Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Próximo SlideShare
High strength if steels
High strength if steels
Cargando en…3
×

Eche un vistazo a continuación

1 de 24 Anuncio

Más Contenido Relacionado

Similares a 10822889.ppt (20)

Más de Oswaldo Gonzales (20)

Anuncio

Más reciente (20)

10822889.ppt

  1. 1. DEVELOPMENT OF HIGH STRENGTH HOT ROLLED STEELS FOR STRAIN-BASED DESIGN IN LINEPIPE APPLICATIONS April 17, 2016
  2. 2. No. 1 • Background • Strain-based design concept • Stress-strain curve • Controlled rolling • Controlled rolling concept • Recrystallization stop temperature • Manufacturing process and results : • Rolling concept • Behavior of tensile properties • Microstructure • Summary CONTENTS
  3. 3. No. 2 • Strain-based design concept in development of line pipe steels • Seismically active areas • Arctic regions subject to frost-heave and thaw settlement cycles • Buried pipeline is pressurized • Experience strains due to displacement or bending caused by mud slides or thermal expansion effects • Required mechanical properties • Excellent uniform elongation • A higher strain hardening • A low YR in the longitudinal direction of pipe • Toughness BACKGROUND
  4. 4. No. 3 Yield strength YR = Tensile strength RELATIONSHIP BETWEEN YIELD AND TENSILE STRENGTH LIMITS IN API-5L PSL2 TS_max TS_min YS_max YS_min
  5. 5. No. 4 • Strain hardening effect : Ability of strain distribution more uniformly stress n TYPICAL STRESS-STRAIN CURVE Positive slope indicating increase in resistance after yielding UTS YS
  6. 6. No. 5 • Yield strength depends on σ-ε curve : microstructure, volume fraction of second phase DISCONTINUOUS & CONTINUOUS STRESS-STRAIN CURVE
  7. 7. No. 6 0 1000 2000 3000 4000 5000 6000 7000 8000 0 2 4 6 8 10 Load (kgf) Displacement (mm) Load vs Displacement F+AF+P F+M F+P • Different type of microstructure : PF+AF, PF+M(dual phase), PF+P BEHAVIOUR OF LOAD & DISPLACEMENT
  8. 8. No. 7 0 1000 2000 3000 4000 5000 6000 7000 8000 0 0.5 1 1.5 2 2.5 3 Load (kgf) Displacement (mm) Load vs Displacement F+AF+P F+M F+P • Yield strength depends on the microstructure BEHAVIOUR OF LOAD & DISPLACEMENT
  9. 9. No. 8 • Example for ferrite-pearlite steels containing up to 0.2 wt% C - σy, MPa = 53.9 + 32.3·CMn + 83.2·CSi +354·CMn + 17.4·d-1/2 - σt, MPa = 294 +27.7·CMn + 83.2·CSi + 3.85·Cpearlite + 7.7·d-1/2 - ITT, °C = 19 + 44·CSi + 700·√CN + 2.2·Cpearlite – 11.5·d-1/2 σy, : yield strength, σt : tensile strength CMn, CSi, CN, Cpearlite : weight % of Mn, Si, free soluble N and pearlite %, respectively ITT : impact transition temperature * Strength of pearlite is influenced by its interlamellar spacing HALL-PETCH AND SOLID SOLUTION EQUATION
  10. 10. No. 9 FACTORS CONTRIBUTING TO THE STRENGTH • Tensile strength • Second phase volume fraction : Acicular ferrite, bainitic ferrite, bainite, martensite • Pearlite : interlamellar spacing • Ferrite grain size • Solid solution hardening by Mn • Yield strength • Precipitation hardening by microalloy elements : Nb, Ti, V • Ferrite grain size
  11. 11. No. 10 • Refining austenite and ferrite grain size • Recrystallized austenite grain in roughing stage • Deformation temperature effect on recrystallization • Non recrystallization temperature : Tnr • Recrystallization stop temperature : Tr • Austenite conditioning in finishing stage • Formation of deformation bands : dislocation substructure • Nucleation sites for ferrite transformation CONTROLLED ROLLING
  12. 12. No. 11 Soaking Rough rolling Tnr Ar3 Finish rolling Laminar cooling Soaking Rough rolling Tnr Ar3 Finish rolling Laminar cooling • Non-Recrystallization Temperature (Tnr) • Austenite conditioning : pancaked or elongated structure RECRYSTALLIZATION CONTROLLED ROLLING(RCR)
  13. 13. No. 12 Soaking Rough rolling Tnr Ar3 Finish rolling Laminar cooling Partial Recrystallization Temp. • Prediction of non-recrystallization temperature (Tnr) : Compression test, torsion test, flow stress RECRYSTALLIZATION CONTROLLED ROLLING(RCR)
  14. 14. No. 13 Steel C Si Mn P S Al Others Thick. (mm) *Ceq *Pcm Ar3 A 0.04 0.2~0.3 1.05 < 0.008 < 0.005 0.02~0.06 Nb, V, Ti, Mo, Cr, Ni, Ca 9.5 < 0.36 < 0.18 796 B 0.04 1.00 795 C 0.09 1.35 < 0.015 < 0.001 765 • Ceq = C + Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 • Pcm = C + Si/30 + (Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B * Ar3 = 910-310(%C)-80(5Mn)-20(%Cu)-15(%Cr)-55(%Ni)-80(%Mo)+0.35(t-8) • Chemical composition and thickness CHEMISTRY
  15. 15. No. 14 • J. Jonas equation & Boratto equation Tnr (°C) = 887 +464(%C)+[6445(%Nb)-644√(%Nb)]+[732(%V)-230√(%V)+890(%Ti)+363(%Al)-375(%Si) • Bai equation Tnr (°C) = 174 log[Nb(C+0.857N)]+1444, N is the free N remaining after TiN precipitation • Fretcher equation (1) is ignoring pass strain Tnr (°C) = 849-349C+676√Nb+337V (R2 = 0.72) • Fletcher equation (2) based on pass strain Tnr (°C) = 203 – 310C - 149√V + 657√Nb + 683e-0.36ε • Sim’s equation F = w σ √(R·ΔH)·Q F : roll force, σ : flow stress, w : width, R : roll radius, Δh : reduction in thickness √RΔh : projected arc of contact, Q : shape factor, hf ; final thickness, r : percentage reduction Steel Tnr (°C) Jonas & Boratto Bai equ. Fletcher equation (1) Fletcher equation (2) A 979 970 994 976 B 1056 991 1017 996 C 1016 1031 978 962 NON-RECRYSTALLIZATION TEMPERATURE
  16. 16. No. 15 • Thermomechanical Processing (TMP) of Hot Rolled Coils Reheating Furnace Roughing Mill Finishing Mill Run Out Table Coiling RHT TBT FT CT Steel HSM parameter RDT FDT CT A 950~1080°C Case I : 870~ 900 Case II : 850~870 570~630 B C • Transfer Bar Temperature : Above Tnr and near Tnr MANUFACTURING FACILITIES
  17. 17. No. 16 Rolling temperature (°C) Process position 1200 1000 800 600 • Thermomechanical Processing (TMP) of Hot Rolled Coils Steel A : above Tnr, near Tnr Steel B : above Tnr Steel C : near Tnr Steel A, B Steel C • Transfer_Bar Temperature holding HOT ROLLING CONCEPT
  18. 18. No. 17 • Effect of finishing temperature on the yield ratio 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 830 840 850 860 870 880 890 900 B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A C C C C C C 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536 Yield Ratio(YR) Finishing Temp.(°C) Steels API-X65M Sum of FDT Sum of YR RESULTS
  19. 19. No. 18 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 400 450 500 550 600 650 700 B B B B B B B A A A A A A A A A A A A A A A A A A A A A A A C C C C C C 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536 YS & TS (MPa) Steels API-X65M Sum of YS Sum of TS Sum of YR • YS & TS : within the range of API-X65 • Amount of increment of tensile strength is higher than yield strength TENSILE PROPERTIES
  20. 20. No. 19 150 170 190 210 230 250 270 290 310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Energy (Joule) Number of point Charphy Notch Test Sum of CVN_Avg Sum of CVN_Min • CVN Energy (J) : 0°C TOUGHNESS PROPERTIES
  21. 21. No. 20 • Polygonal ferrite(PF)+Acicular ferrite (AC)+Pearlite(P) Steel A_near Tnr Steel A_above Tnr Steel C_near Tnr MICROSTRUCTURE
  22. 22. No. 21 • GB and sub_GB dislocation : steel A_near Tnr MICROSTRUCTURE (TEM)
  23. 23. No. 22 • Synergistic effects of Recovery, Recrystallization, Deformation, and Precipitation RECRYSTALLIZATION PRECIPITATION RECOVERY DEFORMATION (T, ε, έ) Strain-induced ppt Driving force for ReX Recovery rate RPTT DISCUSSION
  24. 24. No. 23 SUMMARY • Controlled rolling in roughing stage affects recrystallized austenite grain size, resulting in variations of YS/UTS ratio to levels between 0.81 and 0.92 • The higher deformation temperature based on Tnr shows higher YS/UTS ratio compared than those of a lower deformation temperature in roughing stage • The YS/UTS ratio below 0.85 can be obtained by the adaptation of transformed AF microstructure with lower coiling temperature • Optimized TMCP processes between roughing and finishing stage showed to be effective processing routes in order to produce steels with lower YS/UTS ratio and sufficient toughness

×