SlideShare una empresa de Scribd logo
1 de 23
Descargar para leer sin conexión
Equation of Lines
(Linear Function)
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
                      b  y intercept
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
                      b  y intercept

                              OR
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
                      b  y intercept

                              OR
                  Ax  By  C  0
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
                      b  y intercept

                              OR
                  Ax  By  C  0 (general form)
Equation of Lines
              (Linear Function)
All straight lines can be written in the form;
                            y  mx  b
                      m  slope
                      b  y intercept

                             OR
                Ax  By  C  0 (general form)
              Note: A, B, C are integers or surds
Equation of Lines
               (Linear Function)
 All straight lines can be written in the form;
                              y  mx  b
                       m  slope
                       b  y intercept

                               OR
                  Ax  By  C  0 (general form)
                Note: A, B, C are integers or surds
e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing
     through (0,6) in general form.
Equation of Lines
               (Linear Function)
 All straight lines can be written in the form;
                              y  mx  b
                       m  slope
                       b  y intercept

                               OR
                  Ax  By  C  0 (general form)
                Note: A, B, C are integers or surds
e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing
     through (0,6) in general form.
                 1
  required m  
                  5
Equation of Lines
               (Linear Function)
 All straight lines can be written in the form;
                              y  mx  b
                       m  slope
                       b  y intercept

                               OR
                  Ax  By  C  0 (general form)
                Note: A, B, C are integers or surds
e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing
     through (0,6) in general form.              1
                                           y   x6
                 1                               5
  required m  
                  5
Equation of Lines
               (Linear Function)
 All straight lines can be written in the form;
                              y  mx  b
                       m  slope
                       b  y intercept

                               OR
                  Ax  By  C  0 (general form)
                Note: A, B, C are integers or surds
e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing
     through (0,6) in general form.              1
                                           y   x6
                 1                                5
  required m                            5 y   x  30
                  5
Equation of Lines
               (Linear Function)
 All straight lines can be written in the form;
                              y  mx  b
                       m  slope
                       b  y intercept

                               OR
                  Ax  By  C  0 (general form)
                Note: A, B, C are integers or surds
e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing
     through (0,6) in general form.               1
                                            y   x6
                 1                                5
  required m                            5 y   x  30
                  5
                                          x  5 y  30  0
Note: lines parallel to the x axis (y = c)
Note: lines parallel to the x axis (y = c)
                  y




                                 x
Note: lines parallel to the x axis (y = c)
                  y


                                3, 2 
                                 x
Note: lines parallel to the x axis (y = c)
                  y


                                3, 2 
                                 x

                              y2
Note: lines parallel to the x axis (y = c)
                  y


                                 3, 2 
                                  x

                              y2


  lines parallel to the y axis (x = k)
Note: lines parallel to the x axis (y = c)
                  y


                                 3, 2 
                                  x

                              y2


  lines parallel to the y axis (x = k)
                  y




                                  x
Note: lines parallel to the x axis (y = c)
                  y


                                 3, 2 
                                  x

                              y2


  lines parallel to the y axis (x = k)
                  y


                                 3, 2 
                                  x
Note: lines parallel to the x axis (y = c)
                  y


                                 3, 2 
                                  x

                              y2


  lines parallel to the y axis (x = k)
                  y


                                 3, 2 
                                  x

                                      x3
Note: lines parallel to the x axis (y = c)
                  y


                                 3, 2 
                                  x

                              y2
                                             Exercise 5C; 1b, 3cf, 4a,
                                                5d, 6df, 8df, 10b,
                                                     11c, 12
  lines parallel to the y axis (x = k)
                  y


                                 3, 2 
                                  x

                                      x3

Más contenido relacionado

La actualidad más candente

Linear equations
Linear equationsLinear equations
Linear equationscathyguyer
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curveKaushal Patel
 
Coons bicubic surface
Coons bicubic surfaceCoons bicubic surface
Coons bicubic surfaceramac123
 
Data structure computer graphs
Data structure computer graphsData structure computer graphs
Data structure computer graphsKumar
 
1.15.08 Differentials
1.15.08   Differentials1.15.08   Differentials
1.15.08 Differentialschrismac47
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Atit Gaonkar
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iiimanoj302009
 
Graph in data structure
Graph in data structureGraph in data structure
Graph in data structureAbrish06
 
Graphs In Data Structure
Graphs In Data StructureGraphs In Data Structure
Graphs In Data StructureAnuj Modi
 
Graph data structure
Graph data structureGraph data structure
Graph data structureTech_MX
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)Nigel Simmons
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadraticsNigel Simmons
 

La actualidad más candente (14)

Linear equations
Linear equationsLinear equations
Linear equations
 
Tracing of cartesian curve
Tracing of cartesian curveTracing of cartesian curve
Tracing of cartesian curve
 
Coons bicubic surface
Coons bicubic surfaceCoons bicubic surface
Coons bicubic surface
 
Data structure computer graphs
Data structure computer graphsData structure computer graphs
Data structure computer graphs
 
1.15.08 Differentials
1.15.08   Differentials1.15.08   Differentials
1.15.08 Differentials
 
Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI ) Straight Lines ( Especially For XI )
Straight Lines ( Especially For XI )
 
Data structure
Data structureData structure
Data structure
 
Graph
GraphGraph
Graph
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
Graph in data structure
Graph in data structureGraph in data structure
Graph in data structure
 
Graphs In Data Structure
Graphs In Data StructureGraphs In Data Structure
Graphs In Data Structure
 
Graph data structure
Graph data structureGraph data structure
Graph data structure
 
11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)11X1 T10 01 graphing quadratics (2010)
11X1 T10 01 graphing quadratics (2010)
 
11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics11X1 T11 01 graphing quadratics
11X1 T11 01 graphing quadratics
 

Destacado

Elizabeth& Valarie - Linear Function
Elizabeth& Valarie - Linear FunctionElizabeth& Valarie - Linear Function
Elizabeth& Valarie - Linear FunctionHope Scott
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Destacado (8)

Linear Function
Linear FunctionLinear Function
Linear Function
 
Elizabeth& Valarie - Linear Function
Elizabeth& Valarie - Linear FunctionElizabeth& Valarie - Linear Function
Elizabeth& Valarie - Linear Function
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

Similar a 11 x1 t05 03 equation of lines (2012)

11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of LinesNigel Simmons
 
2.5 Equations of Lines
2.5 Equations of Lines2.5 Equations of Lines
2.5 Equations of Linessmiller5
 
Copy_of_slopeofaline (1).ppt
Copy_of_slopeofaline (1).pptCopy_of_slopeofaline (1).ppt
Copy_of_slopeofaline (1).pptLeianMartin1
 
Copy_of_slopeofaline.ppt
Copy_of_slopeofaline.pptCopy_of_slopeofaline.ppt
Copy_of_slopeofaline.pptchinnurulz
 
The gradient of a straight line
The gradient of a straight lineThe gradient of a straight line
The gradient of a straight lineAwais Khan
 
Bba i-bm-u-4-coordinate geometry
Bba i-bm-u-4-coordinate geometryBba i-bm-u-4-coordinate geometry
Bba i-bm-u-4-coordinate geometryRai University
 
Lesson 6 straight line
Lesson 6    straight lineLesson 6    straight line
Lesson 6 straight lineJean Leano
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2loptruonga2
 
11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)Nigel Simmons
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)Nigel Simmons
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxKristenHathcock
 
1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equations1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equationssmiller5
 
March 19
March 19March 19
March 19khyps13
 
X2 t07 01 features calculus (2013)
X2 t07 01 features calculus (2013)X2 t07 01 features calculus (2013)
X2 t07 01 features calculus (2013)Nigel Simmons
 

Similar a 11 x1 t05 03 equation of lines (2012) (20)

11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines11 X1 T05 03 Equation Of Lines
11 X1 T05 03 Equation Of Lines
 
2.5 Equations of Lines
2.5 Equations of Lines2.5 Equations of Lines
2.5 Equations of Lines
 
identities1.2
identities1.2identities1.2
identities1.2
 
Copy_of_slopeofaline (1).ppt
Copy_of_slopeofaline (1).pptCopy_of_slopeofaline (1).ppt
Copy_of_slopeofaline (1).ppt
 
Copy_of_slopeofaline.ppt
Copy_of_slopeofaline.pptCopy_of_slopeofaline.ppt
Copy_of_slopeofaline.ppt
 
Copy_of_slopeofaline.ppt
Copy_of_slopeofaline.pptCopy_of_slopeofaline.ppt
Copy_of_slopeofaline.ppt
 
Copy_of_slopeofaline.ppt
Copy_of_slopeofaline.pptCopy_of_slopeofaline.ppt
Copy_of_slopeofaline.ppt
 
The gradient of a straight line
The gradient of a straight lineThe gradient of a straight line
The gradient of a straight line
 
Chapter 1 straight line
Chapter 1 straight lineChapter 1 straight line
Chapter 1 straight line
 
Bba i-bm-u-4-coordinate geometry
Bba i-bm-u-4-coordinate geometryBba i-bm-u-4-coordinate geometry
Bba i-bm-u-4-coordinate geometry
 
Lesson 6 straight line
Lesson 6    straight lineLesson 6    straight line
Lesson 6 straight line
 
Graphquadraticfcns2
Graphquadraticfcns2Graphquadraticfcns2
Graphquadraticfcns2
 
Functions
FunctionsFunctions
Functions
 
11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)11X1 t10 01 graphing quadratics (2011)
11X1 t10 01 graphing quadratics (2011)
 
11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)11 x1 t10 01 graphing quadratics (2012)
11 x1 t10 01 graphing quadratics (2012)
 
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptxWRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
WRITING AND GRAPHING LINEAR EQUATIONS 1.pptx
 
1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equations1.4.4 Parallel and Perpendicular Line Equations
1.4.4 Parallel and Perpendicular Line Equations
 
Gradient
GradientGradient
Gradient
 
March 19
March 19March 19
March 19
 
X2 t07 01 features calculus (2013)
X2 t07 01 features calculus (2013)X2 t07 01 features calculus (2013)
X2 t07 01 features calculus (2013)
 

Más de Nigel Simmons

12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 

Más de Nigel Simmons (20)

12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 

Último

How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17Celine George
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17Celine George
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICESayali Powar
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxMYDA ANGELICA SUAN
 
Philosophy of Education and Educational Philosophy
Philosophy of Education  and Educational PhilosophyPhilosophy of Education  and Educational Philosophy
Philosophy of Education and Educational PhilosophyShuvankar Madhu
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptxSandy Millin
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxEduSkills OECD
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17Celine George
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxraviapr7
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptxraviapr7
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxiammrhaywood
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfMohonDas
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfMohonDas
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxSaurabhParmar42
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationMJDuyan
 
How to Print Employee Resume in the Odoo 17
How to Print Employee Resume in the Odoo 17How to Print Employee Resume in the Odoo 17
How to Print Employee Resume in the Odoo 17Celine George
 

Último (20)

How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17How to Add a many2many Relational Field in Odoo 17
How to Add a many2many Relational Field in Odoo 17
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
How to Solve Singleton Error in the Odoo 17
How to Solve Singleton Error in the  Odoo 17How to Solve Singleton Error in the  Odoo 17
How to Solve Singleton Error in the Odoo 17
 
Quality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICEQuality Assurance_GOOD LABORATORY PRACTICE
Quality Assurance_GOOD LABORATORY PRACTICE
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptx
 
Philosophy of Education and Educational Philosophy
Philosophy of Education  and Educational PhilosophyPhilosophy of Education  and Educational Philosophy
Philosophy of Education and Educational Philosophy
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
 
How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17How to Make a Field read-only in Odoo 17
How to Make a Field read-only in Odoo 17
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptx
 
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptxClinical Pharmacy  Introduction to Clinical Pharmacy, Concept of clinical pptx
Clinical Pharmacy Introduction to Clinical Pharmacy, Concept of clinical pptx
 
Finals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quizFinals of Kant get Marx 2.0 : a general politics quiz
Finals of Kant get Marx 2.0 : a general politics quiz
 
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptxAUDIENCE THEORY -- FANDOM -- JENKINS.pptx
AUDIENCE THEORY -- FANDOM -- JENKINS.pptx
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdf
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdf
 
CAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptxCAULIFLOWER BREEDING 1 Parmar pptx
CAULIFLOWER BREEDING 1 Parmar pptx
 
UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024UKCGE Parental Leave Discussion March 2024
UKCGE Parental Leave Discussion March 2024
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive Education
 
How to Print Employee Resume in the Odoo 17
How to Print Employee Resume in the Odoo 17How to Print Employee Resume in the Odoo 17
How to Print Employee Resume in the Odoo 17
 
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdfPersonal Resilience in Project Management 2 - TV Edit 1a.pdf
Personal Resilience in Project Management 2 - TV Edit 1a.pdf
 

11 x1 t05 03 equation of lines (2012)

  • 2. Equation of Lines (Linear Function) All straight lines can be written in the form;
  • 3. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b
  • 4. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope
  • 5. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept
  • 6. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR
  • 7. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0
  • 8. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form)
  • 9. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds
  • 10. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing through (0,6) in general form.
  • 11. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing through (0,6) in general form. 1 required m   5
  • 12. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing through (0,6) in general form. 1 y   x6 1 5 required m   5
  • 13. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing through (0,6) in general form. 1 y   x6 1 5 required m   5 y   x  30 5
  • 14. Equation of Lines (Linear Function) All straight lines can be written in the form; y  mx  b m  slope b  y intercept OR Ax  By  C  0 (general form) Note: A, B, C are integers or surds e.g. Find the equation of the line perpendicular to y = 5x – 2 , passing through (0,6) in general form. 1 y   x6 1 5 required m   5 y   x  30 5 x  5 y  30  0
  • 15. Note: lines parallel to the x axis (y = c)
  • 16. Note: lines parallel to the x axis (y = c) y x
  • 17. Note: lines parallel to the x axis (y = c) y  3, 2  x
  • 18. Note: lines parallel to the x axis (y = c) y  3, 2  x y2
  • 19. Note: lines parallel to the x axis (y = c) y  3, 2  x y2 lines parallel to the y axis (x = k)
  • 20. Note: lines parallel to the x axis (y = c) y  3, 2  x y2 lines parallel to the y axis (x = k) y x
  • 21. Note: lines parallel to the x axis (y = c) y  3, 2  x y2 lines parallel to the y axis (x = k) y  3, 2  x
  • 22. Note: lines parallel to the x axis (y = c) y  3, 2  x y2 lines parallel to the y axis (x = k) y  3, 2  x x3
  • 23. Note: lines parallel to the x axis (y = c) y  3, 2  x y2 Exercise 5C; 1b, 3cf, 4a, 5d, 6df, 8df, 10b, 11c, 12 lines parallel to the y axis (x = k) y  3, 2  x x3