Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Próximo SlideShare
Función inversa
Función inversa
Cargando en…3
×

Eche un vistazo a continuación

1 de 29 Anuncio

Más Contenido Relacionado

Más reciente (20)

Anuncio

Factorizacion

  1. 1. Factorización Consuelo Díaz Raquel Valdés
  2. 2. Factorización de diferencia de cuadrados y cubos FFaaccttoorriizzaacciióónn Estrategia Factor común y por agrupación Factorización de trinomios
  3. 3. Factor Expresión algebraica que multiplica a una segunda expresión (a - b)( x - z) (a - b) y ( x - z) Factorización Son factores a - b( x - z) b y ( x - z) Operación necesaria para re-escribir una expresión algebraica como producto de factores simples ma2 -mb2 = m(a + b)(a - b)
  4. 4. Caso I. Factor Común Aparece en todos los términos de la expresión algebraica, un término común ma2 -mb2 3x2 y - x 24a2xy2 - 36x2 y4 a(x +1) - b(x +1) • Identificar el máximo término común • Dividir la expresión algebraica original entre el máximo término común
  5. 5. Caso I. Factor Común Ejemplo Máx. factor común Segundo factor Factorización Resolviendo los ejemplos: ma2 -mb2 3x2 y - x 24a2xy2 - 36x2 y4 a(x +1) - b(x +1) m a2 - b2 m(a2 - b2) x 3xy -1 x(3xy -1) 12xy2 2 2 2a - 3xy 12xy2(2a2 - 3xy2) x +1 a - b (x +1)(a - b)
  6. 6. Caso Ib. Factor Común por Agrupación de Términos Aparece un término común compuesto después de agrupar términos con factores comunes simples ax + a - bx -b • Agrupar términos con factores comunes, usando la propiedad asociativa • Factorizar (Caso I) en cada grupo, los factores comunes • Identificar el máximo término común • Dividir la expresión algebraica entre el máximo término común 3m2 - 6mn + 4m-8n 2am+ n -1- 2an + 2a -m
  7. 7. Caso Ib. Factor Común por Agrupación de Términos Resolviendo los ejemplos: ax + a -bx -b (ax + a) - (bx + b) (a - b)(x +1) a(x +1) - b(x +1) procedimiento
  8. 8. Caso Ib. Factor Común por Agrupación de Términos Resolviendo los ejemplos: 3m2 - 6mn + 4m-8n (3m2 - 6mn) + (4m-8n) (3m+ 4)(m- 2n) 3m(m- 2n) + 4(m- 2n) procedimiento
  9. 9. Caso Ib. Factor Común por Agrupación de Términos Resolviendo los ejemplos: 2am+ n -1- 2an + 2a -m (2am- 2an + 2a) - (m- n +1) (2a -1)(m- n +1) 2a(m- n +1) - (m- n +1) procedimiento
  10. 10. Caso II. Factorización de Trinomios Trinomio Cuadrado Perfecto a2 + 2ab + b2 • Determinar si es tcp • Obtener la raíz cuadrada del primer y tercer términos • Observar el signo del segundo término • Escribir el binomio al cuadrado x2 - 2x +1 4a2x2 -12ax + 9
  11. 11. Caso II. Factorización de Trinomios Resolviendo ejemplos: a2 + 2ab + b2 (a + b)2 ¿ es tcp ? Sí a2 = a b2 = b + 2ab procedimiento
  12. 12. Caso II. Factorización de Trinomios Resolviendo ejemplos: (2ax - 3)2 ¿ es tcp ? Sí 4a2x2 = 2ax 9 = 3 -12ax procedimiento 4a2x2 -12ax + 9
  13. 13. Caso IIb. Factorización de Trinomios Trinomio de la forma x2 + cx + d •Obtener la raíz cuadrada del primer término • Determinar dos números que sumados sean igual a c y que multiplicados sean igual a d • Escribir el producto de binomios x2 -12x + 20 9a2x2 - 39ax + 30
  14. 14. Caso IIb. Factorización de Trinomios Resolviendo ejemplos: (x -10)(x - 2) -10 - 2 = -12 (-10)(-2) = 20 procedimiento x2 -12x + 20 x2 = x
  15. 15. Caso II. Factorización de Trinomios Resolviendo ejemplos: (3ax - 3)(3ax -10) 9a2x2 = 3ax -10 - 3 = -13 procedimiento 9a2x2 - 39ax + 30 (-10)(-3) = 30 3(ax -1)(3ax -10)
  16. 16. Caso IIb. Factorización de Trinomios Trinomio de la forma x2 + cx + d • Completar el tcp • Factorizar la diferencia de cuadrados resultantes x2 -12x + 20 9a2x2 - 39ax + 30 Método general
  17. 17. x2 -12x + 20 (x - 2)(x -10) (x + a)2 = x2 + 2ax + a2 x2 = x 2ax = -12x a x = - 12 = - x2 -12x + 36 - 36 + 20 (x - 6 + 4)(x - 6 - 4) (x - 6)2 -16 6 2 x (-6)2 = 36
  18. 18. Trinomio Cuadrado Perfecto Resultado del siguiente producto notable: (a + b)2 (a - b)2 o, = a2 + 2ab + b2 = a2 - 2ab + b2
  19. 19. Trinomio de la forma x2 + cx + d Resultado del siguiente producto notable: (x + a)(x + b) Donde: c = a + b = x2 + (a + b)x + ab d = ab y
  20. 20. Caso III. Factorización de la Diferencia de Cuadrados a2 - b2 a2 -1 • Identificar la diferencia de cuadrados • Obtener la raíz cuadrada del primer y segundo términos • Escribir el producto de binomios conjugados 9 -16x6 x2 + 2x +1- y2
  21. 21. Caso III. Factorización de la Diferencia de Cuadrados Resolviendo ejemplos: (3+ 4x3)(3- 4x3) 9 = 3 16x6 = 4x3 procedimiento 9 -16x6
  22. 22. Caso III. Factorización de la Diferencia de Cuadrados Resolviendo ejemplos: x2 + 2x +1- y2 (x +1+ y)(x +1- y) (x +1)2 = x +1 y2 = y procedimiento
  23. 23. Caso IV. Factorización de la Suma o Diferencia de Cubos a3 -1 • Identificar si es suma o diferencia de cubos • Obtener la raíz cúbica del primer y segundo términos • Escribir el producto del binomios por trinomio correspondiente 27 + 64x6 a3 - b3
  24. 24. Caso IV. Factorización de la Suma o Diferencia de Cubos Resolviendo ejemplos: (a -1)(a2 + a +1) 3 a3 = a 3 1 =1 procedimiento a3 -1 diferencia
  25. 25. Caso IV. Factorización de la Suma o Diferencia de Cubos Resolviendo ejemplos: (-3+ 4x2)(9 +12x2 +16x4) 3 - 27 = -3 3 64x6 = 4x2 procedimiento - 27 + 64x6 suma
  26. 26. Diferencia de Cuadrados Resultado del siguiente producto notable: (a + b)(a - b) = a2 - b2
  27. 27. Suma y Diferencia de Cubos Resultado del siguiente producto notable: (a + b)(a2 - ab + b2) = a3 + b3 o bien, (a - b)(a2 + ab + b2) = a3 - b3
  28. 28. Estrategia General 1. Factorizar todos los factores comunes. 2. Observar el número de términos entre paréntesis (o en la expresión original). Si hay: I. Cuatro términos: factorizar por agrupación. II. Tres términos: probar si es tcp y factorizar así; si no es tcp, emplear el caso general. III.Dos términos y cuadrados: buscar la diferencia de cuadrados y factorizarla. IV. Dos términos y cubos: buscar la suma o diferenica de cubos y factorizar. 3. Asegurarse de que la expresión está factorizada completamente.

Notas del editor

  • Durante la presentación, que los alumnos respondan en cada uno de los ejemplos cuál es el término común
  • El primer ejemplo se hace con todo detalle, explicando de dónde sale el segundo factor y haciendo énfasis en la expresión final.
    Los siguientes ejemplos son ejercicios que los alumnos resuelven.
  • Igual que el Caso I, sólo identificar a quiénes agrupar
  • Que el grupo resuelva cada paso siguiendo el procedimiento y regresar a él cuando es necesario
  • Igual al anterior
  • Dar tiempo para que se resuelva individualmente y después comprobar los resultados´o que alguien lo explique
  • Si es necesario ir a la descripción de un tcp. En los ejemplos preguntar si son tcp y por qué
  • Llevar paso a paso el procedimiento, el grupo responde si es tcp, las raíces cuadradas ... El signo del doble producto, el resultado. Si es necesario regresar al procedimiento.
  • Dar tiempo para que los alumnos lo resuelvan individualmente, alguien explicará el procedimiento y resultado
  • Si es necesario describir o recordar de dónde vienen estos trinomios. Evaluar si los ejemplos son o no tcp. Si cumplen la forma descrita.
  • Explicar el procedimiento paso a paso, que el grupo calcule los valores.
  • Dar tiempo para que los alumnos lo resuelvan individualmente, alguien explicará el procedimiento y resultado
  • Si es necesario describir o recordar de dónde vienen estos trinomios. Evaluar si los ejemplos son o no tcp.
  • Completando el tcp. Explicar cada paso del procedimiento. Pedir que el segundo ejemplo lo resuelvan individualmente
  • Si es necesario describir o recordar de dónde viene la diferencia de cuadrados. Evaluar si los ejemplos son diferencia de los cuadrados de quién
  • Explicar el procedimiento paso a paso, que el grupo calcule los valores.
  • Dar tiempo para que los alumnos lo resuelvan individualmente, alguien explicará el procedimiento y resultado
  • Si es necesario describir o recordar de dónde viene la diferencia o suma de cubos.
    Evaluar si los ejemplos son diferencia o suma de los cubos de quién
  • Explicar el procedimiento paso a paso, que el grupo calcule los valores
  • Dar tiempo para que los alumnos lo resuelvan individualmente, alguien explicará el procedimiento y resultado
  • Tener listos un par de ejemplos para seguir la estrategia general.

×