION OF
GLYCOLYSIS
STEP 1: PHOSPHORYLATION
• Glucose is phosphorylated by ATP to form sugar
phosphate.
• This is an irreversible reaction & is catalyzed by
hexokinase.
• Thus the reaction can be represented as follows:
Glucose
Glucose-6-phosphate
Hexokinase
ATP
ADP
STEP 2: ISOMERIZATION
• It is a reversible rearrangement of chemical structure of
carbonyl oxygen from C1 to C2, forming a Ketose from the
Aldose.
• Thus, isomerization of the aldose Glucose6-phosphate
gives the ketose, Fructose-6-phoshphate.
Glucose-6-phosphate
Fructose-6-phosphate
Phosphoglucoisomerase
STEP 3: PHOPHORYLATION
• Here the Fructose-6-phosphate is phosphorylated
by ATP to fructose-1,6-bisphosphate.
• This is an irreversible reaction and is catalyzed by
phosphofructokinase enzyme.
Fructose-6-phosphate
Fructose-1,6-bisphosphate
ATP
ADPPhosphofructokinase
STEP 4: BREAKDOWN
• This six carbon sugar is cleaved to produce two 3-C
molecules: glyceradldehyde-3-phosphate (GAP) &
dihydroxyacetone phosphate(DHAP).
• This reaction is catalyzed by Aldolase.
Fructose-1,6-
bisphosphate
Glyceraldehyde-3-
phosphate
Dihydroxyacetone
phosphateTriose phosphate
isomerase
Aldolase
STEP 5: ISOMERIZATION
• Dihydroxyacetone phosphate is oxidized to form
Glyceraldehyde-3-phosphate.
• This reaction is catalyzed by triose phosphate
isomerase enzyme.
Glyceraldehyde-3-phosphate
Dihydroxyacetone phosphate
Triose phosphate
isomerase
2
2
STEP 6
• 2 molecules of Glyceraldehyde-3-phosphate are
oxidized.
• Glyceraldehyde-3-phosphate dehydrogenase
catalyzes the conversion of Glyceraldehyde3-
phosphate into 1,3-bisphosphoglycerate.
Aldehyde Carboxylic acid
Carboxylic
acid
Ortho-
phosphate
Acyl-
phosphate
product
Joining)
Resultant reaction
Glyceraldehyde-3-phosphate
1,3-bisphosphoglycerate
Glyceraldehyde-3-phosphate
dehydrogenase
2NAD⁺ + 2Pi
2NADH + 2H⁺
2
2
STEP 7
• The transfer of high-energy phosphate group that
was generated earlier to ADP, form ATP.
• This phosphorylation i.e. addition of phosphate to
ADP to give ATP is termed as substrate level
phosphorylation as the phosphate donor is the
substrate 1,3-bisphosphoglycerate (1,3-BPG).
• The product of this reaction is 2 molecules of
3-phosphoglycerate.
1,3-bisphosphoglycerate
3-phosphoglycerate
Phosphoglycerate
kinase 2 ADP
2 ATP
FIRST SUBSTRATE LEVEL
PHOSPHORYLATION
2
2
STEP 8
• The remaining phosphate-ester linkage in 3-
phosphoglycerate, is moved from carbon 3 to
carbon 2 ,because of relatively low free energy of
hydrolysis, to form 2-phosphoglycerate(2-PG).
3-phosphoglycerate
2-phosphoglycerate
Phosphoglycerate
mutase
2
2
STEP 9: DEHYDRATION OF 2-PG
• This is the second reaction in glycolysis where a
high-energy phosphate compound is formed.
• The 2-phosphoglycerate is dehydrated by the action
of enolase to phosphoenolpyruvate(PEP). This
compound is the phosphate ester of the enol
tautomer of pyruvate.
• This is a reversible reaction.
2-phosphoglycerate
Phosphoenol pyruvate
H₂O
Enolase
2
2
STEP 10: TRANSFER OF PHOSPHATE
FROM PEP to ADP
• This last step is the irreversible transfer of high
energy phosphoryl group from
phosphoenolpuruvate to ADP.
• This reaction is catalyzed by pyruvate kinase.
• This is the 2nd substrate level phosphorylation
reaction in glycolysis which yields ATP.
• This is a non-oxidative phosphorylation reaction.
Phosphoenolpyruvate
Pyruvate
2
2
Pyruvate kinase
SECOND
SUBSTRATE LEVEL
PHOSPHORYLATION
2ADP
2ATP
OVERALL BALANCE SHEET OF
GLYCOLYSIS
• Each molecule of glucose gives 2 molecules of
Glyceraldehyde-3-phosphate. Therefore , the total
input of all 10 reactions can be summarized as:
Glucose + 2ATP+ 2Pi+ 2NAD⁺+ 2H⁺+ 4ADP
2Pyruvate+ 2H⁺+ 4ATP+ 2H₂O+ 2NADH+ 2ADP
On cancelling the common terms from the above
equation, we get the net equation for Glycolysis:
Glucose+ 2Pi+ 2ADP+ 2NAD⁺
2Pyruvate+ 2NADH+ 2ATP+ 2H⁺ + 2H₂O
THUS THE SIMULTANEOUS REACTIONS INVOLVED IN
GLYCOLYSIS ARE:
Glucose is oxidized to Pyruvate
NAD⁺ is reduced to NADH
ADP is phosphorylated to ATP
• ENERGY YIELD IN GLYCOLYSIS:
STEP NO. REACTION CONSUMPTION of ATP GAIN of ATP
1 Glucose glucose-6-phosphate 1 -
3 Fructose-6-phosphate
fructose-1,6-biphosphate
1 -
7 1,3-diphosphoglycerate
3-phosphoglycerate
- 1x2=2
10 Phosphoenolpyruvate pyruvate - 1x2=2
2 4
Net gain of ATP=4-2= 2
Glycolysis

More Related Content

What's hot

What's hot (20)

Lipids : classification and types
Lipids : classification and typesLipids : classification and types
Lipids : classification and types
 
Classification of lipids
Classification of lipidsClassification of lipids
Classification of lipids
 
TCA CYCLE & ITS REGULATION
TCA CYCLE & ITS REGULATIONTCA CYCLE & ITS REGULATION
TCA CYCLE & ITS REGULATION
 
GLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATIONGLUCONEOGENESIS & ITS REGULATION
GLUCONEOGENESIS & ITS REGULATION
 
Gluconeogenesis -
Gluconeogenesis - Gluconeogenesis -
Gluconeogenesis -
 
Lipid chemistry
Lipid chemistryLipid chemistry
Lipid chemistry
 
UREA CYCLE
UREA CYCLEUREA CYCLE
UREA CYCLE
 
Krebs cycle
Krebs cycleKrebs cycle
Krebs cycle
 
Fatty acids
Fatty acidsFatty acids
Fatty acids
 
TRANSAMINATION & DEAMINATION
TRANSAMINATION & DEAMINATIONTRANSAMINATION & DEAMINATION
TRANSAMINATION & DEAMINATION
 
Absorption of proteins ppt
Absorption of proteins pptAbsorption of proteins ppt
Absorption of proteins ppt
 
Beta-oxidation of fatty acids
Beta-oxidation of fatty acidsBeta-oxidation of fatty acids
Beta-oxidation of fatty acids
 
Glycogenolysis
GlycogenolysisGlycogenolysis
Glycogenolysis
 
Carbohydrates and their classification
Carbohydrates and their classificationCarbohydrates and their classification
Carbohydrates and their classification
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid Cycle
 
Classification of enzymes
Classification of enzymesClassification of enzymes
Classification of enzymes
 
TCA cycle (Tricarboxylic acid cycle)
TCA cycle (Tricarboxylic acid cycle)TCA cycle (Tricarboxylic acid cycle)
TCA cycle (Tricarboxylic acid cycle)
 
classification of Amino acids
classification of Amino acids classification of Amino acids
classification of Amino acids
 
Transamination & deamination
Transamination & deaminationTransamination & deamination
Transamination & deamination
 
Enzymes
EnzymesEnzymes
Enzymes
 

Viewers also liked

Glycolysis
GlycolysisGlycolysis
Glycolysis
Maria
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
Haseeb Quadri
 
The Digestive System Powerpoint
The Digestive System   PowerpointThe Digestive System   Powerpoint
The Digestive System Powerpoint
angellacx
 
Lec08 gluco neo
Lec08 gluco neoLec08 gluco neo
Lec08 gluco neo
dream10f
 
Tang 06 salt acid-base 2
Tang 06   salt acid-base 2Tang 06   salt acid-base 2
Tang 06 salt acid-base 2
mrtangextrahelp
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2
mrtangextrahelp
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_alg
chelss
 

Viewers also liked (20)

Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Glycolysis ppt
Glycolysis pptGlycolysis ppt
Glycolysis ppt
 
Glycolysis (10 Steps) By: Asar Khan
Glycolysis (10 Steps) By: Asar KhanGlycolysis (10 Steps) By: Asar Khan
Glycolysis (10 Steps) By: Asar Khan
 
Glycolysis- An over view
Glycolysis- An over viewGlycolysis- An over view
Glycolysis- An over view
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
13 Biochemistry _ Glycolysis
13 Biochemistry _ Glycolysis13 Biochemistry _ Glycolysis
13 Biochemistry _ Glycolysis
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Glycolysis (with animated pathway)
Glycolysis (with animated pathway)Glycolysis (with animated pathway)
Glycolysis (with animated pathway)
 
TCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significanceTCA cycle- steps, regulation and significance
TCA cycle- steps, regulation and significance
 
Gluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significanceGluconeogenesis- Steps, Regulation and clinical significance
Gluconeogenesis- Steps, Regulation and clinical significance
 
Gluconeogenesis
GluconeogenesisGluconeogenesis
Gluconeogenesis
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
The Digestive System Powerpoint
The Digestive System   PowerpointThe Digestive System   Powerpoint
The Digestive System Powerpoint
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Lec08 gluco neo
Lec08 gluco neoLec08 gluco neo
Lec08 gluco neo
 
Tang 06 salt acid-base 2
Tang 06   salt acid-base 2Tang 06   salt acid-base 2
Tang 06 salt acid-base 2
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2
 
Lect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_algLect w8 152 - ka and kb calculations_abbrev_alg
Lect w8 152 - ka and kb calculations_abbrev_alg
 
Power point presentation
Power point presentationPower point presentation
Power point presentation
 

Similar to Glycolysis

glycolysis jhoinnbhvtftdtdtcftftfttctctctctct
glycolysis jhoinnbhvtftdtdtcftftfttctctctctctglycolysis jhoinnbhvtftdtdtcftftfttctctctctct
glycolysis jhoinnbhvtftdtdtcftftfttctctctctct
MukhtarJamac3
 

Similar to Glycolysis (20)

glycolysis.pdf
glycolysis.pdfglycolysis.pdf
glycolysis.pdf
 
glycolysis pathway, energetics and significance.pdf
glycolysis pathway, energetics and significance.pdfglycolysis pathway, energetics and significance.pdf
glycolysis pathway, energetics and significance.pdf
 
Glycolysis in Plants
Glycolysis in PlantsGlycolysis in Plants
Glycolysis in Plants
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
glycolysis jhoinnbhvtftdtdtcftftfttctctctctct
glycolysis jhoinnbhvtftdtdtcftftfttctctctctctglycolysis jhoinnbhvtftdtdtcftftfttctctctctct
glycolysis jhoinnbhvtftdtdtcftftfttctctctctct
 
Glycolysis | Pathway of Glycolysis |
Glycolysis | Pathway of Glycolysis |Glycolysis | Pathway of Glycolysis |
Glycolysis | Pathway of Glycolysis |
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Glycolysis & gluconeogenesis
Glycolysis & gluconeogenesisGlycolysis & gluconeogenesis
Glycolysis & gluconeogenesis
 
Metabolism of Carbohydrate - Part-II.pptx
Metabolism of Carbohydrate - Part-II.pptxMetabolism of Carbohydrate - Part-II.pptx
Metabolism of Carbohydrate - Part-II.pptx
 
Carbohydrate metabolism final questions (3).pdf
Carbohydrate metabolism final questions (3).pdfCarbohydrate metabolism final questions (3).pdf
Carbohydrate metabolism final questions (3).pdf
 
Carbohydrate metabolism modified
Carbohydrate        metabolism modified Carbohydrate        metabolism modified
Carbohydrate metabolism modified
 
biochemistry of MSS prepared by Fikadu Seyoum Tola. This ppt essentially disc...
biochemistry of MSS prepared by Fikadu Seyoum Tola. This ppt essentially disc...biochemistry of MSS prepared by Fikadu Seyoum Tola. This ppt essentially disc...
biochemistry of MSS prepared by Fikadu Seyoum Tola. This ppt essentially disc...
 
Glycolysis
GlycolysisGlycolysis
Glycolysis
 
Carbohydrate metabolism
Carbohydrate metabolismCarbohydrate metabolism
Carbohydrate metabolism
 
Glycolysis.pptx
Glycolysis.pptxGlycolysis.pptx
Glycolysis.pptx
 
Unit 2 carbohydrate metabolism
Unit 2 carbohydrate metabolismUnit 2 carbohydrate metabolism
Unit 2 carbohydrate metabolism
 
Unit 2 carbohydrate metabolism
Unit 2 carbohydrate metabolismUnit 2 carbohydrate metabolism
Unit 2 carbohydrate metabolism
 
Lecture 11 (2).pptx
Lecture 11 (2).pptxLecture 11 (2).pptx
Lecture 11 (2).pptx
 
glycolysis and gluconeogenesis in animals.pptx
glycolysis and gluconeogenesis in animals.pptxglycolysis and gluconeogenesis in animals.pptx
glycolysis and gluconeogenesis in animals.pptx
 
2 glycolysi-gluconeogenesis
2 glycolysi-gluconeogenesis2 glycolysi-gluconeogenesis
2 glycolysi-gluconeogenesis
 

Recently uploaded

Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
Silpa
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
Silpa
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
seri bangash
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
Silpa
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
1301aanya
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Silpa
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Silpa
 

Recently uploaded (20)

Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 
Genetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditionsGenetics and epigenetics of ADHD and comorbid conditions
Genetics and epigenetics of ADHD and comorbid conditions
 
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort ServiceCall Girls Ahmedabad +917728919243 call me Independent Escort Service
Call Girls Ahmedabad +917728919243 call me Independent Escort Service
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.Phenolics: types, biosynthesis and functions.
Phenolics: types, biosynthesis and functions.
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptxPSYCHOSOCIAL NEEDS. in nursing II sem pptx
PSYCHOSOCIAL NEEDS. in nursing II sem pptx
 
The Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptxThe Mariana Trench remarkable geological features on Earth.pptx
The Mariana Trench remarkable geological features on Earth.pptx
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
biology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGYbiology HL practice questions IB BIOLOGY
biology HL practice questions IB BIOLOGY
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
Grade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its FunctionsGrade 7 - Lesson 1 - Microscope and Its Functions
Grade 7 - Lesson 1 - Microscope and Its Functions
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 

Glycolysis

  • 2. METABOLISM • METABOLISM is a series of interconnected chemical reactions occurring within a cell and the chemical compounds involved in it are termed as METABOLITES. • The enzymatic reactions are organized into discreet pathways which proceed in a stepwise manner, transforming substrates into end products through many specific chemical intermediates.
  • 3. • Metabolic pathways can be of following types: LINEAR (Eg. Glycolysis) CYCLIC (Eg. Citric acid cycle) SPIRAL ( Eg. Biosynthesis of Fatty Acids) • Metabolic pathways serve 2 functions: Generation of energy to drive vital functions. Synthesis of biological molecules.
  • 4. METABOLIC PATHWAYS CATABOLIC PATHWAYS Are involved in oxidative breakdown of larger complexes. They are usually exergonic in nature ANABOLIC PATHWAYS Are involved in the synthesis of compounds. They are usually endergonic in nature.
  • 5. CHARACTERISTICS OF METABOLISM 1. Metabolic pathways are irreversible 2. Every metabolic pathway has a committed first step. 3. All metabolic pathways are regulated. 4. Metabolic pathways in eukaryotic cells occur in specific cellular locations.
  • 6. GLYCOLYSIS Glycolysis comes from a merger of two Greek words: Glykys = sweet Lysis = breakdown/ splitting It is also known as Embden-Meyerhof-Parnas pathway or EMP pathway.
  • 7. INTRODUCTION • GLYCOLYSIS is the sequence of 10 enzyme-catalyzed reactions that converts glucose into pyruvate with simultaneous production on of ATP. • In this oxidative process, 1mol of glucose is partially oxidised to 2 moles of pyruvate. • This major pathway of glucose metabolism occurs in the cytosol of all cell. • This unique pathway occurs aerobically as well as anaerobically & doesn’t involve molecular oxygen.
  • 8. • It also includes formation of Lactate from Pyruvate. • The glycolytic sequence of reactions differ from species to species only in the mechanism of its regulation & in the subsequent metabolic fate of the pyruvate formed. • In aerobic organisms, glycolysis is the prelude to Citric acid cycle and ETC. • Glycolysis is the central pathway for Glucose catabolism.
  • 9. Glucose Extracellular matrix & cell wall polysachharide. Glycogen, Starch, Sucrose Pyruvate Ribose-5- phosphat e Oxidation via pentose phosphate pathway Synthesis of structural polymers storage Oxidation via glycolysis Major pathways of glucose utilization.
  • 10.
  • 11. TWO PHASES OF GLYCOLYSIS • Glycolysis leads to breakdown of 6-C glucose into two molecules of 3-C pyruvate with the enzyme catalyzed reactions being bifurcated or categorized into 2 phases: 1. Phase 1- preparatory phase 2. Phase 2- payoff phase.
  • 12. PREPARATORY PHASE • It consists of the 1st 5 steps of glycolysis in which the glucose is enzymatically phosphorylated by ATP to yield Fructose-1,6-biphosphate. • This fructuse-1,6-biphosphate is then split in half to yield 2 molecules of 3-carbon containing Glyceraldehyde-3-phosphate/ dihyroxyacteone phosphate.
  • 13. • Thus the first phase results in cleavage of the hexose chain. • This cleavage requires an investment of 2 ATP molecules to activate the glucose mole and prepare it for its cleavage into 3-carbon compound.
  • 14.
  • 15. PAYOFF PHASE • This phase constitutes the last 5 reactions of Glycolysis. • This phase marks the release of ATP molecules during conversion of Glyceraldehyde-3-phosphtae to 2 moles of Pyruvate. • Here 4 moles of ADP are phosphorylated to ATP. Although 4 moles of ATP are formed, the net result is only 2 moles of ATP per mole of Glucose oxidized, since 2 moles of ATP are utilized in Phase 1.
  • 16.
  • 18. STEP 1: PHOSPHORYLATION • Glucose is phosphorylated by ATP to form sugar phosphate. • This is an irreversible reaction & is catalyzed by hexokinase. • Thus the reaction can be represented as follows: Glucose Glucose-6-phosphate Hexokinase ATP ADP
  • 19. STEP 2: ISOMERIZATION • It is a reversible rearrangement of chemical structure of carbonyl oxygen from C1 to C2, forming a Ketose from the Aldose. • Thus, isomerization of the aldose Glucose6-phosphate gives the ketose, Fructose-6-phoshphate. Glucose-6-phosphate Fructose-6-phosphate Phosphoglucoisomerase
  • 20. STEP 3: PHOPHORYLATION • Here the Fructose-6-phosphate is phosphorylated by ATP to fructose-1,6-bisphosphate. • This is an irreversible reaction and is catalyzed by phosphofructokinase enzyme. Fructose-6-phosphate Fructose-1,6-bisphosphate ATP ADPPhosphofructokinase
  • 21. STEP 4: BREAKDOWN • This six carbon sugar is cleaved to produce two 3-C molecules: glyceradldehyde-3-phosphate (GAP) & dihydroxyacetone phosphate(DHAP). • This reaction is catalyzed by Aldolase. Fructose-1,6- bisphosphate Glyceraldehyde-3- phosphate Dihydroxyacetone phosphateTriose phosphate isomerase Aldolase
  • 22. STEP 5: ISOMERIZATION • Dihydroxyacetone phosphate is oxidized to form Glyceraldehyde-3-phosphate. • This reaction is catalyzed by triose phosphate isomerase enzyme. Glyceraldehyde-3-phosphate Dihydroxyacetone phosphate Triose phosphate isomerase 2 2
  • 23. STEP 6 • 2 molecules of Glyceraldehyde-3-phosphate are oxidized. • Glyceraldehyde-3-phosphate dehydrogenase catalyzes the conversion of Glyceraldehyde3- phosphate into 1,3-bisphosphoglycerate. Aldehyde Carboxylic acid Carboxylic acid Ortho- phosphate Acyl- phosphate product Joining)
  • 25. STEP 7 • The transfer of high-energy phosphate group that was generated earlier to ADP, form ATP. • This phosphorylation i.e. addition of phosphate to ADP to give ATP is termed as substrate level phosphorylation as the phosphate donor is the substrate 1,3-bisphosphoglycerate (1,3-BPG). • The product of this reaction is 2 molecules of 3-phosphoglycerate.
  • 26. 1,3-bisphosphoglycerate 3-phosphoglycerate Phosphoglycerate kinase 2 ADP 2 ATP FIRST SUBSTRATE LEVEL PHOSPHORYLATION 2 2
  • 27. STEP 8 • The remaining phosphate-ester linkage in 3- phosphoglycerate, is moved from carbon 3 to carbon 2 ,because of relatively low free energy of hydrolysis, to form 2-phosphoglycerate(2-PG). 3-phosphoglycerate 2-phosphoglycerate Phosphoglycerate mutase 2 2
  • 28. STEP 9: DEHYDRATION OF 2-PG • This is the second reaction in glycolysis where a high-energy phosphate compound is formed. • The 2-phosphoglycerate is dehydrated by the action of enolase to phosphoenolpyruvate(PEP). This compound is the phosphate ester of the enol tautomer of pyruvate. • This is a reversible reaction.
  • 30. STEP 10: TRANSFER OF PHOSPHATE FROM PEP to ADP • This last step is the irreversible transfer of high energy phosphoryl group from phosphoenolpuruvate to ADP. • This reaction is catalyzed by pyruvate kinase. • This is the 2nd substrate level phosphorylation reaction in glycolysis which yields ATP. • This is a non-oxidative phosphorylation reaction.
  • 32. OVERALL BALANCE SHEET OF GLYCOLYSIS • Each molecule of glucose gives 2 molecules of Glyceraldehyde-3-phosphate. Therefore , the total input of all 10 reactions can be summarized as: Glucose + 2ATP+ 2Pi+ 2NAD⁺+ 2H⁺+ 4ADP 2Pyruvate+ 2H⁺+ 4ATP+ 2H₂O+ 2NADH+ 2ADP On cancelling the common terms from the above equation, we get the net equation for Glycolysis:
  • 33. Glucose+ 2Pi+ 2ADP+ 2NAD⁺ 2Pyruvate+ 2NADH+ 2ATP+ 2H⁺ + 2H₂O THUS THE SIMULTANEOUS REACTIONS INVOLVED IN GLYCOLYSIS ARE: Glucose is oxidized to Pyruvate NAD⁺ is reduced to NADH ADP is phosphorylated to ATP
  • 34. • ENERGY YIELD IN GLYCOLYSIS: STEP NO. REACTION CONSUMPTION of ATP GAIN of ATP 1 Glucose glucose-6-phosphate 1 - 3 Fructose-6-phosphate fructose-1,6-biphosphate 1 - 7 1,3-diphosphoglycerate 3-phosphoglycerate - 1x2=2 10 Phosphoenolpyruvate pyruvate - 1x2=2 2 4 Net gain of ATP=4-2= 2