2018 sobacgiang1hdg

N

2018 sobacgiang1hdg

SỞ GD VÀ ĐT BẮC GIANG
ĐỀ THI THỬ LẦN 1
KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2018
Bài thi: TOÁN
Thời gian làm bài: 90 phút, không kể thời gian phát đề
BẢNG ĐÁP ÁN
1. B 2. A 3. B 4. C 5. D 6. C 7. D 8. B 9. C 10. C
11. A 12. B 13. B 14. B 15. D 16. D 17. D 18. D 19. D 20. B
21. B 22. D 23. C 24. B 25. B 26. D 27. C 28. C 29. A 30. A
31. A 32. A 33. A 34. C 35. B 36. A 37. A 38. C 39. B 40. D
41. B 42. A 43. D 44. D 45. C 46. C 47. B 48. A 49. C 50. A
HƯỚNG DẪN GIẢI CHI TIẾT
(Soạn bởi Nguyễn Minh Hiếu)
Câu 1. Trong không gian Oxyz, cho mặt phẳng (P) : 2x−z+1 = 0. Tọa độ một vectơ pháp tuyến của
(P) là
A. (2;−1;1). B. (2;0;−1). C. (2;−1;0). D. (2;0;1).
Lời giải. Chọn phương án B.
Mặt phẳng (P) : Ax+By+C +D = 0 có một vectơ pháp tuyến là −→n (A;B;C).
Câu 2. Thể tích khối lăng trụ có chiều cao bằng h và diện tích đáy bằng B là
A. V = Bh. B. V =
1
3
Bh. C. V =
1
6
Bh. D. V =
1
2
Bh.
Lời giải. Chọn phương án A.
Công thức tính thể tích khối lăng trụ là V = Bh.
Câu 3. Giới hạn lim
x→−∞
−1
2x+5
bằng
A. −
1
2
. B. 0. C. −∞. D. +∞.
Lời giải. Chọn phương án B.
Ta có lim
x→−∞
−1
2x+5
= lim
x→−∞
−1
x 2+
5
x
= 0.
Câu 4. Họ nguyên hàm của hàm số f(x) = 2cos2x là
A. −sin2x+C. B. −2sin2x+C. C. sin2x+C. D. 2sin2x+C.
Lời giải. Chọn phương án C.
Ta có 2cos2xdx = 2.
1
2
sin2x+C = sin2x+C.
Câu 5. Cho số phức z = −1 + 2i. Số phức z được biểu diễn bởi điểm nào dưới đây trên mặt phẳng
tọa độ?
A. P(1;2). B. M(−1;2). C. N(1;−2). D. Q(−1;−2).
Lời giải. Chọn phương án D.
Ta có z = (−1−2i), suy ra điểm biểu diễn z là Q(−1;−2).
Câu 6.
Cho hàm số y = f(x) có bảng biến thiên như
hình bên. Tọa độ điểm cực đại của đồ thị hàm
số y = f(x) là
A. (1;−4). B. x = 0.
C. (0;−3). D. (−1;−4).
x
y
y
−∞ −1 0 1 +∞
− 0 + 0 − 0 +
+∞+∞
−4−4
−3−3
−4−4
+∞+∞
Lời giải. Chọn phương án C.
Từ bảng biến thiên ta thấy điểm cực đại của đồ thị hàm số là (0;−3).
1
Câu 7. Phương trình đường tiệm cận ngang của đồ thị hàm số y = 2+
3
1−x
là
A. y = 3. B. y = −1. C. x = 1. D. y = 2.
Lời giải. Chọn phương án D.
Ta có lim
x→±∞
2+
3
1−x
= 2, suy ra đồ thị hàm số có đường tiệm cận ngang là y = 2.
Câu 8. Trong không gian Oxyz, cho điểm M(1;−2;3). Tọa độ hình chiếu vuông góc của M trên mặt
phẳng (Oyz) là
A. (1;−2;0). B. (0;−2;3). C. (1;−2;3). D. (1;0;3).
Lời giải. Chọn phương án B.
Tọa độ hình chiếu của M lên (Oyz) là (0;−2;3).
Câu 9. Đồ thị hàm số nào dưới đây có tiệm cận ngang?
A. y =
x
√
1−x2
. B. y =
x2 +x+1
x−2
.
C. y =
3x+1
x−1
. D. y = x3 −2x2 +3x+2.
Lời giải. Chọn phương án C.
Đồ thị hàm số y =
3x+1
x−1
có đường tiệm cận ngang là y = 3.
Câu 10.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số y = f(x) nghịch biến
trên khoảng nào dưới đây?
A. (1;+∞). B. (−∞;−2). C. (−1;0). D. (−2;1). x
y
O 1
−2
Lời giải. Chọn phương án C.
Từ đồ thị suy ra hàm số nghịch biến trên (−2;0) ⊃ (−1;0).
Câu 11. Trong không gian Oxyz, cho điểm M(2;0;−1) và đường thẳng d :
x−1
1
=
y+2
−1
=
z
2
. Mặt
phẳng đi qua M và vuông góc với d có phương trình là
A. x−y+2z = 0. B. x−2y−2 = 0. C. x+y+2z = 0. D. x−y−2z = 0.
Lời giải. Chọn phương án A.
Mặt phẳng vuông d nên nhận −→ud(1;−1;2) làm một vectơ pháp tuyến.
Vậy mặt phẳng có phương trình 1(x−2)−1(y−0)+2(z+1) = 0 ⇔ x−y+2z = 0.
Câu 12.
Bảng biến thiên trong hình bên là của hàm số nào
dưới đây?
A. y = x4 −2x2 −3. B. y = −x3 +3x+2.
C. y = x3 −3x+4. D. y =
x−1
2x−1
.
x
y
y
−∞ −1 1 +∞
− 0 + 0 −
+∞+∞
00
44
−∞−∞
Lời giải. Chọn phương án B.
Bảng biến thiên có hình dạng của hàm số bậc ba nên loại phương án A và D.
Từ bảng biến thiên ta có đồ thị đi xuống, suy ra hệ số a < 0 nên loại phương án C.
Câu 13. Giá trị nhỏ nhất của hàm số y = x3 −3x+1 trên đoạn [−1;4] là
A. 1. B. −1. C. 3. D. −4.
Lời giải. Chọn phương án B.
Ta có y = 3x2 −3; y = 0 ⇔ x = ±1; y(−1) = 3, y(1) = −1, y(4) = 53.
Vậy min
x→[−1;4]
y = y(1) = −1.
2
Câu 14. Có bao nhiêu số tự nhiên có hai chữ số sao cho các chữ số khác nhau và đều khác 0?
A. 92. B. A2
9. C. 90. D. C2
9.
Lời giải. Chọn phương án B.
Số thỏa mãn yêu cầu bài toán được lập từ 2 chữ số trong 9 chữ số từ 1 đến 9.
Do đó số các số thỏa mãn yêu cầu bài toán là A2
9.
Câu 15. Phương trình tiếp tuyến của đồ thị hàm số y = xlnx tại điểm có hoành độ bằng e là
A. y = 2x+3e. B. y = x+e. C. y = ex−2e. D. y = 2x−e.
Lời giải. Chọn phương án D.
Ta có y = lnx+1; y (e) = 2; y(e) = e.
Vậy phương trình tiếp tuyến là y = 2(x−e)+e = 2x−e.
Câu 16.
Cho hình hộp ABCD.A B C D có M,N,P lần lượt là trung điểm của các cạnh
A B ,A D ,C D (tham khảo hình vẽ bên). Góc giữa đường thẳng CP và mặt
phẳng (DMN) bằng
A. 30◦. B. 60◦. C. 45◦. D. 0◦.
A
B C
D
A
B
C
D
M
N
P
Lời giải. Chọn phương án D.
Ta có MN B D BD, suy ra (DMN) ≡ (MNDB).
Lại có PC MB ⇒ PC (DMN). Vậy góc giữa PC và (DMN) bằng 0◦.
Câu 17. Cho P = loga4 b2 với 0 < a 1 và b < 0. Mệnh đề nào dưới đây đúng?
A. P = −
1
2
loga(−b). B. P = 2loga(−b). C. P = −2loga(−b). D. P =
1
2
loga(−b).
Lời giải. Chọn phương án D.
Ta có P = loga4 b2 =
2
4
log|a| |b| =
1
2
loga(−b).
Câu 18. Tích phân
2
1
(x+3)2
dx bằng
A.
61
9
. B. 4. C. 61. D.
61
3
.
Lời giải. Chọn phương án D.
Sử dụng máy tính tính được kết quả
2
1
(x+3)2
dx =
61
3
.
Câu 19. Giá trị lớn nhất của hàm số y =
−x2 −4
x
trên đoạn
3
2
;4 là
A. −
25
6
. B. −2. C. −5. D. −4.
Lời giải. Chọn phương án D.
Dùng chức năng MODE. Nhập biểu thức
−X2 −4
X
.
Chọn START
3
2
; END 4; STEP 0,2. Dò được kết quả bằng −4.
Câu 20. Cho
1
−2
f(x)dx = 3. Tích phân
1
−2
[2 f(x)−1]dx bằng
A. −9. B. 3. C. −3. D. 5.
Lời giải. Chọn phương án B.
3
Ta có
1
−2
[2 f(x)−1]dx = 2
1
−2
f(x)dx−
1
−2
1dx = 2.3−3 = 3.
Câu 21. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x+m2
x+4
đồng biến trên mỗi khoảng
xác định của nó?
A. 5. B. 3. C. 1. D. 2.
Lời giải. Chọn phương án B.
Tập xác định D = R{−4}. Ta có y =
4−m2
(x+4)2
.
Hàm số đồng biến trên mỗi khoảng xác định ⇔ y > 0,∀x ∈ D ⇔ 4−m2 > 0 ⇔ −2 < m < 2.
Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Câu 22. Một người vay ngân hàng 500 triệu đồng với lãi suất 1,2%/ tháng để mua xe ô tô. Nếu mỗi
tháng người đó trả ngân hàng 10 triệu đồng và thời điểm bắt đầu trả cách thời điểm vay là đúng một
tháng. Hỏi sau ít nhất bao nhiêu tháng thì người đó trả hết nợ ngân hàng? Biết rằng lãi suất không
thay đổi trong thời gian trả nợ.
A. 70 tháng. B. 80 tháng. C. 85 tháng. D. 77 tháng.
Lời giải. Chọn phương án D.
Đặt T = 500 triệu đồng và r = 0,012.
Số tiền người đó còn nợ sau 1 tháng là T1 = T(1+r)−10.
Số tiền người đó còn nợ sau 2 tháng là T2 = T1(1+r)−10 = T(1+r)2 −10[(1+r)+1].
Số tiền người đó còn nợ sau 3 tháng là T3 = T2(1+r)−10 = T(1+r)3 −10[(1+r)2 +(1+r)+1].
···
Số tiền người đó còn nợ sau n tháng là Tn = T(1+r)n −10[(1+r)n−1 +···+(1+r)+1].
Biến đổi ta dược Tn = T(1+r)n −
10[(1+r)n −1]
r
=
(Tr −10)(1+r)n +10
r
.
Người đó trả hết nợ khi Tn = 0 ⇔ (Tr −10)(1+r)n +10 = 0 ⇔ (1+r)n =
10
10−Tr
.
Thay số vào ta có 1,012n =
10
4
⇔ n = log1,012
5
2
≈ 76,815.
Vậy sau 77 tháng người đó trả hết nợ ngân hàng.
Câu 23. Có bao nhiêu giá trị nguyên không âm của tham số m để hàm số y = x4 − 2mx2 − 3m + 1
đồng biến trên (1;2)?
A. 4. B. 1. C. 2. D. 3.
Lời giải. Chọn phương án C.
Ta có y = 4x3 −4mx = 4x(x2 −m). Hàm số đồng biến trên (1;2) ⇔ y 0,∀x ∈ (1;2).
Điều này tương đương với x2 −m 0,∀x ∈ (1;2) ⇔ m x2,∀x ∈ (1;2) ⇔ m 1.
Vậy có 2 giá trị nguyên không âm m = 0 và m = 1 thỏa mãn yêu cầu bài toán.
Câu 24. Cho x,y là các số thực thỏa mãn
log2 x
log2(xy)+1
=
log2 y
log2(xy)−1
= log2 x + log2 y. Khi đó giá
trị của x+y bằng
A. 2. B. 2 hoặc
4
√
8+
1
4
√
2
. C. 2+
1
4
√
2
. D. 2 hoặc
1
2
.
Lời giải. Chọn phương án B.
Đặt a = log2 x, b = log2 y với a+b ±1, ta có



a
a+b+1
=
b
a+b−1
(1)
a
a+b+1
= a+b (2)
.
Ta có (1) ⇔ a2 +ab−a = ab+b2 +b ⇔ a2 −b2 = a+b ⇔ (a+b)(a−b−1) = 0 ⇔
a+b = 0
a = b+1
.
Với a+b = 0 thay vào (2) được a = 0 ⇒ b = 0, suy ra x = y = 1 ⇒ x+y = 2.
Với a = b+1 thay vào (2) được
b+1
b+1+b+1
= b+1+b ⇔
1
2
= 2b+1 ⇔ b = −
1
4
⇒ a =
3
4
.
4
Từ đó suy ra x =
4
√
8,y =
1
4
√
2
⇒ x+y =
4
√
8+
1
4
√
2
. Vậy x+y = 2 hoặc x+y =
4
√
8+
1
4
√
2
Câu 25.
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng
biến thiên như hình bên. Số nghiệm của phương trình
2[f(x)]2
−3 f(x)+1 = 0 là
A. 2. B. 3. C. 6. D. 0.
x
y
y
−∞ −1 1 +∞
+ 0 − 0 +
11
33
1
3
1
3
11
Lời giải. Chọn phương án B.
Ta có 2[f(x)]2
−3 f(x)+1 = 0 ⇔
f(x) = 1
f(x) =
1
2
.
Từ bảng biến thiên ta thấy phương trình f(x) = 1 có 1 nghiệm x1 ∈ (−1;1).
Lại thấy phương trình f(x) =
1
2
có 1 nghiệm x2 ∈ (−1;1) và 1 nghiệm x3 ∈ (1;+∞).
Hơn nữa trên (−1;1) hàm số nghịch biến và f(x1) f(x2) nên x1 x2.
Vậy phương trình có 3 nghiệm.
Câu 26.
Cho lăng trụ đều ABC.A B C có tất cả các cạnh đều bằng a (tham khảo hình
vẽ bên). Khoảng cách giữa hai đường thẳng AC và BB bằng
A.
2a
√
5
. B.
√
5a
3
. C.
a
√
5
. D.
√
3a
2
.
A
B
C
A
B
C
Lời giải. Chọn phương án D.
Gọi H trung điểm AC, ta có
BH⊥AC
BH⊥BB
. Vậy d(AC,BB ) = BH =
a
√
3
2
.
Câu 27. Một lô hàng gồm 30 sản phẩm trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu
nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt.
A.
6
203
. B.
57
203
. C.
197
203
. D.
153
203
.
Lời giải. Chọn phương án C.
Lấy ngẫu nhiên 3 sản phẩm trong lô hàng nên số phần tử không gian mẫu là C3
30 = 4060.
Lấy 3 sản phẩm có ít nhất một sản phẩm tốt có C1
20 ×C2
10 +C2
20 ×C1
10 +C3
20 = 3940.
Vậy xác suất cần tìm là
3940
4060
=
197
203
.
Câu 28.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA
vuông góc với đáy và SA = a (tham khảo hình vẽ bên). Góc giữa
hai mặt phẳng (SAB) và (SCD) bằng
A. 30◦. B. 60◦. C. 45◦. D. 90◦.
A
B C
D
S
Lời giải. Chọn phương án C.
Ta có
AB⊥SA
AB⊥AD
⇒ AB⊥(SAD) ⇒ (SAB)⊥(SAD).
Lại có CD AB ⇒ CD⊥(SAD) ⇒ (SCD)⊥(SAD).
5
Từ đó suy ra góc giữa (SAB) và (SCD) là ASD = 45◦.
Câu 29. Trong không gian Oxyz, cho điểm M(2;1;0) và đường thẳng d :
x−1
2
=
y+1
1
=
z
−1
.
Phương trình tham số của đường thẳng đi qua M, cắt và vuông góc với d là
A.



x = 2+t
y = 1−4t
z = −2t
. B.



x = 2−t
y = 1+t
z = t
. C.



x = 1+t
y = −1−4t
z = 2t
. D.



x = 2+2t
y = 1+t
z = −t
.
Lời giải. Chọn phương án A.
Giả sử đường thẳng cắt d tại A, ta có A(1+2t;−1+t;−t) ⇒
−→
MA = (−1+2t;−2+t;−t).
Đường thẳng vuông góc với d nên 2(−1+2t)+(−2+t)−(−t) = 0 ⇔t =
2
3
⇒
−→
MA =
1
3
;−
4
3
;−
2
3
.
Hay đường thẳng có vectơ chỉ phương −→u = (1;−4;−2) nên có phương trình



x = 2+t
y = 1−4t
z = −2t
.
Câu 30. Với n là số nguyên dương thỏa mãn C1
n +C3
n = 13n, hệ số của số hạng chứa x5 trong khai
triển biểu thức x2 +
1
x3
n
bằng
A. 120. B. 45. C. 252. D. 210.
Lời giải. Chọn phương án A.
Chọn MODE 7. Nhập vào máy tính biểu thức XC1+XC3−13X.
Chọn START3; END 20; STEP 1, dò được kết quả n = 10.
Khi đó x2 +
1
x3
10
=
10
∑
k=0
Ck
10(x2)10−k.
1
x3
k
=
10
∑
k=0
Ck
10x20−5k.
Số hạng chứa x5 khi 20−5k = 5 ⇔ k = 3. Vậy hệ số của số hạng chứa x5 là C3
10 = 120.
Câu 31. Cho
1
1
3
x
3x+
√
9x2 −1
dx = a+b
√
2, với a,b là các số hữu tỷ. Khi đó giá trị của a là
A.
26
27
. B. −
26
27
. C. −
27
26
. D. −
25
27
.
Lời giải. Chọn phương án A.
Ta có
1
1
3
x
3x+
√
9x2 −1
dx =
1
1
3
x 3x− 9x2 −1 dx =
1
1
3
3x2
dx−
1
1
3
x 9x2 −1dx =
26
27
−I1.
Đặt u =
√
9x2 −1 ⇔ u2 = 9x2 −1 ⇒ 2udu = 18xdx, ta có I1 =
1
9
2
√
2
0
u2
du =
u3
27
2
√
2
0
=
16
√
2
27
.
Do đó
1
1
3
x
3x+
√
9x2 −1
dx =
26
27
−
16
27
√
2. Vậy a =
26
27
.
Câu 32. Tập hợp nào dưới đây chứa tất cả các giá trị của tham số m sao cho giá trị lớn nhất của hàm
số y = x2 −2x+m trên đoạn [−1;2] bằng 5?
A. (−5;−2)∪(0;3). B. (0;+∞). C. (−6;−3)∪(0;2). D. (−4;3).
Lời giải. Chọn phương án A.
Xét f(x) = x2 −2x+m trên [−1;2] có f (x) = 2x−2; f (x) = 0 ⇔ x = 1.
Ta có f(−1) = m+3, f(1) = m−1, f(2) = m. Do đó max
[−1;2]
f(x) = m+3 và min
[−1;2]
f(x) = m−1.
Từ đó ta có max
[−1;2]
y = max{|m+3|,|m−1|}.
6
TH1: m
1
2
, ta có max
[−1;2]
y = |m+3| ⇔ |m+3| = 5 ⇔
m = 2
m = −8 (loại)
.
TH2: m <
1
2
, ta có max
[−1;2]
y = |m−1| ⇔ |m−1| = 5 ⇔
m = 6 (loại)
m = −4
.
Vậy (−5;−2)∪(0;3) ⊃ {−4;2}.
Câu 33.
Cho (H) là hình phẳng giới hạn bởi đồ thị các hàm số y = e,y = ex và
y = (1−e)x+1 (tham khảo hình vẽ bên). Diện tích của (H) là
A.
e+1
2
. B. e+
1
2
. C. e−
1
2
. D.
e−1
2
.
x
y
O
y = e
y = ex
y = (1−e)x+1
1
Lời giải. Chọn phương án A.
Ta có ex = e ⇔ x = 1; ex = (1−e)x+1 ⇔ x = 0; (1−e)x+1 = e ⇔ x = −1.
Khi đó diện tích của (H) là S =
0
−1
(e−(1−e)x−1)dx+
1
0
(e−ex
)dx.
Ta có
0
−1
(e−(1−e)x−1)dx =
0
−1
(e−1)(x+1)dx = (e−1)
x2
2
+x
0
−1
=
e−1
2
.
Lại có
1
0
(e−ex
)dx = (ex−ex
)
1
0
= 1. Vậy S =
e−1
2
+1 =
e+1
2
.
Câu 34. Cho hàm số y = f(x) có đúng ba điểm cực trị là −2, −1, 0 và có đạo hàm liên tục trên R.
Khi đó hàm số y = f x2 −2x có bao nhiêu điểm cực trị?
A. 4. B. 6. C. 3. D. 5.
Lời giải. Chọn phương án C.
Ta có f(x2 −2x) = (2x−2)f (x2 −2x); f(x2 −2x) = 0 ⇔
x = 1
f (x2 −2x) = 0
.
Theo giả thiết ta có f (x2 −2x) = 0 ⇔


x2 −2x = −2
x2 −2x = −1
x2 −2x = 0
⇔


x = 1
x = 0
x = 2
.
Vậy hàm số y = f(x2 −2x) có 3 điểm cực trị.
Câu 35. Cho số phức z thỏa mãn |z|−2z = −7+3i+z. Giá trị |z| bằng
A. 3. B. 5. C.
25
4
. D.
13
4
.
Lời giải. Chọn phương án B.
Gọi z = a+bi (a,b ∈ R), ta có |z|−2z = −7+3i+z ⇔
√
a2 +b2 −2(a−bi) = −7+3i+a+bi.
Rút gọn ta được
√
a2 +b2 −3a+7+(b−3)i = 0 ⇔
√
a2 +9 = 3a−7 (1)
b = 3
.
Ta có (1) ⇔
3a−7 0
a2 +9 = 9a2 −42a+49 = 0
⇔ a = 4. Suy ra z = 4+3i. Vậy |z| = 5.
Câu 36. Cho hàm số f(x) xác định trên R{−1;1} và thỏa mãn f (x) =
1
x2 −1
, f(−3) + f(3) = 0
và f −
1
2
+ f
1
2
= 2. Giá trị của f(0)+ f(4) bằng
7
A. 1+
1
2
ln
3
5
. B.
1
2
ln
3
5
. C. 1+ln
3
5
. D. 2+ln
3
5
.
Lời giải. Chọn phương án A.
Ta có
1
x2 −1
dx =
1
(x−1)(x+1)
dx =
1
2
1
x−1
−
1
x+1
dx =
1
2
ln
x−1
x+1
+C.
Vì f(x) xác định trên R{−1;1} nên f(x) =



1
2
ln
x−1
x+1
+C1 khi |x| > 1
1
2
ln
1−x
x+1
+C2 khi |x| < 1
.
Theo giả thiết f(−3)+ f(3) = 0 ⇔
1
2
ln2+C1 +
1
2
ln
1
2
+C1 = 0 ⇔ 2C1 = 0 ⇔ C1 = 0.
Lại có f −
1
2
+ f
1
2
= 2 ⇔
1
2
ln3+C2 +
1
2
ln
1
3
+C2 = 2 ⇔ 2C2 = 2 ⇔ C2 = 1.
Vậy f(0)+ f(4) = 1+
1
2
ln
3
5
.
Câu 37. Cho hình chóp đa giác đều có các cạnh bên bằng a và tạo với mặt đáy của hình chóp một
góc 30◦. Thể tích của khối cầu ngoại tiếp hình chóp là
A.
4πa3
3
. B. 4πa3. C. 4πa3
√
3. D.
4πa3
√
3
3
.
Lời giải. Chọn phương án A.
Gỉa sử hình chóp có đỉnh S, tâm đáy O và một cạnh bên SA.
Ta có góc giữa SA và đáy là SAO = 30◦, suy ra SO = SA.sin30◦ =
a
2
.
Gọi M trung điểm SA, kẻ MI⊥SA, I ∈ SO, ta có I là tâm mặt cầu ngoại tiếp hình chóp.
Khi đó SMI ∼ SOA, suy ra
SI
SA
=
SM
SO
⇒ SI =
SM.SA
SO
= a.
Vậy thể tích khối cầu ngoại tiếp hình chóp là V =
4
3
πa3.
Câu 38. Cho hàm số y = x x2 −3 có đồ thị (C). Có bao nhiêu điểm M thuộc đồ thị (C) thỏa mãn
tiếp tuyến tại M của (C) cắt (C) và trục hoành lần lượt tại hai điểm phân biệt A (khác M) và B sao cho
M là trung điểm của đoạn thẳng AB?
A. 0. B. 1. C. 2. D. 3.
Lời giải. Chọn phương án C.
Ta có M ∈ (C) ⇒ M(x0;x3
0 −3x0); y = 3x2 −3 ⇒ y (x0) = 3x2
0 −3.
Phương trình tiếp tuyến tại M là y = (3x2
0 −3)(x−x0)+x3
0 −3x0.
Khi y = 0 ta có (3x2
0 −3)(x−x0)+x3
0 −3x0 = 0 ⇔ x =
2x3
0
3x2
0 −3
.
Suy ra tiếp tuyến cắt Ox tại B
2x3
0
3x2
0 −3
;0 .
Phương trình hoành độ giao điểm giữa tiếp tuyến và (C) là
(3x2
0 −3)(x−x0)+x3
0 −3x0 = x3
−3x ⇔ (3x2
0 −3)(x−x0) = (x−x0)(x2
+x0x+x2
0 −3)
⇔ 3x2
0 = x2
+x0x+x2
0
⇔ (x−x0)(x+2x0) = 0
⇔ x = −2x0
Suy ra tiếp tuyến cắt (C) tại điểm thứ hai A −2x0;−8x3
0 +6x0 , với x0 0.
Ta có M trung điểm AB nên −8x3
0 +6x0 = 2(x3
0 −3x0) ⇔ x = ±
6
5
.
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán.
Câu 39. Có bao nhiêu giá trị nguyên nhỏ hơn 10 của tham số m để phương trình m+
√
m+ex = ex
có nghiệm thực?
8
A. 9. B. 10. C. 8. D. 7.
Lời giải. Chọn phương án B.
Đặt t =
√
m+ex 0, ta có hệ
m+t = e2x (1)
m+ex = t2 (2)
.
Trừ theo vế (1) và (2) được t −ex = e2x −t2 ⇔ (ex −t)(ex +t +1) = 0 ⇔ t = ex.
Với t = ex, thay vào (1) được m = t2 −t = t −
1
2
2
−
1
4
−
1
4
.
Do đó phương trình có nghiệm khi và chỉ khi m −
1
4
.
Vậy có 10 giá trị của m thỏa mãn yêu cầu bài toán.
Câu 40. Cho phương trình log0,5(m+6x)+log2 3−2x−x2 = 0. Có bao nhiêu giá trị nguyên dương
của tham số m để phương trình đã cho có nghiệm thực?
A. 15. B. 18. C. 23. D. 17.
Lời giải. Chọn phương án D.
Ta có PT⇔
3−2x−x2 > 0
m+6x = 3−2x−x2
⇔
−3 < x < 1
m = −x2 −8x+3
.
Xét f(x) = −x2 −8x+3 trên (−3;1) có f (x) = −2x−8 < 0,∀x ∈ (−3;1).
Suy ra f(x) nghịch biến trên (−3;1).
Do đó phương trình đã cho có nghiệm ⇔ f(1) < m < f(−3) ⇔ −6 < m < 18.
Vậy có 17 giá trị nguyên dương của m thỏa mãn yêu cầu bài toán.
Câu 41. Cho hàm số f(x) = a2 +1 ln2017
x+
√
1+x2 + bxsin2018
x + 2 với a,b là các số thực
và f 7log5 = 6. Giá trị f −5log7 bằng
A. 4. B. −2. C. 2. D. 6.
Lời giải. Chọn phương án B.
Xét hàm số g(x) = a2 +1 ln2017
x+
√
1+x2 +bxsin2018
x có tập xác định R. Lại có
g(−x) = a2
+1 ln2017
−x+ 1+x2 −bxsin2018
x
= − a2
+1 ln2017
x+ 1+x2 −bxsin2018
x
= −g(x),∀x ∈ R
Suy ra g(x) là hàm số lẻ. Do đó g −5log7 = −g 5log7 = −g 7log5 = − f 7log5 −2 = −4.
Vậy f −5log7 = g −5log7 +2 = −4+2 = −2.
Câu 42. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 0 và
1
0
f (x)
2
dx =
1
0
(x+1)ex
f(x)dx =
e2 −1
4
. Tích phân
1
0
f(x)dx bằng
A. e−2. B. 2−e. C.
e−1
2
. D.
e
2
.
Lời giải. Chọn phương án A.
Đặt
u = f(x)
dv = (x+1)exdx
⇒
du = f (x)dx
v = xex
.
Ta có
1
0
(x+1)ex
f(x)dx = xex
f(x)
1
0
−
1
0
xex
f (x)dx ⇔
1
0
xex
f (x)dx =
1−e2
4
.
9
Lại có
1
0
x2
e2x
dx =
x2
2
e2x
1
0
− xe2x
dx =
e2
2
−
x
2
e2x
1
0
+
1
4
e2x
1
0
=
e2 −1
4
.
Do đó
1
0
f (x)
2
dx+2
1
0
xex
f (x)dx+
1
0
x2
e2x
dx = 0 ⇔
1
0
f (x)+xex 2
dx = 0.
Từ đó ta có f (x)+xex = 0 ⇔ f (x) = −xex ⇒ f(x) = (1−x)ex +C.
Lại có f(1) = 0 nên C = 0, suy ra f(x) = (1−x)ex. Vậy
1
0
f(x)dx =
1
0
(1−x)ex
dx = e−2.
Câu 43. Trong không gian Oxyz, cho tam giác nhọn ABC có H(2;2;1), K −
8
3
;
4
3
;
8
3
, O lần lượt là
hình chiếu vuông góc của A,B,C trên các cạnh BC,AC,AB. Đường thẳng đi qua A và vuông góc với
(ABC) có phương trình là
A.
x+ 4
9
1
=
y− 17
9
−2
=
z− 19
9
2
. B.
x− 8
3
1
=
y− 2
3
−2
=
z+ 2
3
2
.
C.
x
1
=
y−6
−2
=
z−6
2
. D.
x+4
1
=
y+1
−2
=
z−1
2
.
Lời giải. Chọn phương án D.
Ta có OH = 3, OK = 4, HK = 5. Gọi I là trực tâm ABC.
Tứ giác AOIK nội tiếp suy ra KOC = HAC.
Tứ giác AOHC nội tiếp suy ra HOC = HAC.
Từ đó suy ra KOC = HOC, hay CO là phân giác trong góc HOK.
Chứng minh tương tự ta có BK,AH là phân giác trong OKH và OHK.
Từ đó suy ra I là tâm đường tròn nội tiếp OHK.
Khi đó OH.
−→
IK +OK.
−→
IH +KH.
−→
IO =
−→
0 .
A
B CH
K
O
I
Suy ra



xI =
OH.xK +OK.xH +KH.xO
OH +OK +KH
yI =
OH.yK +OK.yH +KH.yO
OH +OK +KH
zI =
OH.zK +OK.zH +KH.zO
OH +OK +KH
⇔



xI = 0
yI = 1
zI = 1
⇒ I(0;1;1).
Khi đó
−→
IH = (2;1;0) nên IH có phương trình



x = 2+2t
y = 2+t
z = 1
.
Ta có A ∈ IH ⇒ A(2+2t;2+t;1) ⇒
−→
OA = (2+2t;2+t;1),
−→
OI = (0;1;1).
Vì OI⊥AB nên
−→
OA.
−→
OI = 0 ⇔ 0(2+2t)+(2+t)+1 = 0 ⇔ t = −3 ⇒ A(−4;−1;1).
Khi đó AO = (4;1;−1),
−→
AH = (6;3;0) ⇒
−→
AO,
−→
AH = (3;−6;6).
Suy ra đường thẳng có một vectơ chỉ phương −→u = (1;−2;2).
Vậy đường thẳng có phương trình
x+4
1
=
y+1
−2
=
z−1
2
.
Câu 44. Trong không gian Oxyz, cho điểm A(2;1;3) và mặt phẳng (P) : x + my + (2m + 1)z − (2 +
m) = 0, với m là tham số. Gọi điểm H(a;b;c) là hình chiếu vuông góc của điểm A trên (P). Khoảng
cách từ A đến (P) lớn nhất khi a+b bằng
A. 2. B. −
1
2
. C. 0. D.
3
2
.
Lời giải. Chọn phương án D.
Ta có x+my+(2m+1)z−(2+m) = 0 ⇔ m(y+2z−1)+x+z−2 = 0. (1)
Phương trình (1) có nghiệm với mọi m ∈ R khi và chỉ khi
y+2z−1
x+z−2 = 0
.
10
Đặt z = t, ta có x = 2−t, y = 1−2t, suy ra d :



x = 2−t
y = 1−2t
z = t
luôn nằm trong (P).
Gọi K là hình chiếu của A trên d, ta có K(2−t;1−2t;t) ⇒
−→
AK = (−t;−2t;t −3).
Lại có
−→
AK.−→ud = 0 ⇔ t +4t +t −3 = 0 ⇔ t =
1
2
⇒ K
3
2
;0;
1
2
.
Khi đó AH AK, do đó AH lớn nhất khi H ≡ K, hay H
3
2
;0;
1
2
. Vậy a+b =
3
2
.
Câu 45. Cho hình chóp S.ABC có SA = SB = SC = 3, tam giác ABC vuông cân tại B và AC = 2
√
2.
Gọi M,N lần lượt là trung điểm của AC và BC. Trên hai cạnh SA,SB lấy các điểm P,Q tương ứng sao
cho SP = 1,SQ = 2. Thể tích của khối tứ diện MNPQ là
A.
√
3
12
. B.
√
34
12
. C.
√
7
18
. D.
√
34
144
.
Lời giải. Chọn phương án C.
Gọi M trung điểm AC, ta có MA = MB = MC.
Lại có SA = SB = SC, suy ra SM⊥(ABC).
Ta có MB =
1
2
AC =
√
2, SM =
√
SA2 −AM2 =
√
7.
Chọn hệ trục tọa độ như hình vẽ.
Ta có M(0;0;0),B 0;
√
2;0 ,C −
√
2;0;0 ,A
√
2;0;0 ,S 0;0;
√
7 .
Suy ra N −
√
2
2
;
√
2
2
;0 ,P
√
2
3
;0;
2
√
7
3
,Q
0;2
√
2
3
;
√
7
3
.
Khi đó
−−→
MN = −
√
2
2
;
√
2
2
;0 ,
−→
MP =
√
2
3
;0;
2
√
7
3
.
A B
C
S
M N
P
Q
x y
z
Suy ra
−−→
MN,
−→
MP =
√
14
3
;
√
14
3
;−
1
3
. Lại có
−−→
MQ =
0;2
√
2
3
;
√
7
3
.
Vậy VMNPQ =
1
6
−−→
MN,
−→
MP .
−−→
MQ =
√
7
18
.
Câu 46. Trong không gian Oxyz, cho mặt cầu (S) : (x − 1)2 + (y + 1)2 + (z − 2)2 = 16 và điểm
A(1;2;3). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt (S) theo ba đường
tròn. Tổng diện tích của ba hình tròn tương ứng đó là
A. 10π. B. 36π. C. 38π. D. 33π.
Lời giải. Chọn phương án C.
Mặt cầu (S) có tâm I(1;−1;2) và bán kính R = 4.
Xét ba mặt phẳng đi qua A và song song với các trục tọa độ lần lượt có phương trình là (P1) : x = 1,
(P2) : y = 2 và (P3) : z = 3.
Khi đó (P1),(P2) và (P3) đôi một vuông góc nên thỏa mãn yêu cầu bài toán.
Ta có d(I,(P1)) = 0, d(I,(P2)) = 3, d(I,(P3)) = 1.
Suy ra các đường tròn giao tuyến lần lượt có bán kính là r1 =
√
16−0 = 4, r2 =
√
16−9 =
√
7,
r3 =
√
16−1 =
√
15.
Vậy tổng diện tích 3 hình tròn tương ứng là πr2
1 +πr2
2 +πr2
3 = 16π +7π +15π = 38π.
Câu 47. Cho hàm số y = f(x) liên tục trên [0;+∞) và
x2
0
f(t)dt = xsin(πx). Giá trị f(4) bằng
A.
π −1
4
. B.
π
2
. C.
1
2
. D.
π
4
.
Lời giải. Chọn phương án B.
11
Ta có
x2
0
f(t)dt = xsin(πx) ⇔ F(x2
)−F(0) = xsin(πx).
Lấy đạo hàm hai vế ta được 2xF (x2) = sin(πx)+πxcos(πx) ⇒ f(x2) =
sin(πx)+πxcos(πx)
2x
.
Với x = 2 ta có f(4) =
sin(2π)+2π cos(2π)
4
=
π
2
.
Với x = −2 ta có f(4) =
sin(−2π)−2π cos(−2π)
−4
=
π
2
. Vậy f(4) =
π
2
.
Câu 48. Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao
cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy ?
A. 145152. B. 108864. C. 217728. D. 80640.
Lời giải. Chọn phương án A.
Để giữa hai học sinh lớp A không có học sinh lớp B nào ta có các trường hợp sau:
TH1: Hai học sinh lớp A đứng cạnh nhau có 8×2!×7! = 80640 cách;
TH2: Hai học sinh lớp A đứng cách nhau 1 vị trí có 7×2!×A1
4 ×6! = 40320 cách;
TH3: Hai học sinh lớp A đứng cách nhau 2 vị trí có 6×2!×A2
4 ×5! = 17280 cách;
TH4: Hai học sinh lớp A đứng cách nhau 3 vị trí có 5×2!×A3
4 ×4! = 5760 cách;
TH5: Hai học sinh lớp A đứng cách nhau 4 vị trí có 4×2!×A4
4 ×3! = 1152 cách.
Vậy số cách xếp hàng là 80640+40320+17280+5760+1152 = 145152.
Câu 49. Cho hai số phức z,w thỏa mãn |z−3−2i| 1 và |w+1+2i| |w−2−i|. Giá trị nhỏ nhất
của |z−w| bằng
A.
2
√
2+1
2
. B.
3
√
2−2
2
. C.
5
√
2−2
2
. D.
√
2+1.
Lời giải. Chọn phương án C.
Dễ thấy tập hợp biểu diễn các số phức z là hình tròn tâm I(3;2) và bán kính R = 1.
Gọi w = x+yi (x,y ∈ R), ta có (x+1)2 +(y+2)2 (x−2)2 +(y−1)2 ⇔ x+y 0.
Do đó tập hợp các điểm biểu diễn số phức w là nửa mặt phẳng bờ d : x+y = 0.
Từ đó suy ra min|z−w| = d(I,d)−R =
|3+2|
√
1+1
−1 =
5
√
2−1
2
.
Câu 50. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC = a
√
3, SA = a và SA
vuông góc với đáy ABCD. Gọi α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC). Giá trị của
sinα bằng
A.
√
2
4
. B.
√
3
5
. C.
√
7
8
. D.
√
3
2
.
Lời giải. Chọn phương án A.
Đặt a = 1 và chọn hệ trục tọa độ như hình vẽ.
Ta có B(1;0;0),D(0;
√
3;0) ⇒
−→
BD = (−1;
√
3;0).
Lại có S(0;0;1),C(1;
√
3;0) ⇒
−→
SB = (1;0;−1),
−→
SC = (1;
√
3;−1).
Suy ra
−→
SB,
−→
SC = (
√
3;0;
√
3).
Vậy sinα =
|−
√
3|
√
1+3.
√
3+3
=
√
2
4
.
A
B C
D
S
x
y
z
——— Hết ———
12

Recomendados

2018 dangthuchua1hdg por
2018 dangthuchua1hdg2018 dangthuchua1hdg
2018 dangthuchua1hdgnmhieupdp
5.5K vistas13 diapositivas
Hướng Dẫn Giải Đề TK 2018 Môn Toán por
Hướng Dẫn Giải Đề TK 2018 Môn ToánHướng Dẫn Giải Đề TK 2018 Môn Toán
Hướng Dẫn Giải Đề TK 2018 Môn Toánnmhieupdp
12.8K vistas13 diapositivas
2018 sonamdinh2hdg por
2018 sonamdinh2hdg2018 sonamdinh2hdg
2018 sonamdinh2hdgnmhieupdp
7.3K vistas12 diapositivas
Hướng Dẫn Giải Đề Thi Thử 2018 Môn Toán Chuyên ĐHV lần 1 por
Hướng Dẫn Giải Đề Thi Thử 2018 Môn Toán Chuyên ĐHV lần 1Hướng Dẫn Giải Đề Thi Thử 2018 Môn Toán Chuyên ĐHV lần 1
Hướng Dẫn Giải Đề Thi Thử 2018 Môn Toán Chuyên ĐHV lần 1nmhieupdp
9.1K vistas15 diapositivas
Hướng Dẫn Giải Đề Thi Thử Chuyên ĐH Vinh lần 1 năm 2018 por
Hướng Dẫn Giải Đề Thi Thử Chuyên ĐH Vinh lần 1 năm 2018Hướng Dẫn Giải Đề Thi Thử Chuyên ĐH Vinh lần 1 năm 2018
Hướng Dẫn Giải Đề Thi Thử Chuyên ĐH Vinh lần 1 năm 2018nmhieupdp
2.5K vistas15 diapositivas
Đề Tham Khảo 2018 Môn Toán por
Đề Tham Khảo 2018 Môn ToánĐề Tham Khảo 2018 Môn Toán
Đề Tham Khảo 2018 Môn Toánnmhieupdp
1.2K vistas7 diapositivas

Más contenido relacionado

La actualidad más candente

Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn Toán por
Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn ToánĐề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn Toán
Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn ToánBẢO Hí
3K vistas121 diapositivas
2018 dangthuchua1 por
2018 dangthuchua12018 dangthuchua1
2018 dangthuchua1nmhieupdp
84 vistas5 diapositivas
2018 sobacgiang1 por
2018 sobacgiang12018 sobacgiang1
2018 sobacgiang1nmhieupdp
94 vistas5 diapositivas
Thi thử toán bỉm sơn th 2012 lần 2 por
Thi thử toán bỉm sơn th 2012 lần 2Thi thử toán bỉm sơn th 2012 lần 2
Thi thử toán bỉm sơn th 2012 lần 2Thế Giới Tinh Hoa
3.2K vistas7 diapositivas
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017 por
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017haic2hv.net
2.8K vistas11 diapositivas
Bo de thi lop 10 mon toan co dap an por
Bo de thi lop 10 mon toan co dap anBo de thi lop 10 mon toan co dap an
Bo de thi lop 10 mon toan co dap anTommy Bảo
93.4K vistas41 diapositivas

La actualidad más candente(20)

Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn Toán por BẢO Hí
Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn ToánĐề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn Toán
Đề +đáp án (chính thức) của bộ Giáo dục. Thi THPT Quốc gia 2018 môn Toán
BẢO Hí3K vistas
2018 dangthuchua1 por nmhieupdp
2018 dangthuchua12018 dangthuchua1
2018 dangthuchua1
nmhieupdp84 vistas
2018 sobacgiang1 por nmhieupdp
2018 sobacgiang12018 sobacgiang1
2018 sobacgiang1
nmhieupdp94 vistas
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017 por haic2hv.net
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017
Đề luyện thi trắc nghiệm môn Toán lần 2 THPT Quốc gia 2017
haic2hv.net 2.8K vistas
Bo de thi lop 10 mon toan co dap an por Tommy Bảo
Bo de thi lop 10 mon toan co dap anBo de thi lop 10 mon toan co dap an
Bo de thi lop 10 mon toan co dap an
Tommy Bảo93.4K vistas
đề Và đáp án thi thử cvp truonghocso.com por Thế Giới Tinh Hoa
đề Và đáp án thi thử cvp   truonghocso.comđề Và đáp án thi thử cvp   truonghocso.com
đề Và đáp án thi thử cvp truonghocso.com
Thế Giới Tinh Hoa12.8K vistas
Đề thi thử THPT Quốc gia 2017 môn Toán lần 5 có đáp án - Nhóm Toán por haic2hv.net
Đề thi thử THPT Quốc gia 2017 môn Toán lần 5 có đáp án - Nhóm ToánĐề thi thử THPT Quốc gia 2017 môn Toán lần 5 có đáp án - Nhóm Toán
Đề thi thử THPT Quốc gia 2017 môn Toán lần 5 có đáp án - Nhóm Toán
haic2hv.net 3.4K vistas
Đề Thi Thử Chuyên ĐH Vinh Lần 1 por nmhieupdp
Đề Thi Thử Chuyên ĐH Vinh Lần 1Đề Thi Thử Chuyên ĐH Vinh Lần 1
Đề Thi Thử Chuyên ĐH Vinh Lần 1
nmhieupdp175 vistas
Toán DH (THPT Lê Lợi) por Van-Duyet Le
Toán DH (THPT Lê Lợi)Toán DH (THPT Lê Lợi)
Toán DH (THPT Lê Lợi)
Van-Duyet Le2.4K vistas
Đề Thi THPTQG Toán 2017 Mã Đề 101 por nmhieupdp
Đề Thi THPTQG Toán 2017 Mã Đề 101Đề Thi THPTQG Toán 2017 Mã Đề 101
Đề Thi THPTQG Toán 2017 Mã Đề 101
nmhieupdp1.8K vistas
5 đề trắc nghiệm toán 12 khảo sát hàm số - iHoc.me | Tài liệu toán học por haic2hv.net
5 đề trắc nghiệm toán 12 khảo sát hàm số - iHoc.me | Tài liệu toán học5 đề trắc nghiệm toán 12 khảo sát hàm số - iHoc.me | Tài liệu toán học
5 đề trắc nghiệm toán 12 khảo sát hàm số - iHoc.me | Tài liệu toán học
haic2hv.net 9.7K vistas
Toan pt.de028.2012 por BẢO Hí
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
BẢO Hí872 vistas
3 Đề thi thử môn toán 2015 from http://toanphothong.com/ por Vui Lên Bạn Nhé
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
Vui Lên Bạn Nhé891 vistas
De toan b_2012 por Summer Song
De toan b_2012De toan b_2012
De toan b_2012
Summer Song2.2K vistas
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang por haic2hv.net
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
3 đề thi thử môn Toán năm 2017 có đáp án chi tiết - Mẫn Ngọc Quang
haic2hv.net 2.9K vistas
2018 sonamdinh2 por nmhieupdp
2018 sonamdinh22018 sonamdinh2
2018 sonamdinh2
nmhieupdp52 vistas
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ... por Hoàng Thái Việt
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
Hoàng Thái Việt1.4K vistas
De thi thu ql3 lan 1 por Hung Le
De thi thu ql3 lan 1De thi thu ql3 lan 1
De thi thu ql3 lan 1
Hung Le7K vistas

Similar a 2018 sobacgiang1hdg

Đề Thử Nghiệm 2017 Môn Toán por
Đề Thử Nghiệm 2017 Môn Toán Đề Thử Nghiệm 2017 Môn Toán
Đề Thử Nghiệm 2017 Môn Toán nmhieupdp
197 vistas7 diapositivas
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017 por
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017toantieuhociq
307 vistas7 diapositivas
Đề Tham Khảo 2017 Môn Toán por
Đề Tham Khảo 2017 Môn ToánĐề Tham Khảo 2017 Môn Toán
Đề Tham Khảo 2017 Môn Toánnmhieupdp
387 vistas6 diapositivas
Đề kiểm tra học kì 2 Toán 10 por
Đề kiểm tra học kì 2 Toán 10Đề kiểm tra học kì 2 Toán 10
Đề kiểm tra học kì 2 Toán 10youngunoistalented1995
481 vistas4 diapositivas
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf por
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdfTrungYasuoN
11 vistas231 diapositivas
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ HK2.docx por
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ  HK2.docxK11-DAP AN ĐỀ CƯƠNG GIỮA KÌ  HK2.docx
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ HK2.docxThanhAn87
63 vistas17 diapositivas

Similar a 2018 sobacgiang1hdg(20)

Đề Thử Nghiệm 2017 Môn Toán por nmhieupdp
Đề Thử Nghiệm 2017 Môn Toán Đề Thử Nghiệm 2017 Môn Toán
Đề Thử Nghiệm 2017 Môn Toán
nmhieupdp197 vistas
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017 por toantieuhociq
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017
de-thi-thi-mon-toan-lan-2-truong-thpt-le-quy-don-2017
toantieuhociq307 vistas
Đề Tham Khảo 2017 Môn Toán por nmhieupdp
Đề Tham Khảo 2017 Môn ToánĐề Tham Khảo 2017 Môn Toán
Đề Tham Khảo 2017 Môn Toán
nmhieupdp387 vistas
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf por TrungYasuoN
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf
10-de-on-tap-kiem-tra-giua-hoc-ki-2-mon-toan-12-100-trac-nghiem (1).pdf
TrungYasuoN11 vistas
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ HK2.docx por ThanhAn87
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ  HK2.docxK11-DAP AN ĐỀ CƯƠNG GIỮA KÌ  HK2.docx
K11-DAP AN ĐỀ CƯƠNG GIỮA KÌ HK2.docx
ThanhAn8763 vistas
DA168_2023_TC_ĐỀ 21-9B-có đáp án 1.pdf por nguynl122299
DA168_2023_TC_ĐỀ 21-9B-có đáp án 1.pdfDA168_2023_TC_ĐỀ 21-9B-có đáp án 1.pdf
DA168_2023_TC_ĐỀ 21-9B-có đáp án 1.pdf
nguynl1222994 vistas
Dethithuthptquocgiamontoankimlien por Maloda
DethithuthptquocgiamontoankimlienDethithuthptquocgiamontoankimlien
Dethithuthptquocgiamontoankimlien
Maloda1.1K vistas
Tích phân-5-Ứng dụng tích phân tính diện tích hình phẳng-pages-60-78 por lovestem
Tích phân-5-Ứng dụng tích phân tính diện tích hình phẳng-pages-60-78Tích phân-5-Ứng dụng tích phân tính diện tích hình phẳng-pages-60-78
Tích phân-5-Ứng dụng tích phân tính diện tích hình phẳng-pages-60-78
lovestem62.9K vistas
3 Đề thi thử môn toán 2015 from http://toanphothong.com/ por Vui Lên Bạn Nhé
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
Vui Lên Bạn Nhé975 vistas
Bo de-thi-hoc-ki-1-mon-toan-lop-12-nam-2016-2017-so-1 por Long Tran
Bo de-thi-hoc-ki-1-mon-toan-lop-12-nam-2016-2017-so-1Bo de-thi-hoc-ki-1-mon-toan-lop-12-nam-2016-2017-so-1
Bo de-thi-hoc-ki-1-mon-toan-lop-12-nam-2016-2017-so-1
Long Tran32 vistas
Đề thi môn Toán THPT Quốc Gia năm 2017 mã đề 123 por mcbooksjsc
Đề thi môn Toán THPT Quốc Gia năm 2017 mã đề 123Đề thi môn Toán THPT Quốc Gia năm 2017 mã đề 123
Đề thi môn Toán THPT Quốc Gia năm 2017 mã đề 123
mcbooksjsc112 vistas
40 ĐỀ THI THỬ TỐT NGHIỆP THPT - MÔN TOÁN - NĂM 2023 - SOẠN CHUẨN CẤU TRÚC MI... por Nguyen Thanh Tu Collection
40 ĐỀ THI THỬ TỐT NGHIỆP THPT - MÔN TOÁN - NĂM 2023 - SOẠN CHUẨN CẤU TRÚC MI...40 ĐỀ THI THỬ TỐT NGHIỆP THPT - MÔN TOÁN - NĂM 2023 - SOẠN CHUẨN CẤU TRÚC MI...
40 ĐỀ THI THỬ TỐT NGHIỆP THPT - MÔN TOÁN - NĂM 2023 - SOẠN CHUẨN CẤU TRÚC MI...
De thi thu vao 10 chuyen ngu por Toán THCS
De thi thu vao 10 chuyen nguDe thi thu vao 10 chuyen ngu
De thi thu vao 10 chuyen ngu
Toán THCS596 vistas
De thi thu vao 10 chuyen ngu por Toán THCS
De thi thu vao 10 chuyen nguDe thi thu vao 10 chuyen ngu
De thi thu vao 10 chuyen ngu
Toán THCS13 vistas
Đề Minh Họa 2016 Môn Toán por nmhieupdp
Đề Minh Họa 2016 Môn Toán Đề Minh Họa 2016 Môn Toán
Đề Minh Họa 2016 Môn Toán
nmhieupdp185 vistas
đề Thi đại học môn toán; khối d por Hồ Việt
đề Thi đại học môn toán; khối dđề Thi đại học môn toán; khối d
đề Thi đại học môn toán; khối d
Hồ Việt264 vistas
Toan pt.de069.2010 por BẢO Hí
Toan pt.de069.2010Toan pt.de069.2010
Toan pt.de069.2010
BẢO Hí210 vistas

Último

TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH... por
TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...
TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...Nguyen Thanh Tu Collection
16 vistas148 diapositivas
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ... por
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...Nguyen Thanh Tu Collection
5 vistas272 diapositivas
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G... por
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...Nguyen Thanh Tu Collection
18 vistas93 diapositivas
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU... por
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...Nguyen Thanh Tu Collection
35 vistas381 diapositivas
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương... por
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...sividocz
7 vistas26 diapositivas
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của... por
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...tcoco3199
6 vistas156 diapositivas

Último(20)

TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH... por Nguyen Thanh Tu Collection
TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...
TỔNG HỢP ĐỀ THI CHÍNH THỨC VÀ ĐỀ XUẤT KỲ THI CHỌN HỌC SINH GIỎI CÁC TRƯỜNG CH...
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ... por Nguyen Thanh Tu Collection
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 5 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G... por Nguyen Thanh Tu Collection
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...
CHUYÊN ĐỀ BÀI TOÁN THỰC TẾ - MÔN TOÁN - LỚP 11 - DÙNG CHUNG 3 SÁCH - CÓ LỜI G...
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU... por Nguyen Thanh Tu Collection
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...
CHUYÊN ĐỀ ÔN THI THPT QUỐC GIA 2023 MÔN HÓA HỌC (BẢN HS-GV) (8 CHƯƠNG, LÝ THU...
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương... por sividocz
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...
Luận Văn Nghiên cứu chất lượng dịch vụ thẻ ATM tại ngân hàng TMCP công thương...
sividocz7 vistas
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của... por tcoco3199
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...
Luận Văn Nghiên Cứu Thiết Kế Tự Động Hoá Cho Dây Chuyền Cán Nóng Liên Tục Của...
tcoco31996 vistas
Luận Văn Đào tạo nguồn nhân lực tại Chi nhánh Ngân hàng Chính sách xã hội tỉn... por sividocz
Luận Văn Đào tạo nguồn nhân lực tại Chi nhánh Ngân hàng Chính sách xã hội tỉn...Luận Văn Đào tạo nguồn nhân lực tại Chi nhánh Ngân hàng Chính sách xã hội tỉn...
Luận Văn Đào tạo nguồn nhân lực tại Chi nhánh Ngân hàng Chính sách xã hội tỉn...
sividocz9 vistas
Luận Văn Nghiên cứu sự hài lòng của khách hàng đối với dịch vụ di động Vinaph... por sividocz
Luận Văn Nghiên cứu sự hài lòng của khách hàng đối với dịch vụ di động Vinaph...Luận Văn Nghiên cứu sự hài lòng của khách hàng đối với dịch vụ di động Vinaph...
Luận Văn Nghiên cứu sự hài lòng của khách hàng đối với dịch vụ di động Vinaph...
sividocz6 vistas
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh... por tcoco3199
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...
Luận Văn Khai Thác Tiềm Năng Phát Triển Du Lịch Ven Biển Tiền Hải - Thái Binh...
tcoco31995 vistas
ĐỀ THI CHÍNH THỨC CHỌN HỌC SINH GIỎI MÔN GIÁO DỤC CÔNG DÂN – LỚP 9 (44 ĐỀ THI... por Nguyen Thanh Tu Collection
ĐỀ THI CHÍNH THỨC CHỌN HỌC SINH GIỎI MÔN GIÁO DỤC CÔNG DÂN – LỚP 9 (44 ĐỀ THI...ĐỀ THI CHÍNH THỨC CHỌN HỌC SINH GIỎI MÔN GIÁO DỤC CÔNG DÂN – LỚP 9 (44 ĐỀ THI...
ĐỀ THI CHÍNH THỨC CHỌN HỌC SINH GIỎI MÔN GIÁO DỤC CÔNG DÂN – LỚP 9 (44 ĐỀ THI...
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ... por Nguyen Thanh Tu Collection
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...
50 ĐỀ LUYỆN THI IOE LỚP 4 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ... por Nguyen Thanh Tu Collection
50 ĐỀ LUYỆN THI IOE LỚP 4 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 4 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 4 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
Luận Văn Bệnh Viện Chuyên Khoa Tâm Thần An Lão Hải Phòng.doc por tcoco3199
Luận Văn Bệnh Viện Chuyên Khoa Tâm Thần An Lão Hải Phòng.docLuận Văn Bệnh Viện Chuyên Khoa Tâm Thần An Lão Hải Phòng.doc
Luận Văn Bệnh Viện Chuyên Khoa Tâm Thần An Lão Hải Phòng.doc
tcoco31996 vistas
Luận Văn Nghiên Cứu Tính Đa Hình Của Một Số Gen Liên Quan Đến Loãng Xƣơng Ở N... por tcoco3199
Luận Văn Nghiên Cứu Tính Đa Hình Của Một Số Gen Liên Quan Đến Loãng Xƣơng Ở N...Luận Văn Nghiên Cứu Tính Đa Hình Của Một Số Gen Liên Quan Đến Loãng Xƣơng Ở N...
Luận Văn Nghiên Cứu Tính Đa Hình Của Một Số Gen Liên Quan Đến Loãng Xƣơng Ở N...
tcoco31995 vistas
Kết quả phân loại ngôn ngữ theo LOẠI HÌNH (6).pptx por truongmyanh120904
Kết quả phân loại ngôn ngữ theo LOẠI HÌNH (6).pptxKết quả phân loại ngôn ngữ theo LOẠI HÌNH (6).pptx
Kết quả phân loại ngôn ngữ theo LOẠI HÌNH (6).pptx
Luận Văn Nghiên Cứu Ứng Dụng Phẫu Thuật Nội Soi Điều Trị Ung Thư Biểu Mô Tuyế... por tcoco3199
Luận Văn Nghiên Cứu Ứng Dụng Phẫu Thuật Nội Soi Điều Trị Ung Thư Biểu Mô Tuyế...Luận Văn Nghiên Cứu Ứng Dụng Phẫu Thuật Nội Soi Điều Trị Ung Thư Biểu Mô Tuyế...
Luận Văn Nghiên Cứu Ứng Dụng Phẫu Thuật Nội Soi Điều Trị Ung Thư Biểu Mô Tuyế...
tcoco31995 vistas
HỒ SƠ NĂNG LỰC_GATE FUTURE.pdf por conghoaipk
HỒ SƠ NĂNG LỰC_GATE FUTURE.pdfHỒ SƠ NĂNG LỰC_GATE FUTURE.pdf
HỒ SƠ NĂNG LỰC_GATE FUTURE.pdf
conghoaipk178 vistas
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ... por Nguyen Thanh Tu Collection
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...
CHUYÊN ĐỀ DẠY THÊM VẬT LÝ 11 - NĂM 2024 DÙNG CHUNG CHO SÁCH KẾT NỐI TRI THỨC ...
Luận Văn Quản Lý Dự Án Xây Dựng Các Công Trình Sau Khi Đã Đƣợc Cấp Giấy Phép ... por tcoco3199
Luận Văn Quản Lý Dự Án Xây Dựng Các Công Trình Sau Khi Đã Đƣợc Cấp Giấy Phép ...Luận Văn Quản Lý Dự Án Xây Dựng Các Công Trình Sau Khi Đã Đƣợc Cấp Giấy Phép ...
Luận Văn Quản Lý Dự Án Xây Dựng Các Công Trình Sau Khi Đã Đƣợc Cấp Giấy Phép ...
tcoco31999 vistas
Luận Văn Giải pháp marketing dịch vụ thông tin di động tại Trung tâm Kinh doa... por sividocz
Luận Văn Giải pháp marketing dịch vụ thông tin di động tại Trung tâm Kinh doa...Luận Văn Giải pháp marketing dịch vụ thông tin di động tại Trung tâm Kinh doa...
Luận Văn Giải pháp marketing dịch vụ thông tin di động tại Trung tâm Kinh doa...
sividocz5 vistas

2018 sobacgiang1hdg

  • 1. SỞ GD VÀ ĐT BẮC GIANG ĐỀ THI THỬ LẦN 1 KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2018 Bài thi: TOÁN Thời gian làm bài: 90 phút, không kể thời gian phát đề BẢNG ĐÁP ÁN 1. B 2. A 3. B 4. C 5. D 6. C 7. D 8. B 9. C 10. C 11. A 12. B 13. B 14. B 15. D 16. D 17. D 18. D 19. D 20. B 21. B 22. D 23. C 24. B 25. B 26. D 27. C 28. C 29. A 30. A 31. A 32. A 33. A 34. C 35. B 36. A 37. A 38. C 39. B 40. D 41. B 42. A 43. D 44. D 45. C 46. C 47. B 48. A 49. C 50. A HƯỚNG DẪN GIẢI CHI TIẾT (Soạn bởi Nguyễn Minh Hiếu) Câu 1. Trong không gian Oxyz, cho mặt phẳng (P) : 2x−z+1 = 0. Tọa độ một vectơ pháp tuyến của (P) là A. (2;−1;1). B. (2;0;−1). C. (2;−1;0). D. (2;0;1). Lời giải. Chọn phương án B. Mặt phẳng (P) : Ax+By+C +D = 0 có một vectơ pháp tuyến là −→n (A;B;C). Câu 2. Thể tích khối lăng trụ có chiều cao bằng h và diện tích đáy bằng B là A. V = Bh. B. V = 1 3 Bh. C. V = 1 6 Bh. D. V = 1 2 Bh. Lời giải. Chọn phương án A. Công thức tính thể tích khối lăng trụ là V = Bh. Câu 3. Giới hạn lim x→−∞ −1 2x+5 bằng A. − 1 2 . B. 0. C. −∞. D. +∞. Lời giải. Chọn phương án B. Ta có lim x→−∞ −1 2x+5 = lim x→−∞ −1 x 2+ 5 x = 0. Câu 4. Họ nguyên hàm của hàm số f(x) = 2cos2x là A. −sin2x+C. B. −2sin2x+C. C. sin2x+C. D. 2sin2x+C. Lời giải. Chọn phương án C. Ta có 2cos2xdx = 2. 1 2 sin2x+C = sin2x+C. Câu 5. Cho số phức z = −1 + 2i. Số phức z được biểu diễn bởi điểm nào dưới đây trên mặt phẳng tọa độ? A. P(1;2). B. M(−1;2). C. N(1;−2). D. Q(−1;−2). Lời giải. Chọn phương án D. Ta có z = (−1−2i), suy ra điểm biểu diễn z là Q(−1;−2). Câu 6. Cho hàm số y = f(x) có bảng biến thiên như hình bên. Tọa độ điểm cực đại của đồ thị hàm số y = f(x) là A. (1;−4). B. x = 0. C. (0;−3). D. (−1;−4). x y y −∞ −1 0 1 +∞ − 0 + 0 − 0 + +∞+∞ −4−4 −3−3 −4−4 +∞+∞ Lời giải. Chọn phương án C. Từ bảng biến thiên ta thấy điểm cực đại của đồ thị hàm số là (0;−3). 1
  • 2. Câu 7. Phương trình đường tiệm cận ngang của đồ thị hàm số y = 2+ 3 1−x là A. y = 3. B. y = −1. C. x = 1. D. y = 2. Lời giải. Chọn phương án D. Ta có lim x→±∞ 2+ 3 1−x = 2, suy ra đồ thị hàm số có đường tiệm cận ngang là y = 2. Câu 8. Trong không gian Oxyz, cho điểm M(1;−2;3). Tọa độ hình chiếu vuông góc của M trên mặt phẳng (Oyz) là A. (1;−2;0). B. (0;−2;3). C. (1;−2;3). D. (1;0;3). Lời giải. Chọn phương án B. Tọa độ hình chiếu của M lên (Oyz) là (0;−2;3). Câu 9. Đồ thị hàm số nào dưới đây có tiệm cận ngang? A. y = x √ 1−x2 . B. y = x2 +x+1 x−2 . C. y = 3x+1 x−1 . D. y = x3 −2x2 +3x+2. Lời giải. Chọn phương án C. Đồ thị hàm số y = 3x+1 x−1 có đường tiệm cận ngang là y = 3. Câu 10. Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây? A. (1;+∞). B. (−∞;−2). C. (−1;0). D. (−2;1). x y O 1 −2 Lời giải. Chọn phương án C. Từ đồ thị suy ra hàm số nghịch biến trên (−2;0) ⊃ (−1;0). Câu 11. Trong không gian Oxyz, cho điểm M(2;0;−1) và đường thẳng d : x−1 1 = y+2 −1 = z 2 . Mặt phẳng đi qua M và vuông góc với d có phương trình là A. x−y+2z = 0. B. x−2y−2 = 0. C. x+y+2z = 0. D. x−y−2z = 0. Lời giải. Chọn phương án A. Mặt phẳng vuông d nên nhận −→ud(1;−1;2) làm một vectơ pháp tuyến. Vậy mặt phẳng có phương trình 1(x−2)−1(y−0)+2(z+1) = 0 ⇔ x−y+2z = 0. Câu 12. Bảng biến thiên trong hình bên là của hàm số nào dưới đây? A. y = x4 −2x2 −3. B. y = −x3 +3x+2. C. y = x3 −3x+4. D. y = x−1 2x−1 . x y y −∞ −1 1 +∞ − 0 + 0 − +∞+∞ 00 44 −∞−∞ Lời giải. Chọn phương án B. Bảng biến thiên có hình dạng của hàm số bậc ba nên loại phương án A và D. Từ bảng biến thiên ta có đồ thị đi xuống, suy ra hệ số a < 0 nên loại phương án C. Câu 13. Giá trị nhỏ nhất của hàm số y = x3 −3x+1 trên đoạn [−1;4] là A. 1. B. −1. C. 3. D. −4. Lời giải. Chọn phương án B. Ta có y = 3x2 −3; y = 0 ⇔ x = ±1; y(−1) = 3, y(1) = −1, y(4) = 53. Vậy min x→[−1;4] y = y(1) = −1. 2
  • 3. Câu 14. Có bao nhiêu số tự nhiên có hai chữ số sao cho các chữ số khác nhau và đều khác 0? A. 92. B. A2 9. C. 90. D. C2 9. Lời giải. Chọn phương án B. Số thỏa mãn yêu cầu bài toán được lập từ 2 chữ số trong 9 chữ số từ 1 đến 9. Do đó số các số thỏa mãn yêu cầu bài toán là A2 9. Câu 15. Phương trình tiếp tuyến của đồ thị hàm số y = xlnx tại điểm có hoành độ bằng e là A. y = 2x+3e. B. y = x+e. C. y = ex−2e. D. y = 2x−e. Lời giải. Chọn phương án D. Ta có y = lnx+1; y (e) = 2; y(e) = e. Vậy phương trình tiếp tuyến là y = 2(x−e)+e = 2x−e. Câu 16. Cho hình hộp ABCD.A B C D có M,N,P lần lượt là trung điểm của các cạnh A B ,A D ,C D (tham khảo hình vẽ bên). Góc giữa đường thẳng CP và mặt phẳng (DMN) bằng A. 30◦. B. 60◦. C. 45◦. D. 0◦. A B C D A B C D M N P Lời giải. Chọn phương án D. Ta có MN B D BD, suy ra (DMN) ≡ (MNDB). Lại có PC MB ⇒ PC (DMN). Vậy góc giữa PC và (DMN) bằng 0◦. Câu 17. Cho P = loga4 b2 với 0 < a 1 và b < 0. Mệnh đề nào dưới đây đúng? A. P = − 1 2 loga(−b). B. P = 2loga(−b). C. P = −2loga(−b). D. P = 1 2 loga(−b). Lời giải. Chọn phương án D. Ta có P = loga4 b2 = 2 4 log|a| |b| = 1 2 loga(−b). Câu 18. Tích phân 2 1 (x+3)2 dx bằng A. 61 9 . B. 4. C. 61. D. 61 3 . Lời giải. Chọn phương án D. Sử dụng máy tính tính được kết quả 2 1 (x+3)2 dx = 61 3 . Câu 19. Giá trị lớn nhất của hàm số y = −x2 −4 x trên đoạn 3 2 ;4 là A. − 25 6 . B. −2. C. −5. D. −4. Lời giải. Chọn phương án D. Dùng chức năng MODE. Nhập biểu thức −X2 −4 X . Chọn START 3 2 ; END 4; STEP 0,2. Dò được kết quả bằng −4. Câu 20. Cho 1 −2 f(x)dx = 3. Tích phân 1 −2 [2 f(x)−1]dx bằng A. −9. B. 3. C. −3. D. 5. Lời giải. Chọn phương án B. 3
  • 4. Ta có 1 −2 [2 f(x)−1]dx = 2 1 −2 f(x)dx− 1 −2 1dx = 2.3−3 = 3. Câu 21. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+m2 x+4 đồng biến trên mỗi khoảng xác định của nó? A. 5. B. 3. C. 1. D. 2. Lời giải. Chọn phương án B. Tập xác định D = R{−4}. Ta có y = 4−m2 (x+4)2 . Hàm số đồng biến trên mỗi khoảng xác định ⇔ y > 0,∀x ∈ D ⇔ 4−m2 > 0 ⇔ −2 < m < 2. Vậy có 3 giá trị nguyên của m thỏa mãn yêu cầu bài toán. Câu 22. Một người vay ngân hàng 500 triệu đồng với lãi suất 1,2%/ tháng để mua xe ô tô. Nếu mỗi tháng người đó trả ngân hàng 10 triệu đồng và thời điểm bắt đầu trả cách thời điểm vay là đúng một tháng. Hỏi sau ít nhất bao nhiêu tháng thì người đó trả hết nợ ngân hàng? Biết rằng lãi suất không thay đổi trong thời gian trả nợ. A. 70 tháng. B. 80 tháng. C. 85 tháng. D. 77 tháng. Lời giải. Chọn phương án D. Đặt T = 500 triệu đồng và r = 0,012. Số tiền người đó còn nợ sau 1 tháng là T1 = T(1+r)−10. Số tiền người đó còn nợ sau 2 tháng là T2 = T1(1+r)−10 = T(1+r)2 −10[(1+r)+1]. Số tiền người đó còn nợ sau 3 tháng là T3 = T2(1+r)−10 = T(1+r)3 −10[(1+r)2 +(1+r)+1]. ··· Số tiền người đó còn nợ sau n tháng là Tn = T(1+r)n −10[(1+r)n−1 +···+(1+r)+1]. Biến đổi ta dược Tn = T(1+r)n − 10[(1+r)n −1] r = (Tr −10)(1+r)n +10 r . Người đó trả hết nợ khi Tn = 0 ⇔ (Tr −10)(1+r)n +10 = 0 ⇔ (1+r)n = 10 10−Tr . Thay số vào ta có 1,012n = 10 4 ⇔ n = log1,012 5 2 ≈ 76,815. Vậy sau 77 tháng người đó trả hết nợ ngân hàng. Câu 23. Có bao nhiêu giá trị nguyên không âm của tham số m để hàm số y = x4 − 2mx2 − 3m + 1 đồng biến trên (1;2)? A. 4. B. 1. C. 2. D. 3. Lời giải. Chọn phương án C. Ta có y = 4x3 −4mx = 4x(x2 −m). Hàm số đồng biến trên (1;2) ⇔ y 0,∀x ∈ (1;2). Điều này tương đương với x2 −m 0,∀x ∈ (1;2) ⇔ m x2,∀x ∈ (1;2) ⇔ m 1. Vậy có 2 giá trị nguyên không âm m = 0 và m = 1 thỏa mãn yêu cầu bài toán. Câu 24. Cho x,y là các số thực thỏa mãn log2 x log2(xy)+1 = log2 y log2(xy)−1 = log2 x + log2 y. Khi đó giá trị của x+y bằng A. 2. B. 2 hoặc 4 √ 8+ 1 4 √ 2 . C. 2+ 1 4 √ 2 . D. 2 hoặc 1 2 . Lời giải. Chọn phương án B. Đặt a = log2 x, b = log2 y với a+b ±1, ta có    a a+b+1 = b a+b−1 (1) a a+b+1 = a+b (2) . Ta có (1) ⇔ a2 +ab−a = ab+b2 +b ⇔ a2 −b2 = a+b ⇔ (a+b)(a−b−1) = 0 ⇔ a+b = 0 a = b+1 . Với a+b = 0 thay vào (2) được a = 0 ⇒ b = 0, suy ra x = y = 1 ⇒ x+y = 2. Với a = b+1 thay vào (2) được b+1 b+1+b+1 = b+1+b ⇔ 1 2 = 2b+1 ⇔ b = − 1 4 ⇒ a = 3 4 . 4
  • 5. Từ đó suy ra x = 4 √ 8,y = 1 4 √ 2 ⇒ x+y = 4 √ 8+ 1 4 √ 2 . Vậy x+y = 2 hoặc x+y = 4 √ 8+ 1 4 √ 2 Câu 25. Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình bên. Số nghiệm của phương trình 2[f(x)]2 −3 f(x)+1 = 0 là A. 2. B. 3. C. 6. D. 0. x y y −∞ −1 1 +∞ + 0 − 0 + 11 33 1 3 1 3 11 Lời giải. Chọn phương án B. Ta có 2[f(x)]2 −3 f(x)+1 = 0 ⇔ f(x) = 1 f(x) = 1 2 . Từ bảng biến thiên ta thấy phương trình f(x) = 1 có 1 nghiệm x1 ∈ (−1;1). Lại thấy phương trình f(x) = 1 2 có 1 nghiệm x2 ∈ (−1;1) và 1 nghiệm x3 ∈ (1;+∞). Hơn nữa trên (−1;1) hàm số nghịch biến và f(x1) f(x2) nên x1 x2. Vậy phương trình có 3 nghiệm. Câu 26. Cho lăng trụ đều ABC.A B C có tất cả các cạnh đều bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AC và BB bằng A. 2a √ 5 . B. √ 5a 3 . C. a √ 5 . D. √ 3a 2 . A B C A B C Lời giải. Chọn phương án D. Gọi H trung điểm AC, ta có BH⊥AC BH⊥BB . Vậy d(AC,BB ) = BH = a √ 3 2 . Câu 27. Một lô hàng gồm 30 sản phẩm trong đó có 20 sản phẩm tốt và 10 sản phẩm xấu. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng. Tính xác suất để 3 sản phẩm lấy ra có ít nhất một sản phẩm tốt. A. 6 203 . B. 57 203 . C. 197 203 . D. 153 203 . Lời giải. Chọn phương án C. Lấy ngẫu nhiên 3 sản phẩm trong lô hàng nên số phần tử không gian mẫu là C3 30 = 4060. Lấy 3 sản phẩm có ít nhất một sản phẩm tốt có C1 20 ×C2 10 +C2 20 ×C1 10 +C3 20 = 3940. Vậy xác suất cần tìm là 3940 4060 = 197 203 . Câu 28. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và SA = a (tham khảo hình vẽ bên). Góc giữa hai mặt phẳng (SAB) và (SCD) bằng A. 30◦. B. 60◦. C. 45◦. D. 90◦. A B C D S Lời giải. Chọn phương án C. Ta có AB⊥SA AB⊥AD ⇒ AB⊥(SAD) ⇒ (SAB)⊥(SAD). Lại có CD AB ⇒ CD⊥(SAD) ⇒ (SCD)⊥(SAD). 5
  • 6. Từ đó suy ra góc giữa (SAB) và (SCD) là ASD = 45◦. Câu 29. Trong không gian Oxyz, cho điểm M(2;1;0) và đường thẳng d : x−1 2 = y+1 1 = z −1 . Phương trình tham số của đường thẳng đi qua M, cắt và vuông góc với d là A.    x = 2+t y = 1−4t z = −2t . B.    x = 2−t y = 1+t z = t . C.    x = 1+t y = −1−4t z = 2t . D.    x = 2+2t y = 1+t z = −t . Lời giải. Chọn phương án A. Giả sử đường thẳng cắt d tại A, ta có A(1+2t;−1+t;−t) ⇒ −→ MA = (−1+2t;−2+t;−t). Đường thẳng vuông góc với d nên 2(−1+2t)+(−2+t)−(−t) = 0 ⇔t = 2 3 ⇒ −→ MA = 1 3 ;− 4 3 ;− 2 3 . Hay đường thẳng có vectơ chỉ phương −→u = (1;−4;−2) nên có phương trình    x = 2+t y = 1−4t z = −2t . Câu 30. Với n là số nguyên dương thỏa mãn C1 n +C3 n = 13n, hệ số của số hạng chứa x5 trong khai triển biểu thức x2 + 1 x3 n bằng A. 120. B. 45. C. 252. D. 210. Lời giải. Chọn phương án A. Chọn MODE 7. Nhập vào máy tính biểu thức XC1+XC3−13X. Chọn START3; END 20; STEP 1, dò được kết quả n = 10. Khi đó x2 + 1 x3 10 = 10 ∑ k=0 Ck 10(x2)10−k. 1 x3 k = 10 ∑ k=0 Ck 10x20−5k. Số hạng chứa x5 khi 20−5k = 5 ⇔ k = 3. Vậy hệ số của số hạng chứa x5 là C3 10 = 120. Câu 31. Cho 1 1 3 x 3x+ √ 9x2 −1 dx = a+b √ 2, với a,b là các số hữu tỷ. Khi đó giá trị của a là A. 26 27 . B. − 26 27 . C. − 27 26 . D. − 25 27 . Lời giải. Chọn phương án A. Ta có 1 1 3 x 3x+ √ 9x2 −1 dx = 1 1 3 x 3x− 9x2 −1 dx = 1 1 3 3x2 dx− 1 1 3 x 9x2 −1dx = 26 27 −I1. Đặt u = √ 9x2 −1 ⇔ u2 = 9x2 −1 ⇒ 2udu = 18xdx, ta có I1 = 1 9 2 √ 2 0 u2 du = u3 27 2 √ 2 0 = 16 √ 2 27 . Do đó 1 1 3 x 3x+ √ 9x2 −1 dx = 26 27 − 16 27 √ 2. Vậy a = 26 27 . Câu 32. Tập hợp nào dưới đây chứa tất cả các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = x2 −2x+m trên đoạn [−1;2] bằng 5? A. (−5;−2)∪(0;3). B. (0;+∞). C. (−6;−3)∪(0;2). D. (−4;3). Lời giải. Chọn phương án A. Xét f(x) = x2 −2x+m trên [−1;2] có f (x) = 2x−2; f (x) = 0 ⇔ x = 1. Ta có f(−1) = m+3, f(1) = m−1, f(2) = m. Do đó max [−1;2] f(x) = m+3 và min [−1;2] f(x) = m−1. Từ đó ta có max [−1;2] y = max{|m+3|,|m−1|}. 6
  • 7. TH1: m 1 2 , ta có max [−1;2] y = |m+3| ⇔ |m+3| = 5 ⇔ m = 2 m = −8 (loại) . TH2: m < 1 2 , ta có max [−1;2] y = |m−1| ⇔ |m−1| = 5 ⇔ m = 6 (loại) m = −4 . Vậy (−5;−2)∪(0;3) ⊃ {−4;2}. Câu 33. Cho (H) là hình phẳng giới hạn bởi đồ thị các hàm số y = e,y = ex và y = (1−e)x+1 (tham khảo hình vẽ bên). Diện tích của (H) là A. e+1 2 . B. e+ 1 2 . C. e− 1 2 . D. e−1 2 . x y O y = e y = ex y = (1−e)x+1 1 Lời giải. Chọn phương án A. Ta có ex = e ⇔ x = 1; ex = (1−e)x+1 ⇔ x = 0; (1−e)x+1 = e ⇔ x = −1. Khi đó diện tích của (H) là S = 0 −1 (e−(1−e)x−1)dx+ 1 0 (e−ex )dx. Ta có 0 −1 (e−(1−e)x−1)dx = 0 −1 (e−1)(x+1)dx = (e−1) x2 2 +x 0 −1 = e−1 2 . Lại có 1 0 (e−ex )dx = (ex−ex ) 1 0 = 1. Vậy S = e−1 2 +1 = e+1 2 . Câu 34. Cho hàm số y = f(x) có đúng ba điểm cực trị là −2, −1, 0 và có đạo hàm liên tục trên R. Khi đó hàm số y = f x2 −2x có bao nhiêu điểm cực trị? A. 4. B. 6. C. 3. D. 5. Lời giải. Chọn phương án C. Ta có f(x2 −2x) = (2x−2)f (x2 −2x); f(x2 −2x) = 0 ⇔ x = 1 f (x2 −2x) = 0 . Theo giả thiết ta có f (x2 −2x) = 0 ⇔   x2 −2x = −2 x2 −2x = −1 x2 −2x = 0 ⇔   x = 1 x = 0 x = 2 . Vậy hàm số y = f(x2 −2x) có 3 điểm cực trị. Câu 35. Cho số phức z thỏa mãn |z|−2z = −7+3i+z. Giá trị |z| bằng A. 3. B. 5. C. 25 4 . D. 13 4 . Lời giải. Chọn phương án B. Gọi z = a+bi (a,b ∈ R), ta có |z|−2z = −7+3i+z ⇔ √ a2 +b2 −2(a−bi) = −7+3i+a+bi. Rút gọn ta được √ a2 +b2 −3a+7+(b−3)i = 0 ⇔ √ a2 +9 = 3a−7 (1) b = 3 . Ta có (1) ⇔ 3a−7 0 a2 +9 = 9a2 −42a+49 = 0 ⇔ a = 4. Suy ra z = 4+3i. Vậy |z| = 5. Câu 36. Cho hàm số f(x) xác định trên R{−1;1} và thỏa mãn f (x) = 1 x2 −1 , f(−3) + f(3) = 0 và f − 1 2 + f 1 2 = 2. Giá trị của f(0)+ f(4) bằng 7
  • 8. A. 1+ 1 2 ln 3 5 . B. 1 2 ln 3 5 . C. 1+ln 3 5 . D. 2+ln 3 5 . Lời giải. Chọn phương án A. Ta có 1 x2 −1 dx = 1 (x−1)(x+1) dx = 1 2 1 x−1 − 1 x+1 dx = 1 2 ln x−1 x+1 +C. Vì f(x) xác định trên R{−1;1} nên f(x) =    1 2 ln x−1 x+1 +C1 khi |x| > 1 1 2 ln 1−x x+1 +C2 khi |x| < 1 . Theo giả thiết f(−3)+ f(3) = 0 ⇔ 1 2 ln2+C1 + 1 2 ln 1 2 +C1 = 0 ⇔ 2C1 = 0 ⇔ C1 = 0. Lại có f − 1 2 + f 1 2 = 2 ⇔ 1 2 ln3+C2 + 1 2 ln 1 3 +C2 = 2 ⇔ 2C2 = 2 ⇔ C2 = 1. Vậy f(0)+ f(4) = 1+ 1 2 ln 3 5 . Câu 37. Cho hình chóp đa giác đều có các cạnh bên bằng a và tạo với mặt đáy của hình chóp một góc 30◦. Thể tích của khối cầu ngoại tiếp hình chóp là A. 4πa3 3 . B. 4πa3. C. 4πa3 √ 3. D. 4πa3 √ 3 3 . Lời giải. Chọn phương án A. Gỉa sử hình chóp có đỉnh S, tâm đáy O và một cạnh bên SA. Ta có góc giữa SA và đáy là SAO = 30◦, suy ra SO = SA.sin30◦ = a 2 . Gọi M trung điểm SA, kẻ MI⊥SA, I ∈ SO, ta có I là tâm mặt cầu ngoại tiếp hình chóp. Khi đó SMI ∼ SOA, suy ra SI SA = SM SO ⇒ SI = SM.SA SO = a. Vậy thể tích khối cầu ngoại tiếp hình chóp là V = 4 3 πa3. Câu 38. Cho hàm số y = x x2 −3 có đồ thị (C). Có bao nhiêu điểm M thuộc đồ thị (C) thỏa mãn tiếp tuyến tại M của (C) cắt (C) và trục hoành lần lượt tại hai điểm phân biệt A (khác M) và B sao cho M là trung điểm của đoạn thẳng AB? A. 0. B. 1. C. 2. D. 3. Lời giải. Chọn phương án C. Ta có M ∈ (C) ⇒ M(x0;x3 0 −3x0); y = 3x2 −3 ⇒ y (x0) = 3x2 0 −3. Phương trình tiếp tuyến tại M là y = (3x2 0 −3)(x−x0)+x3 0 −3x0. Khi y = 0 ta có (3x2 0 −3)(x−x0)+x3 0 −3x0 = 0 ⇔ x = 2x3 0 3x2 0 −3 . Suy ra tiếp tuyến cắt Ox tại B 2x3 0 3x2 0 −3 ;0 . Phương trình hoành độ giao điểm giữa tiếp tuyến và (C) là (3x2 0 −3)(x−x0)+x3 0 −3x0 = x3 −3x ⇔ (3x2 0 −3)(x−x0) = (x−x0)(x2 +x0x+x2 0 −3) ⇔ 3x2 0 = x2 +x0x+x2 0 ⇔ (x−x0)(x+2x0) = 0 ⇔ x = −2x0 Suy ra tiếp tuyến cắt (C) tại điểm thứ hai A −2x0;−8x3 0 +6x0 , với x0 0. Ta có M trung điểm AB nên −8x3 0 +6x0 = 2(x3 0 −3x0) ⇔ x = ± 6 5 . Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán. Câu 39. Có bao nhiêu giá trị nguyên nhỏ hơn 10 của tham số m để phương trình m+ √ m+ex = ex có nghiệm thực? 8
  • 9. A. 9. B. 10. C. 8. D. 7. Lời giải. Chọn phương án B. Đặt t = √ m+ex 0, ta có hệ m+t = e2x (1) m+ex = t2 (2) . Trừ theo vế (1) và (2) được t −ex = e2x −t2 ⇔ (ex −t)(ex +t +1) = 0 ⇔ t = ex. Với t = ex, thay vào (1) được m = t2 −t = t − 1 2 2 − 1 4 − 1 4 . Do đó phương trình có nghiệm khi và chỉ khi m − 1 4 . Vậy có 10 giá trị của m thỏa mãn yêu cầu bài toán. Câu 40. Cho phương trình log0,5(m+6x)+log2 3−2x−x2 = 0. Có bao nhiêu giá trị nguyên dương của tham số m để phương trình đã cho có nghiệm thực? A. 15. B. 18. C. 23. D. 17. Lời giải. Chọn phương án D. Ta có PT⇔ 3−2x−x2 > 0 m+6x = 3−2x−x2 ⇔ −3 < x < 1 m = −x2 −8x+3 . Xét f(x) = −x2 −8x+3 trên (−3;1) có f (x) = −2x−8 < 0,∀x ∈ (−3;1). Suy ra f(x) nghịch biến trên (−3;1). Do đó phương trình đã cho có nghiệm ⇔ f(1) < m < f(−3) ⇔ −6 < m < 18. Vậy có 17 giá trị nguyên dương của m thỏa mãn yêu cầu bài toán. Câu 41. Cho hàm số f(x) = a2 +1 ln2017 x+ √ 1+x2 + bxsin2018 x + 2 với a,b là các số thực và f 7log5 = 6. Giá trị f −5log7 bằng A. 4. B. −2. C. 2. D. 6. Lời giải. Chọn phương án B. Xét hàm số g(x) = a2 +1 ln2017 x+ √ 1+x2 +bxsin2018 x có tập xác định R. Lại có g(−x) = a2 +1 ln2017 −x+ 1+x2 −bxsin2018 x = − a2 +1 ln2017 x+ 1+x2 −bxsin2018 x = −g(x),∀x ∈ R Suy ra g(x) là hàm số lẻ. Do đó g −5log7 = −g 5log7 = −g 7log5 = − f 7log5 −2 = −4. Vậy f −5log7 = g −5log7 +2 = −4+2 = −2. Câu 42. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 0 và 1 0 f (x) 2 dx = 1 0 (x+1)ex f(x)dx = e2 −1 4 . Tích phân 1 0 f(x)dx bằng A. e−2. B. 2−e. C. e−1 2 . D. e 2 . Lời giải. Chọn phương án A. Đặt u = f(x) dv = (x+1)exdx ⇒ du = f (x)dx v = xex . Ta có 1 0 (x+1)ex f(x)dx = xex f(x) 1 0 − 1 0 xex f (x)dx ⇔ 1 0 xex f (x)dx = 1−e2 4 . 9
  • 10. Lại có 1 0 x2 e2x dx = x2 2 e2x 1 0 − xe2x dx = e2 2 − x 2 e2x 1 0 + 1 4 e2x 1 0 = e2 −1 4 . Do đó 1 0 f (x) 2 dx+2 1 0 xex f (x)dx+ 1 0 x2 e2x dx = 0 ⇔ 1 0 f (x)+xex 2 dx = 0. Từ đó ta có f (x)+xex = 0 ⇔ f (x) = −xex ⇒ f(x) = (1−x)ex +C. Lại có f(1) = 0 nên C = 0, suy ra f(x) = (1−x)ex. Vậy 1 0 f(x)dx = 1 0 (1−x)ex dx = e−2. Câu 43. Trong không gian Oxyz, cho tam giác nhọn ABC có H(2;2;1), K − 8 3 ; 4 3 ; 8 3 , O lần lượt là hình chiếu vuông góc của A,B,C trên các cạnh BC,AC,AB. Đường thẳng đi qua A và vuông góc với (ABC) có phương trình là A. x+ 4 9 1 = y− 17 9 −2 = z− 19 9 2 . B. x− 8 3 1 = y− 2 3 −2 = z+ 2 3 2 . C. x 1 = y−6 −2 = z−6 2 . D. x+4 1 = y+1 −2 = z−1 2 . Lời giải. Chọn phương án D. Ta có OH = 3, OK = 4, HK = 5. Gọi I là trực tâm ABC. Tứ giác AOIK nội tiếp suy ra KOC = HAC. Tứ giác AOHC nội tiếp suy ra HOC = HAC. Từ đó suy ra KOC = HOC, hay CO là phân giác trong góc HOK. Chứng minh tương tự ta có BK,AH là phân giác trong OKH và OHK. Từ đó suy ra I là tâm đường tròn nội tiếp OHK. Khi đó OH. −→ IK +OK. −→ IH +KH. −→ IO = −→ 0 . A B CH K O I Suy ra    xI = OH.xK +OK.xH +KH.xO OH +OK +KH yI = OH.yK +OK.yH +KH.yO OH +OK +KH zI = OH.zK +OK.zH +KH.zO OH +OK +KH ⇔    xI = 0 yI = 1 zI = 1 ⇒ I(0;1;1). Khi đó −→ IH = (2;1;0) nên IH có phương trình    x = 2+2t y = 2+t z = 1 . Ta có A ∈ IH ⇒ A(2+2t;2+t;1) ⇒ −→ OA = (2+2t;2+t;1), −→ OI = (0;1;1). Vì OI⊥AB nên −→ OA. −→ OI = 0 ⇔ 0(2+2t)+(2+t)+1 = 0 ⇔ t = −3 ⇒ A(−4;−1;1). Khi đó AO = (4;1;−1), −→ AH = (6;3;0) ⇒ −→ AO, −→ AH = (3;−6;6). Suy ra đường thẳng có một vectơ chỉ phương −→u = (1;−2;2). Vậy đường thẳng có phương trình x+4 1 = y+1 −2 = z−1 2 . Câu 44. Trong không gian Oxyz, cho điểm A(2;1;3) và mặt phẳng (P) : x + my + (2m + 1)z − (2 + m) = 0, với m là tham số. Gọi điểm H(a;b;c) là hình chiếu vuông góc của điểm A trên (P). Khoảng cách từ A đến (P) lớn nhất khi a+b bằng A. 2. B. − 1 2 . C. 0. D. 3 2 . Lời giải. Chọn phương án D. Ta có x+my+(2m+1)z−(2+m) = 0 ⇔ m(y+2z−1)+x+z−2 = 0. (1) Phương trình (1) có nghiệm với mọi m ∈ R khi và chỉ khi y+2z−1 x+z−2 = 0 . 10
  • 11. Đặt z = t, ta có x = 2−t, y = 1−2t, suy ra d :    x = 2−t y = 1−2t z = t luôn nằm trong (P). Gọi K là hình chiếu của A trên d, ta có K(2−t;1−2t;t) ⇒ −→ AK = (−t;−2t;t −3). Lại có −→ AK.−→ud = 0 ⇔ t +4t +t −3 = 0 ⇔ t = 1 2 ⇒ K 3 2 ;0; 1 2 . Khi đó AH AK, do đó AH lớn nhất khi H ≡ K, hay H 3 2 ;0; 1 2 . Vậy a+b = 3 2 . Câu 45. Cho hình chóp S.ABC có SA = SB = SC = 3, tam giác ABC vuông cân tại B và AC = 2 √ 2. Gọi M,N lần lượt là trung điểm của AC và BC. Trên hai cạnh SA,SB lấy các điểm P,Q tương ứng sao cho SP = 1,SQ = 2. Thể tích của khối tứ diện MNPQ là A. √ 3 12 . B. √ 34 12 . C. √ 7 18 . D. √ 34 144 . Lời giải. Chọn phương án C. Gọi M trung điểm AC, ta có MA = MB = MC. Lại có SA = SB = SC, suy ra SM⊥(ABC). Ta có MB = 1 2 AC = √ 2, SM = √ SA2 −AM2 = √ 7. Chọn hệ trục tọa độ như hình vẽ. Ta có M(0;0;0),B 0; √ 2;0 ,C − √ 2;0;0 ,A √ 2;0;0 ,S 0;0; √ 7 . Suy ra N − √ 2 2 ; √ 2 2 ;0 ,P √ 2 3 ;0; 2 √ 7 3 ,Q 0;2 √ 2 3 ; √ 7 3 . Khi đó −−→ MN = − √ 2 2 ; √ 2 2 ;0 , −→ MP = √ 2 3 ;0; 2 √ 7 3 . A B C S M N P Q x y z Suy ra −−→ MN, −→ MP = √ 14 3 ; √ 14 3 ;− 1 3 . Lại có −−→ MQ = 0;2 √ 2 3 ; √ 7 3 . Vậy VMNPQ = 1 6 −−→ MN, −→ MP . −−→ MQ = √ 7 18 . Câu 46. Trong không gian Oxyz, cho mặt cầu (S) : (x − 1)2 + (y + 1)2 + (z − 2)2 = 16 và điểm A(1;2;3). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt (S) theo ba đường tròn. Tổng diện tích của ba hình tròn tương ứng đó là A. 10π. B. 36π. C. 38π. D. 33π. Lời giải. Chọn phương án C. Mặt cầu (S) có tâm I(1;−1;2) và bán kính R = 4. Xét ba mặt phẳng đi qua A và song song với các trục tọa độ lần lượt có phương trình là (P1) : x = 1, (P2) : y = 2 và (P3) : z = 3. Khi đó (P1),(P2) và (P3) đôi một vuông góc nên thỏa mãn yêu cầu bài toán. Ta có d(I,(P1)) = 0, d(I,(P2)) = 3, d(I,(P3)) = 1. Suy ra các đường tròn giao tuyến lần lượt có bán kính là r1 = √ 16−0 = 4, r2 = √ 16−9 = √ 7, r3 = √ 16−1 = √ 15. Vậy tổng diện tích 3 hình tròn tương ứng là πr2 1 +πr2 2 +πr2 3 = 16π +7π +15π = 38π. Câu 47. Cho hàm số y = f(x) liên tục trên [0;+∞) và x2 0 f(t)dt = xsin(πx). Giá trị f(4) bằng A. π −1 4 . B. π 2 . C. 1 2 . D. π 4 . Lời giải. Chọn phương án B. 11
  • 12. Ta có x2 0 f(t)dt = xsin(πx) ⇔ F(x2 )−F(0) = xsin(πx). Lấy đạo hàm hai vế ta được 2xF (x2) = sin(πx)+πxcos(πx) ⇒ f(x2) = sin(πx)+πxcos(πx) 2x . Với x = 2 ta có f(4) = sin(2π)+2π cos(2π) 4 = π 2 . Với x = −2 ta có f(4) = sin(−2π)−2π cos(−2π) −4 = π 2 . Vậy f(4) = π 2 . Câu 48. Có 2 học sinh lớp A, 3 học sinh lớp B và 4 học sinh lớp C xếp thành một hàng ngang sao cho giữa hai học sinh lớp A không có học sinh lớp B. Hỏi có bao nhiêu cách xếp hàng như vậy ? A. 145152. B. 108864. C. 217728. D. 80640. Lời giải. Chọn phương án A. Để giữa hai học sinh lớp A không có học sinh lớp B nào ta có các trường hợp sau: TH1: Hai học sinh lớp A đứng cạnh nhau có 8×2!×7! = 80640 cách; TH2: Hai học sinh lớp A đứng cách nhau 1 vị trí có 7×2!×A1 4 ×6! = 40320 cách; TH3: Hai học sinh lớp A đứng cách nhau 2 vị trí có 6×2!×A2 4 ×5! = 17280 cách; TH4: Hai học sinh lớp A đứng cách nhau 3 vị trí có 5×2!×A3 4 ×4! = 5760 cách; TH5: Hai học sinh lớp A đứng cách nhau 4 vị trí có 4×2!×A4 4 ×3! = 1152 cách. Vậy số cách xếp hàng là 80640+40320+17280+5760+1152 = 145152. Câu 49. Cho hai số phức z,w thỏa mãn |z−3−2i| 1 và |w+1+2i| |w−2−i|. Giá trị nhỏ nhất của |z−w| bằng A. 2 √ 2+1 2 . B. 3 √ 2−2 2 . C. 5 √ 2−2 2 . D. √ 2+1. Lời giải. Chọn phương án C. Dễ thấy tập hợp biểu diễn các số phức z là hình tròn tâm I(3;2) và bán kính R = 1. Gọi w = x+yi (x,y ∈ R), ta có (x+1)2 +(y+2)2 (x−2)2 +(y−1)2 ⇔ x+y 0. Do đó tập hợp các điểm biểu diễn số phức w là nửa mặt phẳng bờ d : x+y = 0. Từ đó suy ra min|z−w| = d(I,d)−R = |3+2| √ 1+1 −1 = 5 √ 2−1 2 . Câu 50. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, BC = a √ 3, SA = a và SA vuông góc với đáy ABCD. Gọi α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC). Giá trị của sinα bằng A. √ 2 4 . B. √ 3 5 . C. √ 7 8 . D. √ 3 2 . Lời giải. Chọn phương án A. Đặt a = 1 và chọn hệ trục tọa độ như hình vẽ. Ta có B(1;0;0),D(0; √ 3;0) ⇒ −→ BD = (−1; √ 3;0). Lại có S(0;0;1),C(1; √ 3;0) ⇒ −→ SB = (1;0;−1), −→ SC = (1; √ 3;−1). Suy ra −→ SB, −→ SC = ( √ 3;0; √ 3). Vậy sinα = |− √ 3| √ 1+3. √ 3+3 = √ 2 4 . A B C D S x y z ——— Hết ——— 12