SlideShare a Scribd company logo
1 of 31
Download to read offline
Parametric Coordinates
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y




                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y




                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y          x 2  4ay




                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y          x 2  4ay      Cartesian equation




                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y          x 2  4ay     Cartesian equation
                      x  2at , y  at 2




                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y          x 2  4ay     Cartesian equation
                      x  2at , y  at 2      Parametric coordinates



                         x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y           x 2  4ay     Cartesian equation
                       x  2at , y  at 2      Parametric coordinates

                 (2a, a)

                           x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y           x 2  4ay     Cartesian equation
                       x  2at , y  at 2      Parametric coordinates

                 (2a, a)          Cartesian coordinates

                           x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y           x 2  4ay     Cartesian equation
                       x  2at , y  at 2      Parametric coordinates

                 (2a, a)          Cartesian coordinates
                   t 1
                           x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
          y           x 2  4ay     Cartesian equation
                       x  2at , y  at 2      Parametric coordinates

                 (2a, a)          Cartesian coordinates
                   t 1           parameter
                           x
Parametric Coordinates
Cartesian Coordinates: curve is described by one equation and points
                       are described by two numbers.
Parametric Coordinates: curve is described by two equations and points
                        are described by one number (parameter).
           y          x 2  4ay     Cartesian equation
   (4a, 4a)           x  2at , y  at 2      Parametric coordinates
      t  2
                 (2a, a)          Cartesian coordinates
                   t 1           parameter
                           x
Any point on the parabola x 2  4ay has coordinates;
Any point on the parabola x 2  4ay has coordinates;

            x  2at
Any point on the parabola x 2  4ay has coordinates;

            x  2at               y  at 2
Any point on the parabola x 2  4ay has coordinates;

            x  2at               y  at 2

           where; a is the focal length
Any point on the parabola x 2  4ay has coordinates;

            x  2at               y  at 2

           where; a is the focal length
                  t is any real number
Any point on the parabola x 2  4ay has coordinates;

                  x  2at                y  at 2

                  where; a is the focal length
                         t is any real number

e.g. Eliminate the parameter to find the cartesian equation of;
                           1             1
                        x  t , y  t2
                           2             4
Any point on the parabola x 2  4ay has coordinates;

                  x  2at                y  at 2

                  where; a is the focal length
                         t is any real number

e.g. Eliminate the parameter to find the cartesian equation of;
                           1             1
                        x  t , y  t2
                           2             4
     t  2x
Any point on the parabola x 2  4ay has coordinates;

                  x  2at                y  at 2

                  where; a is the focal length
                         t is any real number

e.g. Eliminate the parameter to find the cartesian equation of;
                            1            1
                        x  t , y  t2
                            2            4
                              1
                          y   2x
                                     2
      t  2x
                              4
Any point on the parabola x 2  4ay has coordinates;

                  x  2at                y  at 2

                  where; a is the focal length
                         t is any real number

e.g. Eliminate the parameter to find the cartesian equation of;
                            1            1
                        x  t , y  t2
                            2            4
                               1
                          y   2x
                                     2
      t  2x
                               4
                           y   4x2 
                               1
                               4
                           y  x2
Any point on the parabola x 2  4ay has coordinates;

                    x  2at                 y  at 2

                    where; a is the focal length
                           t is any real number

   e.g. Eliminate the parameter to find the cartesian equation of;
                                1           1
                            x  t , y  t2
                                2           4
                                   1
                              y   2x
                                        2
         t  2x
                                   4
                               y   4x2 
                                   1
                                   4
                               y  x2
(ii) State the coordinates of the focus
Any point on the parabola x 2  4ay has coordinates;

                    x  2at                 y  at 2

                    where; a is the focal length
                           t is any real number

   e.g. Eliminate the parameter to find the cartesian equation of;
                                1           1
                            x  t , y  t2
                                2           4
                                   1
                              y   2x
                                        2
         t  2x
                                   4
                               y   4x2 
                                   1
                                   4
                               y  x2
(ii) State the coordinates of the focus
               1
           a
               4
Any point on the parabola x 2  4ay has coordinates;

                    x  2at                 y  at 2

                    where; a is the focal length
                           t is any real number

   e.g. Eliminate the parameter to find the cartesian equation of;
                                1           1
                            x  t , y  t2
                                2           4
                                   1
                              y   2x
                                        2
         t  2x
                                   4
                               y   4x2 
                                   1
                                   4
                               y  x2
(ii) State the coordinates of the focus               1
           a
               1                          focus   0, 
               4                                      4
(iii) Calculate the parametric coordinates of the curve y  8 x 2
(iii) Calculate the parametric coordinates of the curve y  8 x 2
     x 2  4ay
(iii) Calculate the parametric coordinates of the curve y  8 x 2
     x 2  4ay
         1
     4a 
         8
          1
      a
         32
(iii) Calculate the parametric coordinates of the curve y  8 x 2
     x 2  4ay
         1
     4a 
         8
          1
      a
         32
                                       1 1 
       the parametric coordinates are  t , t 2 
                                        16 32 
(iii) Calculate the parametric coordinates of the curve y  8 x 2
     x 2  4ay
         1
     4a 
         8
          1
      a
         32
                                       1 1 
       the parametric coordinates are  t , t 2 
                                        16 32 




            Exercise 9D; 1, 2 (not latus rectum), 3, 5, 7a

More Related Content

What's hot

Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
bikram ...
 
Lines, planes, and hyperplanes
Lines, planes, and hyperplanesLines, planes, and hyperplanes
Lines, planes, and hyperplanes
Tarun Gehlot
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_space
Mahbub Alwathoni
 

What's hot (16)

Some Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert SpaceSome Results on Common Fixed Point Theorems in Hilbert Space
Some Results on Common Fixed Point Theorems in Hilbert Space
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
Time complexity
Time complexityTime complexity
Time complexity
 
Lines, planes, and hyperplanes
Lines, planes, and hyperplanesLines, planes, and hyperplanes
Lines, planes, and hyperplanes
 
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By PearsonChapter 4: Vector Spaces - Part 1/Slides By Pearson
Chapter 4: Vector Spaces - Part 1/Slides By Pearson
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_space
 
Vector spaces
Vector spacesVector spaces
Vector spaces
 
Independence, basis and dimension
Independence, basis and dimensionIndependence, basis and dimension
Independence, basis and dimension
 
Recurrences
RecurrencesRecurrences
Recurrences
 
Analisis unidad 3
Analisis unidad 3Analisis unidad 3
Analisis unidad 3
 
Vector space
Vector spaceVector space
Vector space
 
2. la recta
2. la recta2. la recta
2. la recta
 
real vector space
real vector spacereal vector space
real vector space
 
1525 equations of lines in space
1525 equations of lines in space1525 equations of lines in space
1525 equations of lines in space
 
Recurrences
RecurrencesRecurrences
Recurrences
 
1. vectores
1. vectores1. vectores
1. vectores
 

Viewers also liked

11X1 T12 02 parabola as a locus
11X1 T12 02 parabola as a locus11X1 T12 02 parabola as a locus
11X1 T12 02 parabola as a locus
Nigel Simmons
 
11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems
Nigel Simmons
 
11 x1 t11 04 chords of a parabola (2012)
11 x1 t11 04 chords of a parabola (2012)11 x1 t11 04 chords of a parabola (2012)
11 x1 t11 04 chords of a parabola (2012)
Nigel Simmons
 
11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)
Nigel Simmons
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
Nigel Simmons
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
Nigel Simmons
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
Nigel Simmons
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)
Nigel Simmons
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
Nigel Simmons
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
Nigel Simmons
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
Nigel Simmons
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
Nigel Simmons
 
12X1 T08 04 greatest coefficients and terms (2010)
12X1 T08 04 greatest coefficients and terms (2010)12X1 T08 04 greatest coefficients and terms (2010)
12X1 T08 04 greatest coefficients and terms (2010)
Nigel Simmons
 
X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)
Nigel Simmons
 
12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)
Nigel Simmons
 
11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressions
Nigel Simmons
 
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
Nigel Simmons
 

Viewers also liked (20)

11X1 T12 02 parabola as a locus
11X1 T12 02 parabola as a locus11X1 T12 02 parabola as a locus
11X1 T12 02 parabola as a locus
 
11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems11 x1 t11 08 geometrical theorems
11 x1 t11 08 geometrical theorems
 
11 x1 t11 04 chords of a parabola (2012)
11 x1 t11 04 chords of a parabola (2012)11 x1 t11 04 chords of a parabola (2012)
11 x1 t11 04 chords of a parabola (2012)
 
11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)11 x1 t11 02 parabola as a locus (2013)
11 x1 t11 02 parabola as a locus (2013)
 
11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)11 x1 t13 04 converse theorems (2013)
11 x1 t13 04 converse theorems (2013)
 
11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)11 x1 t15 01 definitions (2013)
11 x1 t15 01 definitions (2013)
 
12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)12 X1 T04 07 approximations to roots (2010)
12 X1 T04 07 approximations to roots (2010)
 
11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)11 x1 t11 06 tangents & normals ii (2012)
11 x1 t11 06 tangents & normals ii (2012)
 
11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)11X1 T12 07 chord of contact (2011)
11X1 T12 07 chord of contact (2011)
 
11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)11 x1 t15 02 sketching polynomials (2013)
11 x1 t15 02 sketching polynomials (2013)
 
11X1 T08 04 chain rule
11X1 T08 04 chain rule11X1 T08 04 chain rule
11X1 T08 04 chain rule
 
11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)11 x1 t11 09 locus problems (2012)
11 x1 t11 09 locus problems (2012)
 
12X1 T08 04 greatest coefficients and terms (2010)
12X1 T08 04 greatest coefficients and terms (2010)12X1 T08 04 greatest coefficients and terms (2010)
12X1 T08 04 greatest coefficients and terms (2010)
 
X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)
 
12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)12 x1 t08 02 general binomial expansions (2012)
12 x1 t08 02 general binomial expansions (2012)
 
11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)11 X1 T02 08 inverse functions (2010)
11 X1 T02 08 inverse functions (2010)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressions
 
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
12 X1 T04 06 Displacement, Velocity, Acceleration (2010)
 

Similar to 11 x1 t11 03 parametric coordinates (2012)

11 x1 t11 03 parametric coordinates (2013)
11 x1 t11 03 parametric coordinates (2013)11 x1 t11 03 parametric coordinates (2013)
11 x1 t11 03 parametric coordinates (2013)
Nigel Simmons
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
Tarun Gehlot
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
Nigel Simmons
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
Nigel Simmons
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
swartzje
 
Lesson 14 b - parametric-1
Lesson 14 b - parametric-1Lesson 14 b - parametric-1
Lesson 14 b - parametric-1
Jean Leano
 
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
Cleophas Rwemera
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
Nigel Simmons
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functions
timschmitz
 
11X1 T12 07 chord of contact
11X1 T12 07 chord of contact11X1 T12 07 chord of contact
11X1 T12 07 chord of contact
Nigel Simmons
 
Pc8 6 parametric equations notes
Pc8 6 parametric equations notesPc8 6 parametric equations notes
Pc8 6 parametric equations notes
vhiggins1
 

Similar to 11 x1 t11 03 parametric coordinates (2012) (20)

11 x1 t11 03 parametric coordinates (2013)
11 x1 t11 03 parametric coordinates (2013)11 x1 t11 03 parametric coordinates (2013)
11 x1 t11 03 parametric coordinates (2013)
 
C4 parametric curves_lesson
C4 parametric curves_lessonC4 parametric curves_lesson
C4 parametric curves_lesson
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)11X1 T011 07 chord of contact (2012)
11X1 T011 07 chord of contact (2012)
 
11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
Lesson 14 b - parametric-1
Lesson 14 b - parametric-1Lesson 14 b - parametric-1
Lesson 14 b - parametric-1
 
Class 10 mathematics compendium
Class 10 mathematics compendiumClass 10 mathematics compendium
Class 10 mathematics compendium
 
Math project
Math projectMath project
Math project
 
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
Chapter1polarcoordinatesandvector 150105021140-conversion-gate02
 
Applied Calculus Chapter 1 polar coordinates and vector
Applied Calculus Chapter  1 polar coordinates and vectorApplied Calculus Chapter  1 polar coordinates and vector
Applied Calculus Chapter 1 polar coordinates and vector
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)11 x1 t11 09 locus problems (2013)
11 x1 t11 09 locus problems (2013)
 
2.1 Rectangular Coordinate Systems
2.1 Rectangular Coordinate Systems2.1 Rectangular Coordinate Systems
2.1 Rectangular Coordinate Systems
 
Higher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic FunctionsHigher Maths 2.1.2 - Quadratic Functions
Higher Maths 2.1.2 - Quadratic Functions
 
11X1 T12 07 chord of contact
11X1 T12 07 chord of contact11X1 T12 07 chord of contact
11X1 T12 07 chord of contact
 
Graphing quadratics
Graphing quadraticsGraphing quadratics
Graphing quadratics
 
Pc8 6 parametric equations notes
Pc8 6 parametric equations notesPc8 6 parametric equations notes
Pc8 6 parametric equations notes
 
Polar coordinates
Polar coordinatesPolar coordinates
Polar coordinates
 
Straight line properties
Straight line propertiesStraight line properties
Straight line properties
 

More from Nigel Simmons

11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 

11 x1 t11 03 parametric coordinates (2012)

  • 2. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers.
  • 3. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter).
  • 4. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x
  • 5. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x
  • 6. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay x
  • 7. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x
  • 8. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 x
  • 9. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates x
  • 10. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) x
  • 11. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates x
  • 12. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates t 1 x
  • 13. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation x  2at , y  at 2 Parametric coordinates (2a, a) Cartesian coordinates t 1 parameter x
  • 14. Parametric Coordinates Cartesian Coordinates: curve is described by one equation and points are described by two numbers. Parametric Coordinates: curve is described by two equations and points are described by one number (parameter). y x 2  4ay Cartesian equation (4a, 4a) x  2at , y  at 2 Parametric coordinates t  2 (2a, a) Cartesian coordinates t 1 parameter x
  • 15. Any point on the parabola x 2  4ay has coordinates;
  • 16. Any point on the parabola x 2  4ay has coordinates; x  2at
  • 17. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2
  • 18. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length
  • 19. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number
  • 20. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4
  • 21. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 t  2x
  • 22. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4
  • 23. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2
  • 24. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2 (ii) State the coordinates of the focus
  • 25. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2 (ii) State the coordinates of the focus 1 a 4
  • 26. Any point on the parabola x 2  4ay has coordinates; x  2at y  at 2 where; a is the focal length t is any real number e.g. Eliminate the parameter to find the cartesian equation of; 1 1 x  t , y  t2 2 4 1 y   2x 2 t  2x 4 y   4x2  1 4 y  x2 (ii) State the coordinates of the focus  1 a 1  focus   0,  4  4
  • 27. (iii) Calculate the parametric coordinates of the curve y  8 x 2
  • 28. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay
  • 29. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32
  • 30. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32 1 1   the parametric coordinates are  t , t 2   16 32 
  • 31. (iii) Calculate the parametric coordinates of the curve y  8 x 2 x 2  4ay 1 4a  8 1 a 32 1 1   the parametric coordinates are  t , t 2   16 32  Exercise 9D; 1, 2 (not latus rectum), 3, 5, 7a