SlideShare a Scribd company logo
1 of 42
Download to read offline
Locus and Complex Numbers
Locus and Complex Numbers
Lines
Locus and Complex Numbers
Lines   y




            x
Locus and Complex Numbers
Lines   y
        c



            x
Locus and Complex Numbers
Lines           y
                c



                    x

  Im z   c
Locus and Complex Numbers
Lines           y       y
                c



                    x       x

  Im z   c
Locus and Complex Numbers
Lines           y           y
                c



                    x   k       x

  Im z   c
Locus and Complex Numbers
Lines           y           y
                c



                    x   k                 x

  Im z   c                   Re z   k
Locus and Complex Numbers
Lines           y                   y
                c



                        x       k                 x

  Im z   c                           Re z   k
                    y




                            x
Locus and Complex Numbers
Lines           y                   y
                c



                        x       k                 x

  Im z   c                           Re z   k
                    y




                            x
Locus and Complex Numbers
Lines           y                             y
                c



                             x            k                 x

  Im z   c                                     Re z   k
                         y
                    1


                                      x
                                 2
Locus and Complex Numbers
Lines           y                                 y
                c



                             x               k                        x

  Im z   c                                               Re z   k
                         y
                    1

                                          z  1  z  2
                                      x
                                 2
e.g . z  1  i  z  2  i
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
 OR  bisector of 1,1 and  2,1
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1
                 
      2      2 
     1 
     ,0 
     2 
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                       
                                 2
     ,0 
     2                         3
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                       
                                 2                                      3
     ,0                                      required slope is 
     2                         3                                      2
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                       
                                 2                                      3
     ,0                                      required slope is 
     2                         3                                      2
                        3  1
                 y0   x 
                        2  2
e.g . z  1  i  z  2  i
 x  12   y  12   x  22   y  12
 x2  2x 1  y2  2 y 1  x2  4x  4  y 2  2 y 1
       6x  4 y  3  0
OR  bisector of 1,1 and  2,1
M 1  2 ,1  1               11
                           m
      2      2                 1 2
     1                       
                                 2                                      3
     ,0                                      required slope is 
     2                         3                                      2
                          3     1
               y0   x 
                          2     2
                               3
                  2 y  3 x 
                               2
         6x  4 y  3  0
ii  Sketch z  2i  z  4i
ii  Sketch z  2i  z  4i   y




                                   x
ii  Sketch z  2i  z  4i    y
                               4


                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2
ii  Sketch z  2i  z  4i    y
                               4
                                1
                                    x
                               -2

 Rays
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y




                               x
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y



                     
                               x
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                        x
                                   -2

 Rays

                y



                     
                               x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                            x
                                   -2

 Rays

                y                       y



                     
                               x                x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                                x
                                   -2

 Rays

                y                       y
                                                
                                            
                     
                               x                    x
    arg z  
ii  Sketch z  2i  z  4i        y
                                   4
                                    1
                                                 x
                                   -2

 Rays

                y                       y
                                                  
                                            
                     
                               x                        x
    arg z                                 arg z     

e.g. z  1 and 0  arg z 
                             4

e.g. z  1 and 0  arg z 
                             4
             y




                                 x

e.g. z  1 and 0  arg z 
                             4
             y
             1
   z 1


   -1                    1       x


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1 x


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1       x     arg z  0


             -1

e.g. z  1 and 0  arg z 
                             4
             y                         
             1               arg z 
   z 1                                4
                    
                     4
   -1                    1        x    arg z  0


             -1


                                 Exercise 4N; 1a to j, 2ace, 3ace etc, 4ace

More Related Content

What's hot

12X1 T05 04 differentiating inverse trig (2010)
12X1 T05 04 differentiating inverse trig (2010)12X1 T05 04 differentiating inverse trig (2010)
12X1 T05 04 differentiating inverse trig (2010)Nigel Simmons
 
11X1 T01 10 matrices
11X1 T01 10 matrices11X1 T01 10 matrices
11X1 T01 10 matricesNigel Simmons
 
đáP án toán 11 học kỳ i
đáP án toán 11 học kỳ iđáP án toán 11 học kỳ i
đáP án toán 11 học kỳ iMaths Tqk
 
Operacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaOperacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaJelena Dobrivojevic
 
وحدة الجبر العاشر
وحدة الجبر  العاشروحدة الجبر  العاشر
وحدة الجبر العاشرMr_Mohamed
 
12X1 T03 04 integrating trig functions
12X1 T03 04 integrating trig functions12X1 T03 04 integrating trig functions
12X1 T03 04 integrating trig functionsNigel Simmons
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineJelena Dobrivojevic
 

What's hot (9)

12X1 T05 04 differentiating inverse trig (2010)
12X1 T05 04 differentiating inverse trig (2010)12X1 T05 04 differentiating inverse trig (2010)
12X1 T05 04 differentiating inverse trig (2010)
 
Ex01
Ex01Ex01
Ex01
 
11X1 T01 10 matrices
11X1 T01 10 matrices11X1 T01 10 matrices
11X1 T01 10 matrices
 
đáP án toán 11 học kỳ i
đáP án toán 11 học kỳ iđáP án toán 11 học kỳ i
đáP án toán 11 học kỳ i
 
Korenovanje
KorenovanjeKorenovanje
Korenovanje
 
Operacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaOperacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazima
 
وحدة الجبر العاشر
وحدة الجبر  العاشروحدة الجبر  العاشر
وحدة الجبر العاشر
 
12X1 T03 04 integrating trig functions
12X1 T03 04 integrating trig functions12X1 T03 04 integrating trig functions
12X1 T03 04 integrating trig functions
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
 

Viewers also liked

X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)Nigel Simmons
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)Nigel Simmons
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
X2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersX2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersNigel Simmons
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 

Viewers also liked (8)

X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)X2 T01 09 geometrical representation (2011)
X2 T01 09 geometrical representation (2011)
 
X2 T01 12 locus & complex nos 3 (2010)
X2 T01 12  locus & complex nos 3 (2010)X2 T01 12  locus & complex nos 3 (2010)
X2 T01 12 locus & complex nos 3 (2010)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)X2 T01 09 geometrical representation (2010)
X2 T01 09 geometrical representation (2010)
 
X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)X2 t01 09 geometrical representation (2012)
X2 t01 09 geometrical representation (2012)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
X2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbersX2 T01 09 geometrical representation of complex numbers
X2 T01 09 geometrical representation of complex numbers
 
Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

X2 T01 11 locus & complex nos 2 (2010)

  • 2. Locus and Complex Numbers Lines
  • 3. Locus and Complex Numbers Lines y x
  • 4. Locus and Complex Numbers Lines y c x
  • 5. Locus and Complex Numbers Lines y c x Im z   c
  • 6. Locus and Complex Numbers Lines y y c x x Im z   c
  • 7. Locus and Complex Numbers Lines y y c x k x Im z   c
  • 8. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k
  • 9. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y x
  • 10. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y x
  • 11. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y 1 x 2
  • 12. Locus and Complex Numbers Lines y y c x k x Im z   c Re z   k y 1 z  1  z  2 x 2
  • 13. e.g . z  1  i  z  2  i
  • 14. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12
  • 15. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1
  • 16. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0
  • 17. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1
  • 18. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1   2 2   1     ,0   2 
  • 19. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2    ,0   2  3
  • 20. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3    ,0   required slope is   2  3 2
  • 21. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1 y2  2 y 1  x2  4x  4  y2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3    ,0   required slope is   2  3 2 3 1 y0   x  2 2
  • 22. e.g . z  1  i  z  2  i  x  12   y  12   x  22   y  12 x2  2x 1  y2  2 y 1  x2  4x  4  y 2  2 y 1 6x  4 y  3  0 OR  bisector of 1,1 and  2,1 M 1  2 ,1  1 11  m  2 2  1 2  1   2 3    ,0   required slope is   2  3 2 3 1 y0   x  2 2 3 2 y  3 x  2 6x  4 y  3  0
  • 23. ii  Sketch z  2i  z  4i
  • 24. ii  Sketch z  2i  z  4i y x
  • 25. ii  Sketch z  2i  z  4i y 4 x -2
  • 26. ii  Sketch z  2i  z  4i y 4 1 x -2
  • 27. ii  Sketch z  2i  z  4i y 4 1 x -2
  • 28. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays
  • 29. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y x
  • 30. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y  x
  • 31. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y  x arg z  
  • 32. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y  x x arg z  
  • 33. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y    x x arg z  
  • 34. ii  Sketch z  2i  z  4i y 4 1 x -2 Rays y y    x x arg z   arg z     
  • 35.  e.g. z  1 and 0  arg z  4
  • 36.  e.g. z  1 and 0  arg z  4 y x
  • 37.  e.g. z  1 and 0  arg z  4 y 1 z 1 -1 1 x -1
  • 38.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x -1
  • 39.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 40.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 41.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1
  • 42.  e.g. z  1 and 0  arg z  4 y  1 arg z  z 1 4  4 -1 1 x arg z  0 -1 Exercise 4N; 1a to j, 2ace, 3ace etc, 4ace