SlideShare a Scribd company logo
1 of 116
Download to read offline
Miscellaneous Dynamics
         Questions
e.g. (i) (1992) – variable angular velocity
                            The diagram shows a model train T that is
                            moving around a circular track, centre O
                            and radius a metres.
                            The train is travelling at a constant speed of
                            u m/s. The point N is in the same plane as
                            the track and is x metres from the nearest
                            point on the track. The line NO produced
                            meets the track at S.
Let TNS   and TOS   as in the diagram
dθ
a) Express      in terms of a and u
             dt
dθ
a) Express      in terms of a and u   l  a
             dt
dθ
a) Express      in terms of a and u    l  a
             dt                       dl     d
                                         a
                                      dt     dt
dθ
a) Express      in terms of a and u     l  a
             dt                        dl     d
                                          a
                                       dt     dt
                                              d
                                        ua
                                               dt
                                      d u
                                          
                                      dt a
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO    
       NTO    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                      (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
dθ
a) Express      in terms of a and u              l  a
             dt                                 dl     d
                                                   a
                                                dt     dt
                                                       d
                                                 ua
                                                        dt
                                               d u
                                                   
                                               dt a
b) Show that a sin    - x  a sin  0 and deduce that;
            d              u cos   
                 
             dt  x  a  cos   a cos   
NTO  TNO  TOS                        (exterior , OTN )
   NTO                                      a      ax
                                      In NTO;      
       NTO                                sin  sin    
                                           a sin      a  x  sin 
                          a sin      a  x  sin   0
differentiate with respect to t
              d  d   a  x  cos  d  0
a cos                           
              dt dt                     dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                        
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
a cos     a  x  cos   d  a cos     u
                                   dt                    a
                                   d            u cos   
                                      
                                   dt a cos     a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt
   when NT is a tangent;
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;

                                                  N                     O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that        0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90           (tangent  radius)
                                                   N                    O
     90
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos      0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90
     
  dt a cos 90  a  x  cos 
differentiate with respect to t

a cos    d  d   a  x  cos  d  0
                                         
               dt dt                       dt
                d                                      d
a cos         a cos     a  x  cos       0
                dt                                      dt
 a cos     a  x  cos   d  a cos     u
                                    dt                   a
                                    d           u cos   
                                       
                                    dt a cos     a  x  cos 
                d
c) Show that         0 when NT is tangential to the track.
                dt                                                      T
   when NT is a tangent;
  NTO  90            (tangent  radius)
                                                   N                    O
     90
 d             u cos 90                                  d
                                                            0
  dt a cos 90  a  x  cos                             dt
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
             
  when  
             2
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T



      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
               
    when  
               2
                   T

                   a
      
N                  O
          2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T

          5a        a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
      
N                   O
           2a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                2
                    T           2
                        cos  
          5a                     5
                    a
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                     cos    
                         
                                1
N
           2a
                    O    2       5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                             a    
                                                5         5
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                
    when  
                                                         
                2
                    T                             u cos    
                                2       d             2    
                        cos              
                                 5      dt             
          5a        a                        a cos     2a cos 
                                                  2     
                           
                      cos    
                                   1
                                                   1 
N
           2a
                    O    2        5              u 
                                                     5
                                                1   2a  2 
                                              a    
                                                5         5
                                               u
                                            
                                              5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
                                                 5         5
                                                u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
                                             
                                               5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
                 
     when  
                                                          
                 2
                     T                             u cos    
                                 2       d             2    
                         cos              
                                  5      dt             
           5a        a                        a cos     2a cos 
                                                   2     
                            
                       cos    
                                    1
                                                    1 
N
            2a
                     O    2        5              u 
                                                      5
    when   0                                   1   2a  2 
                                               a    
    d         u cos 0                           5         5
       
     dt a cos 0  2a cos 0                      u
          u                                  
                                              5a
          3a
          5 u
        
          3 5a
d) Suppose that x = a
                                                             3
   Show that the train’s angular velocity about N when   is
   times the angular velocity about N when   0          2   5
              
   when  
                                                             
              2
                    T                                 u cos    
                               2           d              2    
                      cos                   
                                5          dt              
        5a          a                            a cos     2a cos 
                                                      2     
                            
                      cos    
                                     1
                                                       1 
N
         2a
                    O     2         5                u 
                                                         5
  when   0                                        1   2a  2 
                                                 a    
  d         u cos 0                                5         5
     
   dt a cos 0  2a cos 0                          u
         u                                     
                                                 5a
        3a                                                     3
                         Thus the angular velocity when   is times
        5 u                                                   2 5
       
        3 5a             the angular velocity when   0
(ii) (2000)          A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                          ds
                     position of P. Let s denote the arc length AP, v       ,
                                                                          dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l
    ds
 v
     dt
    d
 l
    dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v
      dt
     d
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2
                          
      ds            dt  2
                            dt
  v                        dv d
      dt                      
     d                     d dt
  l
      dt                    dv v
                              
                            d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                       dv d
      dt                     
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l
      dt                   dv v
                             
                           d l
(ii) (2000)         A string of length l is initially vertical and has a mass
                     P of m kg attached to it. The mass P is given a
                     horizontal velocity of magnitude V and begins to
                     move along the arc of a circle in a counterclockwise
                     direction.
                     Let O be the centre of this circle and A the initial
                                                                           ds
                     position of P. Let s denote the arc length AP, v        ,
                                                                           dt
  AOP and let the tension in the string be T. The acceleration due to
 gravity is g and there are no frictional forces acting on P.
 For parts a) to d), assume the mass is moving along the circle.
                                                               d 2s 1 d  1 2 
a) Show that the tangential acceleration of P is given by 2               v 
                                                               dt    l d  2 
  s  l            d s dv
                      2                       1 dv
                                             v
                        
      ds            dt 2 dt                   l d
  v                                          1 dv d 1
      dt                   dv d               v2        
                                            l d dv  2 
     d                    d dt
  l                                          1 d 1 2 
      dt                   dv v                    v 
                                            l d  2 
                           d l
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T

            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                   s
               
            mg
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
       T                      m
                               s                  m   mg sin 
                                                    s
               
            mg                                        g sin 
                                                   s
                        mg sin 
                                          1 d 1 2 
                                                v    g sin 
                                          l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                         m
                                   s                  m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                            mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
         v    g sin 
   l d  2 
     d 1 2 
        v    gl sin 
    d  2 
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
   1 d 1 2 
           v    g sin 
   l d  2 
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                 m   mg sin 
                                                        s
                 
              mg                                          g sin 
                                                       s
                              mg sin 
                                              1 d 1 2 
                                                    v    g sin 
                                              l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                when   0, v  V
   1 d 1 2 
           v    g sin                      V 2  2 gl  c
   l d  2 
                                                c  V 2  2 gl
     d 1 2 
         v    gl sin 
    d  2 
     1 2
        v  gl cos  c
      2
        v 2  2 gl cos  c
1 d 1 2 
b) Show that the equation of motion of P is       v    g sin 
                                            l d  2 
        T                          m
                                    s                     m   mg sin 
                                                            s
                 
              mg                                              g sin 
                                                           s
                              mg sin 
                                                1 d 1 2 
                                                      v    g sin 
                                                l d  2 
c) Deduce that V 2  v 2  2 gl 1  cos 
                                                    when   0, v  V
   1 d 1 2 
           v    g sin                         V 2  2 gl  c
   l d  2 
                                                    c  V 2  2 gl
     d 1 2 
         v    gl sin                     v 2  2 gl cos  V 2  2 gl
    d  2 
     1 2                                      V 2  v 2  2 gl  2 gl cos
        v  gl cos  c
      2                                       V 2  v 2  2 gl 1  cos 
        v 2  2 gl cos  c
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos              m  T  mg cos
                                  x
    m
     x
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l
                1
 0  mg cos  m3 gl  2 gl 1  cos 
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l
     mg cos  m g  2 g cos 
    3mg cos   mg
1 2
d) Explain why T-mg cos θ  mv
                           l
      T     mg cos                    m  T  mg cos
                                         x
     m
       x                 But, the resultant force towards the centre is
                         centripetal force.
                                       mv 2
                                             T  mg cos
                                         l
                                              1 2
                              T  mg cos  mv
                                              l
e) Suppose that V 2  3 gl. Find the value of  at which T  0
 T  mg cos  mV 2  2 gl 1  cos 
                 1
                 l                                   cos  
                                                               1
                1
 0  mg cos  m3 gl  2 gl 1  cos                       3
                l                                     1.911radians
     mg cos  m g  2 g cos 
    3mg cos   mg
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
               1 2
  T  mg cos  mv
               l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
f) Consider the situation in part e). Briefly describe, in words, the path of
   P after the tension T becomes zero.
  When T = 0, the particle would undergo projectile motion, i.e. it
  would follow a parabolic arc.
  Its initial velocity would be tangential to the circle with magnitude;
                   1 2
  T  mg cos  mv
                   l
           1   1 mv 2
     mg  
          3 l
                   gl
             v2 
                    3
                      gl
              v
                      3
(iii) (2003)
     A particle of mass m is thrown from the top, O, of a very tall building
     with an initial velocity u at an angle of  to the horizontal. The
     particle experiences the effect of gravity, and a resistance
     proportional to its velocity in both directions.
                         The equations of motion in the horizontal and
                         vertical directions are given respectively by
                                    kx and    ky  g
                                 x               y      
                          where k is a constant and the acceleration due
                          to gravity is g.
                               (You are NOT required to show these)
a) Derive the result x  ue  kt cos 
                     
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt
a) Derive the result x  ue  kt cos 
                     
   dx
    
        kx
           
   dt         x
              
         1       dx
    t 
         k u cos x
                  
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
a) Derive the result x  ue  kt cos 
                        
   dx
         kx
            
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                      x 
                                         t   log
                                              1        
   dx                                                     
         kx
                                             k    u cos  
   dt          x
               
          1       dx 
    t 
          k u cos x
          1
    t   log x u cos
                      x
                      
                   
          k
          1
    t   log x  logu cos  
                   
          k
a) Derive the result x  ue  kt cos 
                                                                    x 
                                                t   log
                                                       1             
   dx                                                                   
         kx
                                                      k         u cos  
   dt          x
               
          1       dx                                       x  
    t                                     kt  log               
          k u cos x                                       u cos  
          1                                 x
                                            
    t   log x u cos                           e  kt
                      x
                      
                   
          k                              u cos 
          1
    t   log x  logu cos  
                                              x  ue  kt cos 
                                                
          k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx
                                                         k         u cos  
   dt          x
               
          1        dx                                         x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                      x
                      
                   
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                        1
                  
                        k
   equation of motion and initial condition
   dy
         ky  g
            
   dt
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy
         ky  g
              
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y
                      dy
     t 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                     
            1
     t   logky  g u sin 
                               y
                               
                         
            k
a) Derive the result x  ue  kt cos 
                                                                       x 
                                                   t   log
                                                          1             
   dx                                                                      
         kx                                            k         u cos  
   dt             x
                  
          1           dx                                      x  
    t                                        kt  log               
          k u cos x                                          u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                       
   dt         y                                      ky  g 
                      dy                  kt  log                    
     t                                             ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                      e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
            k
a) Derive the result x  ue  kt cos 
                                                                        x 
                                                   t   log
                                                           1             
   dx                                                                       
         kx                                             k         u cos  
   dt             x
                  
          1           dx                                      x   
    t                                        kt  log                
          k u cos x                                           u cos  
          1                                    x
                                               
    t   log x u cos                              e  kt
                         x
                         
                      
          k                                u cos 
          1
    t   log x  logu cos  
                                                  x  ue  kt cos 
                                                   
          k
b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate
                           1
                     
                           k
   equation of motion and initial condition
   dy                                    kt  logky  g   logku sin   g 
         ky  g
                                                        
   dt         y                                        ky  g 
                                                                
                      dy                  kt  log                     
     t                                               ku sin   g 
           u sin 
                    ky  g
                                         ky  g
                                           
                                                        e  kt
            1
     t   logky  g u sin 
                         
                               y
                                      ku sin   g
                                                     y  ku sin   g e  kt  g 
                                                           1
            k                                        
                                                           k
c) Find the value of t when the particle reaches its maximum height
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                             
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0
                              
       1
  t   logky  g u sin 
                      0
              
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
       1
  t   logky  g u sin 
                       0
               
       k
       1
  t   log g   logku sin   g 
       k
c) Find the value of t when the particle reaches its maximum height
  Maximum height occurs when y  0 
        1
  t   logky  g u sin 
                       0
               
        k
        1
  t   log g   logku sin   g 
        k
      1  ku sin   g 
   t  log                 
      k           g        
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
         1
   t   logky  g u sin 
                        0
                 
         k
         1
   t   log g   logku sin   g 
         k
       1  ku sin   g 
    t  log                 
       k           g        
d) What is the limiting value of the horizontal displacement of the
   particle?
    x  ue  kt cos 
    
   dx
       ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0

   dx
         ue  kt cos 
   dt
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                 
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                 0
                                                               t
   dx                            x  lim u cos   e  kt 
                                                     1
         ue cos 
              kt
                                                  k         0
   dt                                 t                   
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
c) Find the value of t when the particle reaches its maximum height
   Maximum height occurs when y  0 
          1
   t   logky  g u sin 
                          0
                    
          k
          1
   t   log g   logku sin   g 
          k
        1  ku sin   g 
    t  log                 
        k              g    
d) What is the limiting value of the horizontal displacement of the
                                                   
   particle?
                                 x  lim u cos   e  kt dt
      x  ue  kt cos 
                                     t 
                                                   0
                                                                t
   dx                            x  lim u cos   e  kt 
                                                      1
         ue cos 
              kt
                                                    k        0
   dt                                 t                    
                                           u cos 
                                 x  lim            e kt  1
                                     t      k
                                      u cos 
                                 x
                                          k
Exercise 9E; 1 to 4, 7

Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25

More Related Content

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 

X2 T06 07 miscellaneous dynamics questions (2011)

  • 1. Miscellaneous Dynamics Questions e.g. (i) (1992) – variable angular velocity The diagram shows a model train T that is moving around a circular track, centre O and radius a metres. The train is travelling at a constant speed of u m/s. The point N is in the same plane as the track and is x metres from the nearest point on the track. The line NO produced meets the track at S. Let TNS   and TOS   as in the diagram
  • 2. dθ a) Express in terms of a and u dt
  • 3. dθ a) Express in terms of a and u l  a dt
  • 4. dθ a) Express in terms of a and u l  a dt dl d a dt dt
  • 5. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a
  • 6. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos   
  • 7. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN )
  • 8. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     NTO    
  • 9. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin    
  • 10. dθ a) Express in terms of a and u l  a dt dl d a dt dt d ua dt d u  dt a b) Show that a sin    - x  a sin  0 and deduce that; d u cos     dt  x  a  cos   a cos    NTO  TNO  TOS (exterior , OTN ) NTO     a ax In NTO;  NTO     sin  sin     a sin      a  x  sin  a sin      a  x  sin   0
  • 11. differentiate with respect to t  d  d   a  x  cos  d  0 a cos       dt dt  dt
  • 12. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt
  • 13. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a
  • 14. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos 
  • 15. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt when NT is a tangent;
  • 16. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T N O
  • 17. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; N O
  • 18. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O
  • 19. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90
  • 20. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90  dt a cos 90  a  x  cos 
  • 21. differentiate with respect to t a cos    d  d   a  x  cos  d  0    dt dt  dt d d a cos      a cos     a  x  cos   0 dt dt a cos     a  x  cos   d  a cos     u dt a d u cos     dt a cos     a  x  cos  d c) Show that  0 when NT is tangential to the track. dt T when NT is a tangent; NTO  90 (tangent  radius) N O     90 d u cos 90 d   0 dt a cos 90  a  x  cos  dt
  • 22. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5
  • 23. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2
  • 24. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T  N O
  • 25. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O
  • 26. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T a  N O 2a
  • 27. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 5a a  N O 2a
  • 28. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a  N O 2a
  • 29. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when   2 T 2 cos   5a 5 a   cos       1 N 2a O 2  5
  • 30. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2    cos       1 N 2a O 2  5
  • 31. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5
  • 32. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5  1   2a  2  a      5  5 u  5a
  • 33. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a      5  5 u  5a
  • 34. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u  5a
  • 35. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a
  • 36. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a 5 u   3 5a
  • 37. d) Suppose that x = a  3 Show that the train’s angular velocity about N when   is times the angular velocity about N when   0 2 5  when      2 T u cos  2 d 2  cos    5 dt   5a a a cos     2a cos  2   cos     1     1  N 2a O 2  5 u    5 when   0  1   2a  2  a     d u cos 0  5  5  dt a cos 0  2a cos 0 u u   5a 3a  3 Thus the angular velocity when   is times 5 u 2 5   3 5a the angular velocity when   0
  • 38. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle.
  • 39. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2 
  • 40. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l
  • 41. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l ds v dt d l dt
  • 42. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dt d l dt
  • 43. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt
  • 44. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2  ds dt 2 dt v dv d dt   d d dt l dt dv v   d l
  • 45. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v dv d dt   d d dt l dt dv v   d l
  • 46. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l dt dv v   d l
  • 47. (ii) (2000) A string of length l is initially vertical and has a mass P of m kg attached to it. The mass P is given a horizontal velocity of magnitude V and begins to move along the arc of a circle in a counterclockwise direction. Let O be the centre of this circle and A the initial ds position of P. Let s denote the arc length AP, v  , dt   AOP and let the tension in the string be T. The acceleration due to gravity is g and there are no frictional forces acting on P. For parts a) to d), assume the mass is moving along the circle. d 2s 1 d  1 2  a) Show that the tangential acceleration of P is given by 2   v  dt l d  2  s  l d s dv 2 1 dv   v  ds dt 2 dt l d v 1 dv d 1 dt dv d     v2      l d dv  2  d d dt l 1 d 1 2  dt dv v   v    l d  2  d l
  • 48. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 49. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2 
  • 50. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T
  • 51. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T mg
  • 52. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg
  • 53. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T  mg mg sin 
  • 54. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s  mg mg sin 
  • 55. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg mg sin 
  • 56. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin 
  • 57. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2 
  • 58. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos 
  • 59. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2 
  • 60. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2 
  • 61. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  1 d 1 2   v    g sin  l d  2  d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 62. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  d  2  1 2 v  gl cos  c 2 v 2  2 gl cos  c
  • 63. 1 d 1 2  b) Show that the equation of motion of P is  v    g sin  l d  2  T m s m   mg sin  s  mg    g sin  s mg sin  1 d 1 2   v    g sin  l d  2  c) Deduce that V 2  v 2  2 gl 1  cos  when   0, v  V 1 d 1 2   v    g sin  V 2  2 gl  c l d  2  c  V 2  2 gl d 1 2   v    gl sin  v 2  2 gl cos  V 2  2 gl d  2  1 2 V 2  v 2  2 gl  2 gl cos v  gl cos  c 2 V 2  v 2  2 gl 1  cos  v 2  2 gl cos  c
  • 64. 1 2 d) Explain why T-mg cos θ  mv l
  • 65. 1 2 d) Explain why T-mg cos θ  mv l
  • 66. 1 2 d) Explain why T-mg cos θ  mv l T
  • 67. 1 2 d) Explain why T-mg cos θ  mv l T mg cos
  • 68. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m x
  • 69. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x
  • 70. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force.
  • 71. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l
  • 72. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0
  • 73. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l
  • 74. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l
  • 75. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos 
  • 76. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l 1 0  mg cos  m3 gl  2 gl 1  cos  l  mg cos  m g  2 g cos  3mg cos   mg
  • 77. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l  mg cos  m g  2 g cos  3mg cos   mg
  • 78. 1 2 d) Explain why T-mg cos θ  mv l T mg cos m  T  mg cos x m x But, the resultant force towards the centre is centripetal force. mv 2  T  mg cos l 1 2 T  mg cos  mv l e) Suppose that V 2  3 gl. Find the value of  at which T  0 T  mg cos  mV 2  2 gl 1  cos  1 l cos   1 1 0  mg cos  m3 gl  2 gl 1  cos  3 l   1.911radians  mg cos  m g  2 g cos  3mg cos   mg
  • 79. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero.
  • 80. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude;
  • 81. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l
  • 82. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l
  • 83. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 84. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 85. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 86. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 87. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 88. f) Consider the situation in part e). Briefly describe, in words, the path of P after the tension T becomes zero. When T = 0, the particle would undergo projectile motion, i.e. it would follow a parabolic arc. Its initial velocity would be tangential to the circle with magnitude; 1 2 T  mg cos  mv l   1   1 mv 2  mg    3 l gl v2  3 gl v 3
  • 89. (iii) (2003) A particle of mass m is thrown from the top, O, of a very tall building with an initial velocity u at an angle of  to the horizontal. The particle experiences the effect of gravity, and a resistance proportional to its velocity in both directions. The equations of motion in the horizontal and vertical directions are given respectively by    kx and    ky  g x  y  where k is a constant and the acceleration due to gravity is g. (You are NOT required to show these)
  • 90. a) Derive the result x  ue  kt cos  
  • 91. a) Derive the result x  ue  kt cos   dx    kx  dt
  • 92. a) Derive the result x  ue  kt cos   dx    kx  dt x  1 dx t  k u cos x 
  • 93. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k
  • 94. a) Derive the result x  ue  kt cos   dx   kx  dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 95. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  t  k u cos x 1 t   log x u cos x   k 1 t   log x  logu cos    k
  • 96. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx   x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k
  • 97. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition
  • 98. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x  u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt
  • 99. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g 
  • 100. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy   ky  g  dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 101. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y dy t  u sin  ky  g  1 t   logky  g u sin  y   k
  • 102. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  1 t   logky  g u sin  y   k
  • 103. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g  dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g k
  • 104. a) Derive the result x  ue  kt cos   x  t   log 1  dx     kx  k  u cos   dt x  1 dx  x   t   kt  log  k u cos x   u cos   1 x  t   log x u cos  e  kt x   k u cos  1 t   log x  logu cos    x  ue  kt cos   k b) Verify that y  ku sin   g e  kt  g  satisfies the appropriate 1  k equation of motion and initial condition dy  kt  logky  g   logku sin   g    ky  g   dt y  ky  g   dy  kt  log  t   ku sin   g  u sin  ky  g  ky  g   e  kt 1 t   logky  g u sin   y  ku sin   g y  ku sin   g e  kt  g  1 k  k
  • 105. c) Find the value of t when the particle reaches its maximum height
  • 106. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0 
  • 107. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k
  • 108. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k
  • 109. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g 
  • 110. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle?
  • 111. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the particle? x  ue  kt cos   dx  ue  kt cos  dt
  • 112. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 dx  ue  kt cos  dt
  • 113. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t   
  • 114. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k
  • 115. c) Find the value of t when the particle reaches its maximum height Maximum height occurs when y  0  1 t   logky  g u sin  0  k 1 t   log g   logku sin   g  k 1  ku sin   g  t  log  k  g  d) What is the limiting value of the horizontal displacement of the  particle? x  lim u cos   e  kt dt x  ue  kt cos   t  0 t dx x  lim u cos   e  kt  1  ue cos   kt  k 0 dt t    u cos  x  lim  e kt  1 t  k u cos  x k
  • 116. Exercise 9E; 1 to 4, 7 Exercise 9F; 1, 2, 4, 7, 9, 12, 14, 16, 20, 22, 25