SlideShare a Scribd company logo
1 of 115
TIGRTIGR
Phylogenomics:
Combining Evolutionary
Reconstructions and Genome
Analysis into a Single
Composite Approach
0
250000
500000
750000
1000000
1250000
Subject Orf Position
0 250000 500000 750000 1000000 1250000
Query Orf Position
Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes
ArchaeaBacteriaEukarya
Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZeamays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZeamays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85
BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted
A
B
CD
E
F
A
B
CD
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
A
C
D
F
A’
B’
E’
E.coli
E. coli
B
C
D
F
A’
B’
D’
E’
V. cholerae
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
B1
A1
B2
A2
B3
A3
A2
A1 A2
A3
B2
B1
B3
B2
24
23
22
21
20
19
18171615
14
13
12
11
10
9
6
7
258
26
27
28
29
30
1 2 3
4
5
3132
B1
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2 3
4
5
3132
B3 24
23
22
21
20
19
18171615
14
13
12
11
10
9
6
7
258
26
27
28
29
3
3231
30
4
5
2 1
A1
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2 3
4
5
3132
A2
3132
6
7
8
9
10
11
12
13
19
18171615
14
20
21
22
23
24
25
26
27
28
29
30
1 2 3
4
5
3132
A3
2
6
7
8
9
10
11
12
13
19
18171615
14
20
21
22
23
24
25
26
27
5
4
3 31 30
29
28
1 32
B2
Inversion
Around
Terminus (*)
Inversion
Around
Terminus (*)
Inversion
Around
Origin(*)
Inversion
Around
Origin(*)
* *
* *
* *
* *
Figure 4
Common
Ancestorof
A and B
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2 3
4
5
3132
Three V. cholerae
Photolyases
Phr.S thyp
PHR E. coli
ORFA00965*********
phr.neucr
Phr.Tricho
Phr.Yeast
Phr.B firm
phr.strpy
phr.haloba
PHR STRGR
pCRY1.huma
phr.mouse
phr2.human
phr2.mouse
phr.drosop
phr3.Synsp
ORF02295.Vibch********
phr.neigo
ORF01792.Vibch*******
Phr.Adiant
Phr2.Adian
Phr3.Adian
phr.tomato
CRY1 ARATH
phr.phycom
CRY2 ARATH
PHH1.arath
PHR1 SINAL
phr.chlamy
PHR ANANI
phr.Synsp
PHR SYNY3
phr.Theth
Rh.caps
MTHF type
Class I CPD
Photolyases
6-4
Photolyases
Blue
Light
Receptors
8-HDF type
CPD
Photolyases
Three Photolyase Homologs inV. cholerae
UvrA2
UvrA2 S. coelicolorDrrC S. peuceteusUvrA2 D. radioduransDuplication
in UvrA
family
UvrA1
UvrA H. influenzaeUvrA E. coliUvrA N. gonorrhoaeaUvrA R. prowazekiiUvrA S. mutansUvrA S. pyogenesUvrA S. pneumoniaeUvrA B. subtilisUvrA M. luteusUvrA M. tuberculosisUvrA M. hermoautotrophicumUvrA H. pyloriUvrA C. jejuniUvrA P. gingivalisUvrA C. tepidumuvra1 D. radioduransUvrA T. thermophilusUvrA T. pallidumUvrA B. burgdorefiUvrA T. maritimaUvrA A. aeolicusUvrA Synechocystis sp.
UvrA1UvrA2OppDFUUPNodILivFXylGNrtDCPstBMDRHlyBTAP1CFTR, SURA. ABC TransportersB. UvrA Subfamily
01020304050600510152005010015005101520
Number of Species With High Hits050100150200250
Frequency05101520
Papa BearMama BearBaby Bear
010020030040050005101520
E. coli
TIGRTIGR
Topics of Discussion
• Introduction to phylogenomics
• Phylogenomics Examples
– Functional prediction
– Not making functional predictions
– Gene duplication
– Genetic exchange within genomes
– Gene loss
– Specialization
– Horizontal gene transfer
TIGRTIGRTIGRTIGR
“Nothing in biology makes sense
except in the light of evolution.”
T. H. Dobzhansky (1973)
TIGRTIGR
TIGRTIGR
Uses of Evolutionary Analysis in
Molecular Biology
• Identification of mutation patterns (e.g., ts/tv ratio)
• Amino-acid/nucleotide substitution patterns useful in
structural studies (e.g., rRNA)
• Sequence searching matrices (e.g., PAM, Blosum)
• Motif analysis (e.g., Blocks)
• Functional predictions
• Classifying multigene families
• Evolutionary history puts other information into
perspective (e.g., duplications, gene loss)
TIGRTIGR
TIGRTIGR
Evolutionary Studies Improve
Most Aspects of Genome Analysis
• Phylogeny of species places comparative data in perspective
• Evolution of genes and gene families
– Functional predictions
– Identification of orthologs and paralogs
– Species specific mutation patterns
• Evolution of pathways
– Convergence
– Prediction of function
• Evolution of gene order/genome rearrangements
• Phylogenetic distribution patterns
• Identification of novel features
TIGRTIGR
Genome Information and Analysis
Improves Studies of Evolution
• Complete genome information particularly useful
• Unbiased sampling
• More sequences of genes
• Presence/absence information needed to infer certain
events (e.g., gene loss, duplication)
• Genome wide mutation and substitution patterns (e.g.,
strand bias)
• Diversification and duplication
TIGRTIGR
Phylogenomic Analysis
• There are feedback loop between evolutionary and genome
analysis such that for many studies, genome and
evolutionary analyses are interdependent.
• Therefore, I have proposed that they actually be combined
into a single composite approach I refer to as
phylogenomics
• Phylogenomics involves combining evolutionary
reconstructions of genes, proteins, pathways, and species
with analysis of complete genome sequences.
TIGRTIGR
Outline of Phylogenomics
Gene Evolution EventsPhenotype PredictionsDatabaseSpecies treePresence/AbsenceGene treesCongruenceEvol. DistributionF(x) PredictionsPathway Evolution
TIGRTIGR
TIGRTIGR
TIGRTIGR
Uses of Phylogenomics I:
Functional Predictions
TIGRTIGR
Predicting Function
• Identification of motifs
• Homology/similarity based methods
– Highest hit
– Top hits
– Clusters of orthologous groups
– HMM models
– Structural threading and modeling
– Evolutionary reconstructions
TIGRTIGR
TIGRTIGR
Types of Molecular Homology
• Homologs: genes that are descended from a common
ancestor (e.g., all globins)
• Orthologs: homologs that have diverged after speciation
events (e.g., human and chimp β-globins)
• Paralogs: homologs that have diverged after gene
duplication events (e.g., α and β globin).
• Xenologs: homologs that have diverged after lateral
transfer events
• Positional homology: common ancestry of specific amino
acid or nucleotide positions in different genes
TIGRTIGR
Phylogenomic Analysis of the
MutS Family of Proteins
• Published analysis
– Eisen JA et al. 1997. Nature Medicine
3(10):1076-1078.
– Eisen JA. 1998. Nucleic Acids Research 26(18):
4291-4300
TIGRTIGR
TIGRTIGR
Blast Search of H. pylori “MutS”
Score E
Sequences producing significant alignments: (bits) Value
sp|P73625|MUTS_SYNY3 DNA MISMATCH REPAIR PROTEIN 117 3e-25
sp|P74926|MUTS_THEMA DNA MISMATCH REPAIR PROTEIN 69 1e-10
sp|P44834|MUTS_HAEIN DNA MISMATCH REPAIR PROTEIN 64 3e-09
sp|P10339|MUTS_SALTY DNA MISMATCH REPAIR PROTEIN 62 2e-08
sp|O66652|MUTS_AQUAE DNA MISMATCH REPAIR PROTEIN 57 4e-07
sp|P23909|MUTS_ECOLI DNA MISMATCH REPAIR PROTEIN 57 4e-07
• Blast search pulls up Syn. sp MutS#2 with
much higher p value than other MutS
homologs
TIGRTIGR
H. pylori and MutS
• Prior to this genome, all species that
encoded a MutS homolog also encoded a
MutL homolog
• Experimental studies have shown MutS and
MutL always work together in mismatch
repair
• Problem: what do we conclude about H.
pylori mismatch repair
TIGRTIGR
Phylogenetic Tree of MutS Family
AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathStrpyBacsuCelegHumanYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHuman
TIGRTIGR
MutS SubfamiliesAquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathStrpyBacsuCelegHumanYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2
TIGRTIGR
MutS Subfamilies
• MutS1 Bacterial MMR
• MSH1 Euk - mitochondrial MMR
• MSH2 Euk - all MMR in nucleus
• MSH3 Euk - loop MMR in nucleus
• MSH6 Euk - base:base MMR in nucleus
• MutS2 Bacterial - function unknown
• MSH4 Euk - meiotic crossing-over
• MSH5 Euk - meiotic crossing-over
TIGRTIGR
Overlaying Functions onto Tree
AquaeTrepaRatFlyXenlaMouseHumanYeastNeucrArathBorbuSynspNeigoThemaStrpyBacsuEcoliTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathStrpyBacsuHumanCelegYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2
TIGRTIGR
Functional Prediction Using Tree
AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathMSH1
Repair
in Mictochondria
MSH3
Repair of Loops
in Nucleus
MSH6
Repair of Mismatches
in Nucleus
MutS1
Repair of Loops and Mismatches
StrpyBacsuCelegHumanYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHumanMSH4
Meiotic Crossing-Over
MSH5
Meiotic Crossing-Over
MutS2 Unknown FunctionsMSH2
Repair of Loops and Mismatches
in Nucleus
TIGRTIGR
Table 3. Presence of MutS Homologs in Complete Genomes Sequences
Species # of MutS
Homologs
Which
Subfamilies?
MutL
Homologs
Bacteria
Escherichia coli K12 1 MutS1 1
Haemophilus influenzae Rd KW20 1 MutS1 1
Neisseria gonorrhoeae 1 MutS1 1
Helicobacter pylori 26695 1 MutS2 -
Mycoplasma genitalium G-37 - - -
Mycoplasma pneumoniae M129 - - -
Bacillus subtilis 169 2 MutS1,MutS2 1
Streptococcus pyogenes 2 MutS1,MutS2 1
Mycobacterium tuberculosis - - -
Synechocystis sp. PCC6803 2 MutS1,MutS2 1
Treponema pallidum Nichols 1 MutS1 1
Borrelia burgdorferi B31 2 MutS1,MutS2 1
Aquifex aeolicus 2 MutS1,MutS2 1
Deinococcus radiodurans R1 2 MutS1,MutS2 1
Archaea
Archaeoglobus fulgidus VC-16, DSM4304 - - -
Methanococcus janasscii DSM 2661 - - -
Methanobacterium thermoautotrophicum ∆Η 1 ΜυτΣ2 −
Ευκαρψοτεσ
Σαχχηαροµψχεσχερεϖισιαε 6 ΜΣΗ1−6 3+
Ηοµο σαπιενσ 5 ΜΣΗ2−6 3+
TIGRTIGR
Why was the MutS2 Family Missed?
Blast Search of Syn. sp. MutS#2
Sequences producing significant alignments: (bits) Value
sp|Q56239|MUTS_THETH DNA MISMATCH REPAIR PROTEIN MUT 91 3e-17
sp|P26359|SWI4_SCHPO MATING-TYPE SWITCHING PROTEIN 87 4e-16
sp|P27345|MUTS_AZOVI DNA MISMATCH REPAIR PROTEIN MUTS 83 1e-14
sp|P74926|MUTS_THEMA DNA MISMATCH REPAIR PROTEIN MUTS 81 3e-14
sp|Q56215|MUTS_THEAQ DNA MISMATCH REPAIR PROTEIN MUTS 81 4e-14
sp|P10564|HEXA_STRPN DNA MISMATCH REPAIR PROTEIN HEXA 80 5e-14
• Blast search pulls up standard MutS genes
but with only a moderate p value (10-17
)
TIGRTIGR
Problems with Similarity Based
Functional Prediction
• Prone to database error propagation.
• Cannot identify orthologous groups reliably.
• Perform poorly in cases of evolutionary rate
variation and non-hierarchical trees (similarity will
not reflect evolutionary relationships in these cases)
• May be misled by modular proteins or large
insertion/deletion events.
• Are not set up to deal with expanding data sets.
TIGRTIGR
TIGRTIGR
Evolutionary Rate Variation
231456
TIGRTIGR
Rate Variation and Duplication
Species 3Species 1Species 21A2A3A1B2B3BDuplication
TIGRTIGR
Evolutionary
Method
PHYLOGENENETIC PREDICTION OF GENE FUNCTIONIDENTIFY HOMOLOGSOVERLAY KNOWN
FUNCTIONS ONTO TREE
INFER LIKELY FUNCTION
OF GENE(S) OF INTEREST
1234563531A2A3A1B2B3B2A1B1A3A1B2B3BALIGN SEQUENCESCALCULATE GENE TREE1246CHOOSE GENE(S) OF INTEREST2A2A53Species 3Species 1Species 211222311A3A1A2A3A1A2A3A464564562B3B1B2B3B1B2B3B ACTUAL EVOLUTION
(ASSUMED TO BE UNKNOWN)
Duplication?EXAMPLE AEXAMPLE BDuplication?Duplication?Duplication5 METHODAmbiguous
TIGRTIGR
MutS.Aquaeorf.TrepaSPE1.DromeMSH2.XenlaMSH2.RatMSH2.MouseMSH2.HumanMSH2.YeastMSH2.NeucratMSH2.ArathMutS.Borbuorf.StrpyMutS.BacsuMutS
Synsp
MutS
Ecoli
orf
Neigo
MutS
Thema
MutS
Theaq
orf.Deiraorf.ChltrMSH1.SpombeMSH1.YeastMSH3.YeastSwi4.SpombeRep3.MousehMSH3.Humanorf.ArathMSH6.YeastGTBP.HumanGTBP.MouseMSH6.Arathorf
Strpy
yshD
Bacsu
MSH5
Caeel
hMHS5
human
MSH5
Yeast
MutS.Metthorf
Borbu
MutS2
Aquae
MutS
Synsp
orf
Deira
MutS.HelpysgMutS.SauglMSH4.YeastMSH4.CaeelhMSH4.Human
A.AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathMutS2.MetthMutS2.SauglStrpyBacsuCaeelHumanYeastBorbuAquaeSynspDeiraHelpyYeastCaeelHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2B.AquaeTrepaXenlaNeucrArathBorbuSynspNeigoThemaDeiraChltrSpombeSpombeArathMouseMouseFlyRatMouseHumanYeastStrpyBacsuEcoliTheaqYeastYeastHumanYeastHumanArathStrpyBacsuHumanMutS2-MetthBorbuAquaeSynspDeiraHelpyMutS2-SauglCaeelYeastYeastCaeelHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2C.MutS2StrpyBacsuMutS2.MetthBorbuAquaeSynspDeiraHelpyMutS2.SauglCaeelYeastYeastCaeelHumanHumanMSH4
Segregation &
Crossover
MSH5
Segregation &
Crossover
FlyMouseHumanYeastAquaeTrepaXenlaNeucrArathBorbuSynspNeigoThemaDeiraChltrSpombeSpombeArathArathMutS1
All MMR
(Bacteria)
RatStrpyBacsuEcoliTheaqYeastYeastMouseHumanYeastHumanMouseMSH1
MMR in
Mitochondria
MSH3
MMR of
Large Loops
in Nucleus
MSH6
MMR of
Mismatches and
Small Loops
in Nucleus
MSH2
All MMR
in Nucleus
D.
TIGRTIGR
ETL1_M.mYA19_S.cCHD1_M.mSYGP4_S.cMOT1_S.cERCC6_H.sRAD26_S.cNUCP_H.sNUCP_M.mYB53_S.cRAD54_S.cDNRPPX_S.pRAD5_S.cRAD8_S.pHIP116A_H.sRAD16_S.cLODE._D.mNPHCG_42HEPA._E.cYB95_S.cF37A4_C.eISWI_D.mSNF2L_H.sBRM_D.mBRM_H.sBRG1_H.sBRG1_M.mSTH1_S.cSNF2_S.c
SNF2SNF2LCHD1ETL1CSBRAD54RAD16LODEEvolution of the SNF2 Family of Proteins
TIGRTIGR
4 F17L22 170 Arabidopsis thali
4455279 Arabidopsis thaliana
1049068 Lycopersicon esculentu
Homo sapiens
5514652 Drosophila melanogaste
Drosophila melanogaster2
123725 Caenorhabditis elegans
6606113 Capronia mansonii
RpoII.Yeast.YOR151C
107346 Schizosaccharomyces pom
151348 Euplotes octocarinatus
265427 Euplotes octocarinatus
3845258 Plasmodium falciparum
RpoIII.Drome
RpoIII.Drome.7303535
EGAD 114464 Caenorhabditis ele
RpoIII.Yeast.172383
EGAD 145012 Schizosaccharomyce
RpoIII.Neucr.7800864
ARATH5 K18C1 1
Aeropyrum pernix
EGAD 8025 Sulfolobus acidocald
5458046 Pyrococcus abyssi
PH1546 Pyrococcus horikoshii
Thermococcus celer
EGAD 14667 Methanococcus vanni
MJ1040 Methanococcus jannaschi
AF1886 Archaeoglobus fulgidus
Halobacterium halobium
Thermoplasma acidophilum
RPB2 Methanobacterium thermoau
atmystery.BAB02021
ARATH3 MRC8.7
ARATH3 MYM9.12
6723961 Schizosaccharomyces po
RpoI.Yeast.YPR010C
RpoI.Neucr.3668171
RPA2 Rattus norvegicus
Mus musculus
RpoI.Drome.7296211
Caenorhabditis elegans
92131 Euplotes octocarinatus
ARATH1 T1P2.15
ARATH1 F1N18.2
1492072Molluscum contagiosum v
439046 Variola major virus
1143635 Variola virus
2772787 Vaccinia virus
323395 Cowpox virus
6578643 Rabbit fibroma virus
6523969 Myxoma virus
6682809 Yaba monkey tumor viru
7271687 Fowlpox virus
4049822 Melanoplus sanguinipes
2887 Kluyveromyces lactis
EGAD 151364 Sacch kluyveri
1369760 Borrelia burgdorferi
BB0389 Borrelia burgdorferi
TP0241 Treponema pallidum
6652714 Rickettsia massiliae
6652723 Rickettsia sp. Bar29
6652720 Rickettsia conorii
RP140 Rickettsia prowazekii
6960339 Salmonella typhimurium
EGAD 1084 Salmonella choleraes
EC3987 Escherichia coli
EGAD 23892 Buchnera aphidicola
HI0515 Haemophilus influenzae
EGAD 6020 Pseudomonas putida
RPOB Coxiella burnetii
3549149 Legionella pneumophila
RPOB Neisseria meningitidis
HP1198 Helicobacter pylori
6967949 Campylobacter jejuni
AA1339 Aquifex aeolicus
BS0107 Bacillus subtilis
4512396 Bacillus halodurans
6002201 Listeria monocytogenes
EGAD 32012 Staphylococcus aure
EGAD 32011 Spiroplasma citri
MG341 Mycoplasma genitalium
MP326 Mycoplasma pneumoniae
6899151 Ureaplasma urealyticum
Rv0667 Mycobacterium tuberculo
Mycobacterium leprae
7144498 Mycobacterium smegmati
EGAD 39063 Mycobacterium smegm
GP 7331268 Amycolatopsis medit
7248348 Streptomyces coelicolo
7573273 Thermus aquaticus
DR0912 Deinococcus radiodurans
TM0458 Thermotoga maritima
EGAD 74970 80693 Heterosigma c
EGAD Odontella sinensis
EGAD 60306 Spinacia oleracea
EGAD Nicotiana tabacum
6723742 Oenothera elata
5457427 Sinapis alba
5881686 Arabidopsis thaliana
4958867 Triticum aestivum
EGAD 76270 Zea mays
RPOB Oryza sativa
EGAD Pinus thunbergii
EGAD Marchantia polymorpha
7259525 Mesostigma viride
5880717 Nephroselmis olivacea
RPOB Guillardia theta
sll1787 Synechocystis PCC6803
EGAD 75526 Porphyra purpurea
6466433 Cyanidium caldarium
EGAD 76712 Cyanophora paradoxa
RPOB Chlorella vulgaris
EGAD 76424 Euglena gracilis
5231258 Toxoplasma gondii
6492294 Neospora caninum
EGAD 83446 Plasmodium falcipar
100
78
100
85
93
83
100
79
100
100
100
100 100
100
94100
100
74
99
100
99
100
100
99
9480
100
100
100
100
59
100
100
99
56100
100
100
100
58 95
100
97
63
95
100
100
100
81
100
100
100
59
60
99
100
100
94
100
100
69
100
77
100
97
100
71
100
99
58
83
100100
100
99
100
98
100
100
61
99
75
100
73
100
100
59
100
100
72
72
98
52
98
59
100
100
a
Novel RNA Polymerase in A. thaliana
Archaeal
IV
II
III
I
Viral
Bacterial - RpoB
Plastid- RpoBs
TIGRTIGR
Novel Large Subunit Rubisco in
Chlorobium tepidumAgathis.gi3982533
Agathis.gi3982549
Araucaria.gi3982517
Agathis.gi3982535
Agathis.gi3982541
Venturiella.gi4009420
Leucobryum.gi6230571
Mougeotia.gi1145415
Anabaena.gi68158
Thife.gi2411435
Thiin.gi4105518
Metja.gi2129276
Pyrho.gi|3257353
Pyrab.gi|5458634
Pyr karaensis.gi3769302
Arcfu.gi2648911
Arcfu.gi2648975
Bacsu.gi2633730
Chlte.ORF02314
100
100
96
54
99
58
66
59
100
100
82
67
100
100
100
93
Type X
Type I
Rubisco
Large
Subunit
Phylogeny
TIGRTIGR
Uses of Phylogenomics II:
Knowing when to Not Predict
Functions
TIGRTIGR
Deinococcus radiodurans
TIGRTIGR
DNA Repair Genes in D.
radiodurans Complete Genome
Process Genes in D. radiodurans
Nucleotide Excision Repair UvrABCD, UvrA2
Base Excision Repair AlkA, Ung, Ung2, GT, MutM, MutY-Nths,
MPG
AP Endonuclease Xth
Mismatch Excision Repair MutS, MutL
Recombination
Initiation
Recombinase
Migration and resolution
RecFJNRQ, SbcCD, RecD
RecA
RuvABC, RecG
Replication PolA, PolC, PolX, phage Pol
Ligation DnlJ
dNTP pools, cleanup MutTs, RRase
Other LexA, RadA, HepA, UVDE, MutS2
TIGRTIGR
Recombination Genes in Genomes
Pathway |------------------------------Bacteria---------------------------| |---Archaea---| Euks
Protein Name(s)
Initiation
RecBCD pathway
RecB + + - - - - - - + + - + - - - - - - - -
RecC + + - - - - - - + ±+ - ± - - - - - - - -
RecD + + - - ± - - - + ±+ - ++ - ± ±+ - - - - -
RecF pathway
RecF + + + - + - - + + - + ± - - + - - ± ± ±
RecJ + + + + + - - + - + + + + + + - - - - -
RecO + + - - + - - + + - - - - - ± - - - - -
RecR + + + ±+ + - - + + - + + - + + - - - - -
RecN + + + + + - - + + - + - ± + + - - ± ± -
RecQ + + - - + - - + - - + - - - + - - - - + ++
RecE pathway
RecE/ExoVIII + - - - - - - - - - - - - - - - - - - -
RecT + - - - + - - - - - - - - - - - - - - -
SbcBCD pathway
SbcB/ExoI + + - - - - - - - - - - - - - - - - - -
SbcC + - - - + - - + - + + - + + + ± ± ± ± ± ±
SbcD + - - - + - - + - + + - + + + ± ± ± ± ± ±
AddAB Pathway
AddA/RexA - - + - + - - - - - + + - ± - - - - - -
AddB/RexB - - - - + - - - - - - - - - - - - - - -
Rad52 pathway
Rad52, Rad59 - - - - - - - - - - - - - - - - - - - ++ +
Mre11/Rad32 ± - - - ± - - ± - ± ± - ± ± ± + + + + + +
Rad50 ± - - - ± - - ± - ± ± - ± ± ± + + + ± + +
Recombinase
RecA, Rad51 + + + + + + + + + + + + + + + + + + + ++ ++
Branch migration
RuvA + + + + + + + + + + + + + - + - - - - -
RuvB + + + + + + + + + + + + + - + - - - - -
RecG + + + + + - - + + + + - + + + - - - - -
Resolvases
RuvC + + + + - - - + + - + + + - + - - - - -
RecG + + + + + - - + + + + - + + + - - - - -
Rus + - - - - - - - ±+ - - - - ±+ - - - - - -
CCE1 - - - - - - - - - - - - - - - - - - - +
Other recombination proteins
Rad54 - - - - - - - - - - - - - - - - - - - + +
Rad55 - - - - - - - - - - - - - - - - - - - + +
Rad57 - - - - - - - - - - - - - - - - - - - + +
Xrs2 - - - - - - - - - - - - - - - - - - - +
TIGRTIGR
Unusual Features of D. radiodurans
DNA Repair Genes
Process Genes
Nucleotide excision repair Two UvrAs
Base excision repair Four MutY-Nths
Recombination RecD but not RecBC
Replication Four Pol genes
dNTP pools Many MutTs, two RRases
Other UVDE
TIGRTIGR
Problem:
List of DNA repair gene homologs
in D. radiodurans genome is not
significantly different from other
bacterial genomes of the similar size
TIGRTIGR
-Ogt
-RecFRQN
-RuvC
-Dut
-SMS
-PhrI
-AlkA
-Nfo
-Vsr
-SbcCD
-LexA
-UmuC
-PhrI
-PhrII
-AlkA
-Fpg
-Nfo
-MutLS
-RecFORQ
-SbcCD
-LexA
-UmuC
-TagI
-PhrI
-Ogt
-AlkA
-Xth
-MutLS
-RecFJORQN
-Mfd
-SbcCD
-RecG
-Dut
-PriA
-LexA
-SMS
-MutT
-PhrI
-PhrII?
-AlkA
-Fpg
-Nfo
-RecO
-LexA
-UmuC
-PhrI
-Ung?
-MutLS
-RecQ?
-Dut
-UmuC
-PhrII
-Ogg
-Ogt
-AlkA
-TagI
-Nfo
-Rec
-SbcCD
-LexA
-Ogt
-AlkA
-Nfo
-RecQ
-SbcD?
-Lon
-LexA
-AlkA
-Xth
-Rad25?
-AlkA
-Rad25
-Nfo
-Ogt
-Ung
-Nfo
-Dut
-Lon
-Ung
-PhrII
-PhrI
Ecoli
Haein
Neigo
Helpy
Bacsu
Strpy
Mycge
Mycpn
Borbu
Trepa
Synsp
Metjn
Arcfu
Metth
Human
Yeast
BACTERIA ARCHAEA EUKARYOTES
from mitochondria
+Ada
+MutH
+SbcB
dPhr
+TagI?
+Fpg
+UvrABCD
+Mfd
+RecFJNOR
+RuvABC
+RecG
+LigI
+LexA
+SSB
+PriA
+Dut?
+Rus
+UmuD
+Nei?
+RecE
tRecT?
+Vsr
+RecBCD?
+RFAs
+TFIIH
+Rad4,10,14,16,23,26
+CSA
+Rad52,53,54
+DNA-PK, Ku
dSNF2
dMutS
dMutL
dRecA
+Rad1
+Rad2
+Rad25?
+Ogg
+LigII
+Ung?
+SSB,
+Dut?
+PhrI, PhrII
+Ogt
+Ung, AlkA, MutY-Nth
+AlkA
+Xth, Nfo?
+MutLS?
+SbcCD
+RecA
+UmuC
+MutT
+Lon
dMutSI/MutSII
dRecA/SMS
dPhrI/PhrII
+Spr
t3MG
+Rad7
+CCE1
+P53
dRecQ
dRad23
+MAG?
-PhrII
-RuvC
tRad25
+TagI?
+RecT
tUvrABCD
tTagI ?
Gain and Loss of Repair Genes
TIGRTIGR
TIGRTIGR
Repair Studies in Different Species
(determined by Medline searches as of 1998)
Humans 7028
E. coli 3926
S. cerevisiae 988
Drosophila 387
B. subtilits 284
S. pombe 116
Xenopus 56
C. elegans 25
A. thaliana 20
Methanogens 16
Haloferax 5
Giardia 0
TIGRTIGR
Uses of Phylogenomics III:
Gene Duplication
TIGRTIGR
Why Duplications Are Useful to Identify
• Allows division into orthologs and paralogs
• Aids functional predictions
• Recent duplications may be indicative of species’
specific adaptations
• Helps identify mechanisms of duplication
• Can be used to study mutation processes in
different parts of genome
TIGRTIGR
Recent Duplications
TIGRTIGR
MutY-NthDEIRA ORF00829DEIRA ORF02784DEIRAAQUAEMETJAMETTHTHEMACHLTRHAEINMCYTUTHEMAMETTHPYRHOAQUAEMETJAARCFUCELEGVIBCHECOLIHAEINTREPARICPRAQUAEBACSUCAMJEHELPYMCYTUSYNSPCHLPNCHLTRBBUR
TIGRTIGR
Expansion of MCP Family in V. choleraeE.coli gi1787690B.subtilis gi2633766Synechocystis sp. gi1001299Synechocystis sp. gi1001300Synechocystis sp. gi1652276Synechocystis sp. gi1652103H.pylori gi2313716H.pylori99 gi4155097C.jejuni Cj1190cC.jejuni Cj1110cA.fulgidus gi2649560A.fulgidus gi2649548B.subtilis gi2634254B.subtilis gi2632630B.subtilis gi2635607B.subtilis gi2635608B.subtilis gi2635609B.subtilis gi2635610B.subtilis gi2635882E.coli gi1788195E.coli gi2367378E.coli gi1788194E.coli gi1789453C.jejuni Cj0144C.jejuni Cj0262cH.pylori gi2313186H.pylori99 gi4154603C.jejuni Cj1564C.jejuni Cj1506cH.pylori gi2313163H.pylori99 gi4154575H.pylori gi2313179H.pylori99 gi4154599C.jejuni Cj0019cC.jejuni Cj0951cC.jejuni Cj0246cB.subtilis gi2633374T.maritima TM0014T.pallidum gi3322777T.pallidum gi3322939T.pallidum gi3322938B.burgdorferi gi2688522T.pallidum gi3322296B.burgdorferi gi2688521T.maritima TM0429T.maritima TM0918T.maritima TM0023T.maritima TM1428T.maritima TM1143T.maritima TM1146P.abyssi PAB1308P.horikoshii gi3256846P.abyssi PAB1336P.horikoshii gi3256896P.abyssi PAB2066P.horikoshii gi3258290P.abyssi PAB1026P.horikoshii gi3256884D.radiodurans DRA00354D.radiodurans DRA0353D.radiodurans DRA0352P.abyssi PAB1189P.horikoshii gi3258414B.burgdorferi gi2688621M.tuberculosis gi1666149V.cholerae VC0512V.cholerae VCA1034V.cholerae VCA0974V.cholerae VCA0068V.cholerae VC0825V.cholerae VC0282V.cholerae VCA0906V.cholerae VCA0979V.cholerae VCA1056V.cholerae VC1643V.cholerae VC2161V.cholerae VCA0923V.cholerae VC0514V.cholerae VC1868V.cholerae VCA0773V.cholerae VC1313V.cholerae VC1859V.cholerae VC1413V.cholerae VCA0268V.cholerae VCA0658V.cholerae VC1405V.cholerae VC1298V.cholerae VC1248V.cholerae VCA0864V.cholerae VCA0176V.cholerae VCA0220V.cholerae VC1289V.cholerae VCA1069V.cholerae VC2439V.cholerae VC1967V.cholerae VCA0031V.cholerae VC1898V.cholerae VCA0663V.cholerae VCA0988V.cholerae VC0216V.cholerae VC0449V.cholerae VCA0008V.cholerae VC1406V.cholerae VC1535V.cholerae VC0840V.cholerae VC0098V.cholerae VCA1092V.cholerae VC1403V.cholerae VCA1088V.cholerae VC1394V.cholerae VC0622NJ*******************************************************************************
TIGRTIGR
Phosphate Transporters
ARCFUSYNSPTHEMAAQUAEMETJAMCYTUMCYTUVIBCHECOLIDEIRA_ORF00198DEIRA_ORFA00139DEIRA_ORF00510
TIGRTIGR
Levels of Paralogy Within A Genome
• All
– All members of a gene family are linked together
• Top matches
– Only top matching pairs are linked together.
Therefore, if in a large gene family, only the pair
from the most recent duplication event is included
• Recent
– Operational definition based on comparison to other
species. Only pairs which are more similar to each
other than to selected other species are included.
TIGRTIGR
C. pneumoniae Paralogs - All
0
250000
500000
750000
1000000
1250000
Subject Orf Position
0 250000 500000 750000 1000000 1250000
Query Orf Position
TIGRTIGR
C. pneumoniae Paralogs - Top
0
250000
500000
750000
1000000
1250000
Subject Orf Position
0 250000 500000 750000 1000000 1250000
Query Orf Position
TIGRTIGR
C. pneumoniae Paralogs – Recent
0
250000
500000
750000
1000000
1250000
Subject Orf Position
0 250000 500000 750000 1000000 1250000
Query Orf Position
TIGRTIGR
Uses of Phylogenomics IV:
Genetic Exchange within Genomes
TIGRTIGR
Circular Maps
TIGRTIGR
TIGRTIGR
Uses of Phylogenomics V:
Gene Loss
TIGRTIGR
Why Gene Loss is Useful to Identify
• Indicates that gene is not absolutely required for
survival
• Helps distinguish likelihood of gene transfers
• Correlated loss of same gene in different species
may indicate selective advantage of loss of that
gene
• Correlated loss of genes in a pathway indicates a
conserved association among those genes
TIGRTIGR
EuksArchBacteriaLossEvolutionary Origin of GeneMTMJSCHSAADRTABSMGMPBBTPHPHIECSSMTPresence ( ) or Absence of GeneSpecies AbbreviationKingdom
Example of Tracing Gene Loss
TIGRTIGR
TIGRTIGR
51234
E. coliH. influenzaeN. gonorrhoeaeH. pyloriSyn. spB. subtilisS. pyogenesM. pneumoniaeM. genitaliumA. aeolicusD. radioduransT. pallidumB.burgdorferiA. aeolicusS pyogenesB. subtilisSyn. spD. radioduransB. burgdorferiSyn. spB. subtilisS. pyogenesA. aeolicusD. radioduransB. burgdorferiMutS2MutS1A.B.Gene
Duplication
Gene
Duplication
Ancient Duplication in MutS Family
TIGRTIGR
Loss of MMR
• Lost in many pathogen species
• Mechanism of loss
– gene deletion (e.g., M. tuberculosis, H. pylori)
– frameshifts (e.g., N. meningitidis, S.
pneumoniae)
– some species have evolved systems to turn
MMR on and off depending on conditions (e.g.,
E. coli)
TIGRTIGR
Need for Phylogenomics Example:
Gene Duplication and Loss
• Genome analysis required to determine number of
homologs in different species
• Evolutionary analysis required to divide into
orthology groups and identify gene duplications
• Genome analysis is then required to determine
presence and absence of orthologs
• Then loss of orthologs can be traced onto
evolutionary tree of species
TIGRTIGR
Uses of Phylogenomics VI:
Specialization
TIGRTIGR
Circular Maps
TIGRTIGR
Species Distribution of Homologs of
D. radiodurans Genes
01020304050600510152005010015005101520
Number of Species With High Hits050100150200250
Frequency05101520
Papa BearMama BearBaby Bear010020030040050005101520
E. coli
TIGRTIGR
Specialized Genetic Elements
(Chromosome II and Megaplasmid)
• Many two component systems
• Nitrogen metabolism
• LexA
• Ribonucleotide reductase
• UvrA2
• Many transcription factors (e.g., HepA)
• Iron metabolism
TIGRTIGR
Uses of Phylogenomics VII:
Genome Rearrangements
TIGRTIGR
V. cholerae vs. E. coli All Hits
0
1000000
2000000
3000000
4000000
5000000
E. coli
Coordinates
0 1000000 2000000 3000000
V. cholerae Coordinates
TIGRTIGR
V. cholerae vs. E. coli Top Hits
0
1000000
2000000
3000000
4000000
5000000
E. coli
Coordinates
0 1000000 2000000 3000000
V. cholerae Coordinates
TIGRTIGR
V. cholerae vs. E. coli
Only if EC-Orf is Closest in All Genomes
0
1000000
2000000
3000000
4000000
5000000
E. coli
Coordinates
0 1000000 2000000 3000000
V. cholerae Coordinates
TIGRTIGR
V. cholerae vs. E. coli Proteins
Top
0
1000000
2000000
3000000
4000000
V. cholerae ORF Coordinates
TIGRTIGR
S. pneumoniae vs. S. pyogenes DNA F+R
0500000100000015000002000000BSP vs Spyo
TIGRTIGR
M. tuberculosis vs. M. leprae DNA
0
1000000
2000000
3000000
4000000
M1
TIGRTIGR
Duplication and Gene Loss Model
A
B
CD
E
F
A
B
CD
E
F
A
B
C
D
E
F
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
A
C
D
F
A’
B’
E’
E. coli
E. coli
B
C
D
F
A’
B’
D’
E’
V. cholerae
A
B
C
D
E
F
A’
B’
C’
D’
E’
F’
TIGRTIGR
V. cholerae vs. E. coli Proteins
Top
0
1000000
2000000
3000000
4000000
V. cholerae ORF Coordinates
TIGRTIGR C. trachomatis MoPn
C.pneumoniaeAR39
Origin
Termination
C. trachomatis vs C. pneumoniae Dot Plot
TIGRTIGR
B1
A1
B2
A2
B3
A3
A2
A1 A2
A3
B2
B1
B3
B2
24
23
22
21
20
19
18171615
14
13
12
11
10
9
6
7
258
26
27
28
29
30
1 2
3
4
5
3132
B1
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2
3
4
5
3132
B3 24
23
22
21
20
19
18171615
14
13
12
11
10
9
6
7
258
26
27
28
29
3
3231
30
4
5
2 1
A1
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2
3
4
5
3132
A2
3132
6
7
8
9
10
11
12
13
19
18171615
14
20
21
22
23
24
25
26
27
28
29
30
1 2
3
4
5
3132
A3
2
6
7
8
9
10
11
12
13
19
18171615
14
20
21
22
23
24
25
26
27
5
4
3
31
30
29
28
1 32
B2
Inversion
Around
Terminus (*)
Inversion
Around
Terminus (*)
Inversion
Around
Origin (*)
Inversion
Around
Origin (*)
* *
* *
* *
* *
Figure 4
Common
Ancestor of
A and B
3132
6
7
8
9
10
11
12
13
14
15161718
19
20
21
22
23
24
25
26
27
28
29
30
1 2 3
4
5
3132
TIGRTIGR
Uses of Phylogenomics VIII:
Horizontal Gene Transfer and
Species Evolution
TIGRTIGR
Vertical Inheritance
TIGRTIGR
Examples of Horizontal Transfers
• Antibiotic resistance genes on plasmids
• Insertion sequences
• Pathogenicity islands
• Toxin resistance genes on plasmids
• Agrobacterium Ti plasmid
• Viruses and viroids
• Organelle to nucleus transfers
TIGRTIGR
Why Gene Transfers Are Useful to Identify
• Laterally transferred genes frequently involved in
environmental adaptations and/or pathogenicity
• Helps identify transposons, integrons, and other
vectors of gene transfer
• Helps identify species associations in the
environment
TIGRTIGR
Steps in Lateral Gene Transfer
1
2
3-5
6
A B C D
TIGRTIGR
How to Infer Gene Transfers
• Unusual distribution patterns
• Unusual nucleotide composition
• High sequence similarity to supposedly
distantly related species
• Unusual gene trees
• Observe transfer events
TIGRTIGR
E. coli and S. typhimurium Transfer
E. coliS. typhimuriumOld ModelE. coliS. typhimuriumNew Model
TIGRTIGR
Archaeal genes in bacterial genomesArchaeal genes in bacterial genomes**
Bacterial speciesBacterial species Best hits to ArchaealBest hits to Archaeal
Thermotoga maritimaThermotoga maritima 451 (24%)451 (24%)
Aquifex aeolicusAquifex aeolicus 246 (16%)246 (16%)
SynechocystisSynechocystis sp.sp. 126 (4%)126 (4%)
Borrelia burgdorferiBorrelia burgdorferi 45 (3.6%)45 (3.6%)
Escherichia coliEscherichia coli 99 (2.3%)99 (2.3%)
** 1010-5-5
over 60% of sequenceover 60% of sequence
TIGRTIGR
Evidence for lateral gene transfer inEvidence for lateral gene transfer in
ThermotogaThermotoga
1. 81 archaeal-like genes are clustered in 15 regions which
range in size from ~ 4 to 20 kb; many share conserved gene
order with their archaeal counterparts.
2. Many of the archaeal-like genes correspond to regions with
a significantly different base composition than the rest of
the chromosome.
3. Some of these regions are associated with a 30 bp repeat
structure found only in thermophiles.
4. Initial phylogenetic analyses of some of these genes lends
support to lateral gene transfer.
TIGRTIGR
0987 09900989ThermotogaThermotoga ORFORF
Archaea homologArchaea homolog
Bacterial homologBacterial homolog
Eukaryote homologEukaryote homolog
ThermotogaThermotoga ORFORF
Archaea homologArchaea homolog
Bacterial homologBacterial homolog
Eukaryote homologEukaryote homolog
0988 0991 0992 0993 0994
0995 0996 0997 0998 0999 1000 10021001 1003
Region TM00987 - TM1003 ( 21kb Archaea-like stretch)Region TM00987 - TM1003 ( 21kb Archaea-like stretch)
79% 69% 69% 72%
72% 69% 65%61% 78%
72%
TransposonTransposon
54%
48%
68% 51%
73%
73%
Regulatory proteinRegulatory protein
TIGRTIGR
0
100
200
300
400
500
600
700
500 1000 1500 2000 2500 3000 3500 4000 4500
Orfs in Target Genome
Best
Matches
Best Matches to Prokaryotes
CAUCR BACSU
ECOLI
MYCTU
SYNSP
TIGRTIGR
A. thaliana T1E2.8 is a
Chloroplast Derived HSP60ARATH -T1E2.8**********ECOLHAEINVIBCHVIBCHRICPRYEASTCHLPNCHLTRAQUAECAMJEHELPYBBURTREPATHEMABACSUDEIRAMCYTUMCYTUSYNSPSYNSPODONT CPSTMYCGEMYCPNCHLPNCHLTRCHLPNCHLTRARCFUARCFUMETJAPYRHOMETTHMETTHYEASTYEASTYEASTYEASTCELEGYEASTYEASTYEASTCELEGYEASTYEASTCELEGYEASTCELEGCELEG
EukaryaArchaeaBacteriaCyano/Cpst
TIGRTIGR
Organellar HSP60s
DROMECG12101DROMECG7235DROMECG2830DROMECG16954ARATH At2g33210ARATH F14O13.19ARATH MCP4.7YEAST SWCAUCR ORF03639RICPR gi|3861167ECOLI gi|1790586NEIMEb gi|7227233.AQUAE gi|2984379CHLPN gi|4376399|DEIRA ORF02245BACSU gi|2632916SYNSP gi|1652489SYNSP gi|1001103ARATH At2g28000ARATH MRP15.11MCYTU gi|2909515MCYTU gi|1449370THEMA TM0506BBUR gi|2688576TREPA gi|3322286PORGI ORF00933CHLTE ORF00173HELPY gi|2313084
Mitochondrial
Forms
α−ΠροτεοΧψανοβαχτεριαΠλαστιδ Φορµσ
TIGRTIGR
ParA Phylogeny
pOMB25.Bor
BBl32.Borb
Borbu3
Borbu.2
BBM32.Borb
CP32-6.Bor
BBA20.Borb
Cp18.Borbu
pOMB10.Bor
pLp7E.Borb
BBE19.Borb
BBB12.Borb
BBN32.Borb
BBF13.Borb
BBH28.Borb
BBK21.Borb
BBU05.Borb
BBJ17.Borb
BBQ08.Borb
BBF24.Borb
OrfC.Borbu
BBG08.Borb
Pyrab
Pyrho
YZ24 METJA
IncC1.Enta
IncC2.Enta
INC1 ECOLI
INC2 ECOLI
Orf.pRK2
IncC.pRK2
pM3.ParA
ORF3.Pseae
ORFB.Psepu
2603.Vibch*****
ParA.Strco
Strco2
Strco3
Myctu4
Mycle3
Deira.Chro
Soj.Trepa
SOJ BACSU
Ricpr
YGI1 PSEPU
ParA.Caucr
pAG1.Corgl
Mycle
Mycle2
Rv1708.Myc
Strco
Rv3213.Myc
Helpy99
Helpy26695
A00900.Vib*****
ParB.pR27.
ParA.pMT1.
parA.pMT1
parA.phage
ParA phage
ORFA00900
SOPA ECOLI
F-Plasmid
PhageN13
pCD1.Yerpe
pCD1#2.Yer
pYVe227.Ye
pNL1.Sphar
pQPH1.Coxb
p42d.Rhile
p42d.Rhiet
REPA AGRRA
pRiA4b.Agr
pTiB6S3.Ag
pTi-SAKURA
pRL8JI.Rhi
Y4CK Plasm
ParA.Raleu
pL6.5.Psef
Chr2.Deira
MP1#2.Deir
MP1.Deira
PX02.Bacan
ORF298.Clo
SojC.Halsp
Borbu4
sojD.Halsp
plasmid.St
SojB.Halsp
ParA.Rhoer
SOJ MYCPN
SOJ MYCGE
MinD2.Pyra
Pyrho2
pK214.Lacl
PatA.synsp
Deira.ParA
pCHL1.Chlt2
GP5D CHLTR
pCHL1.Chlt
Chltr
Chlps
Chlps2
Chlpn
Chltr2
Chlpn2
Chromosomal
Plasmid
and
Phage
BBQ08.Borb
Chlamydial
Inc
Borrelia
Plasmids
Archaea
Misc
Evolution of Chromosome Partitioning Proteins (ParA)
TIGRTIGR
Horizontal Gene Transfer II
TIGRTIGR
Reconciling a Tree of Life in the
Context of Lateral Gene Transfer
TIGRTIGR
rRNA Tree of Complete Genomes
Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes
ArchaeaBacteriaEukarya
TIGRTIGR
Whole Genome Phylogeny
TIGRTIGR
rRNA vs. Whole Genome Trees
Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes
ArchaeaBacteriaEukarya
TIGRTIGR
Outline of Phylogenomics
Gene Evolution EventsPhenotype PredictionsDatabaseSpecies treePresence/AbsenceGene treesCongruenceEvol. DistributionF(x) PredictionsPathway Evolution
TIGRTIGR
TIGRTIGR
Evolutionary Genome Scanning
• Distribution patterns/phylogenetic profiles
• Patterns of evolution (ds/dn, correlations, constraints)
• Lateral gene transfers (organellar genes, Pathogenicity islands)
• Subdividing gene families
• Functional predictions (gene trees, PG profiles)
• Gene duplications
• Gene loss
• Specialization
• Comparing close relatives
• Species evolution
TIGRTIGR
Evolutionary Diversity Still Poorly
Represented in Complete Genomes
Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85
BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted
TIGRTIGR
True Phylogenetic Methods
Work Best
MutS2.SynsMutS2.BacsMutS2.HelpMutS2.DeirMutsl.MettMSH4.CelegMSH4.YeastMSH4.humanmMutS.SacoMSH3.yeastC23C11.SpoMSH1.YeastMSH3.HumanREP1.MouseGTBP.MouseGTBP.HumanMSH6.YeastMSH5.HumanMSH5.CelegMSH5.YeastMSH2.HumanMSH2.MouseMSH2.YeastMutS.EcoliMutS.SynspMutS.DeiraMutS.Bacsu
MutS.EcoliMutS.SynspMutS.BacsuMutS.DeiraMSH2.HumanMSH2.MouseMSH2.YeastMSH3.HumanREP1.MouseGTBP.MouseGTBP.HumanMSH6.YeastC23C11.SpoMSH1.YeastMSH3.yeastMSH4.CelegMSH4.humanMSH5.CelegMSH5.YeastmMutS.SacoMSH5.HumanMSH4.YeastMutS2.SynsMutS2.BacsMutS2.DeirMutS2.HelpMutsl.Mett
UPGMANeighbor-Joining
TIGRTIGR
Acknowledgements
• Genome duplications: S. Salzberg, J. Heidelberg, O. White,
A. Stoltzfus, J. Peterson
• Genome sequences and analysis: J. Heidelberg, T. Read, H.
Tettelin, K. Nelson, J. Peterson, R. Fleischmann, D. Bryant
• Horizontal transfers: K. Nelson, W. F. Doolittle
• TIGR: C. Fraser, J. Venter, M-I. Benito, S. Kaul, Seqcore
• $$$: DOE, NSF, NIH, ONR
TIGRTIGR
Evolutionary Diversity Still Poorly
Represented in Complete Genomes
Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85
BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted
TIGRTIGR
TIGRTIGR
TIGTIG
RR
OtherOther
peoplepeople
Mom and DadMom and Dad
S. KarlinS. Karlin
M. FeldmanM. Feldman
A. M. CampbellA. M. Campbell
R. FernaldR. Fernald
R. ShaferR. Shafer
D. AckerlyD. Ackerly
D. GoldsteinD. Goldstein
M. EisenM. Eisen
J. CourcelleJ. Courcelle
R. MyersR. Myers
C. M. CavanaughC. M. Cavanaugh
P. HanawaltP. Hanawalt
NSFNSF
J. HeidelberJ. Heidelber
T.ReadT.Read
S. KaulS. Kaul
M-I BenitoM-I Benito
J. C. VenterJ. C. VenterC. FraseC. Fraser
S. SalzbergS. Salzberg
O. WhiteO. White
K. NelsonK. Nelson
$$$$$$
ONRONR
DOEDOE
NIHNIH
H. TettelinH. Tettelin
TIGRTIGR
Uses of Phylogenomics IX:
Evolution Within Species
TIGRTIGR
M. tuberculosis strain phylogeny (Indels)
TIGRTIGR
Musser-Type Evolution (Indel Phylogeny)
98a
107a
43a
73a
105a
133a
114a
169a
218a
290a
160a
159a
13a
18a
26a
30a
32a
53a
58a
70a
96a
97a
100a
124a
204a
208a
236a
239a
249a
286a
99a
279a
205a
304a
54a
155a
165a
CDC1551a
223a
110a
122a
245a
313a
36a
40a
71a
79a
168a
254a
283a
312a
4a
12a
41a
42a
52a
77a
187a
214a
81a
129a
274a
220a
64a
48a
55a
60a
72a
80a
83a
85a
89a
91a
95a
111a
170a
171a
182a
212a
219a
225a
244a
278a
301a
195a
2a
123a
207a
306a
69a
94a
101a
102a
112a
113a
121a
132a
211a
222a
235a
250a
284a
285a
N1a
87a
117a
120a
136a
191a
237a
261a
37a
131a
269a
240a
63a
197a
206a
75a
108a
263a
128a
172a
162a
86a
38a
109a
119a
248a
6a
65a
68a
189a
66a
106a
227a
31a
78a
202a
213a
62a
163a
224a
256a
276a
287a
173a
291a
252a
281a
295a
310a
251a
151a
188a
292a
140a
141a
103a
174a
229a
259a
H37Rv
88a
44a
74a
76a
126a
282a
166a
210a
84a
TIGRTIGR
Consistency Indices (Indel Phylogeny)
Calculated over stored trees
CI
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
maximum
average
minimum
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201
Character
TIGRTIGR
TIGRTIGR
Phylogenomics I:
Presence/Absence of Homologs
• Important to have complete genomes
• Similarity searches with high “homology
threshold” (to prevent false positives)
• Iterative searches (to prevent false negatives)
• Multiple sequence alignments to confirm
assignment of homology and to divide up
multi-domain proteins
TIGRTIGR
Phylogenomics II:
Phylogenetic Analysis of Homologs
• Multiple sequence alignment
• Mask alignment (exclude certain regions)
– ambiguous regions of alignment
– hypervariable regions and regions with large gaps
• Phylogenetic tree with method of choice
• Robustness checks
– bootstrapping
– compare trees with different alignments
– compare trees with different tree-building methods
TIGRTIGR
Phylogenomics III:
Inferring Evolutionary Events
• Infer evolutionary distribution patterns (overlay
presence/absence onto species tree)
• Compare gene tree vs. species tree
• Compare gene tree vs. evolutionary distribution
• Infer gene duplication and transfer events
• Combine gene transfer and duplication information with
evolutionary distribution analysis to infer gene loss, gene
origin, and timing of gene duplications and transfers
TIGRTIGR
Phylogenomics IV:
Functional Predictions and Evolution
• Overlay experimentally determined functions
onto gene tree
• Infer changes in function
– many changes suggests caution should be used in
making new predictions
• Predict functions based on position in tree
relative to genes with known functions and
based on orthology groups
TIGRTIGR
Phylogenomics V:
Pathway Analysis
• Correlated presence/absence of all genes in pathway in different
species?
– If not, maybe non-orthologous gene displacement
– Alternatively, pathway may be different between species
• Correlated evolutionary events for genes in pathway
– loss of all genes at once
– correlated duplications?
• Compare evolution of function between pathways
– The number of times an activity has evolved helps in making
predictions of function/phenotype
TIGRTIGR
Steps in Phylogenomic Analysis
• Create database of genes of interest
• Presence/absence of homologs in complete genomes
• Phylogenetic trees of each gene family
• Infer evolutionary events (gene origin, duplication, loss and transfer)
• Refine presence/absence (orthologs, paralogs, subfamilies)
• Functional predictions and functional evolution
• Analysis of pathways
TIGRTIGR
Evolution as a Screening
Method
• Gene duplications
• Gene loss
• Lateral gene transfers
• Organellar genes
• Structurally constrained genes
• Correlated evolutionary changes
TIGRTIGR
Evolutionary Genome Scanning
• Distribution patterns/phylogenetic profiles
• Patterns of evolution
– (ds/dn)
– Structurally constrained genes
– Correlated evolutionary changes
• Lateral gene transfers
– Organellar genes
– Pathogenicity islands
• Subdividing gene families
– Orthologs vs paralogs
– Functional predictions
– Subfamilies
– Motif identification
• Gene duplications
• Gene loss
TIGRTIGR
Genome Sequences Allow
“Hypothesisless Research”
• DNA microarrays
• Proteomics
• GC skew and other nucleotide composition
analyses
• Parallel genome wide genetic experiments
• Evolutionary genome scanning
• Phylogenetic profiles

More Related Content

What's hot

Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Sijo A
 
BITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome levelBITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome levelBITS
 
Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.Fran Supek
 
BITS - Introduction to comparative genomics
BITS - Introduction to comparative genomicsBITS - Introduction to comparative genomics
BITS - Introduction to comparative genomicsBITS
 
Talk for UC Davis Applied Phylogenetics Course at Bodega Bay
Talk for UC Davis Applied Phylogenetics Course at Bodega BayTalk for UC Davis Applied Phylogenetics Course at Bodega Bay
Talk for UC Davis Applied Phylogenetics Course at Bodega BayJonathan Eisen
 
Bio380 Cancer Phylogenomics
Bio380 Cancer PhylogenomicsBio380 Cancer Phylogenomics
Bio380 Cancer PhylogenomicsMark Pallen
 
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...Therapeutic Strategies to Target the Cellular Transformation Process for Canc...
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...Shu Shyan Lee
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...WAidid
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomicsNikhil Aggarwal
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomicskiran singh
 
CCBC tutorial beiko
CCBC tutorial beikoCCBC tutorial beiko
CCBC tutorial beikobeiko
 
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)andyfhill
 
Jonathan Eisen talk at #ievobio 2010
Jonathan Eisen talk at #ievobio 2010Jonathan Eisen talk at #ievobio 2010
Jonathan Eisen talk at #ievobio 2010Jonathan Eisen
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalKamal Tyagi
 

What's hot (19)

Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)Genomics and proteomics (Bioinformatics)
Genomics and proteomics (Bioinformatics)
 
BITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome levelBITS - Comparative genomics on the genome level
BITS - Comparative genomics on the genome level
 
Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.Synonymous mutations as drivers in human cancer genomes.
Synonymous mutations as drivers in human cancer genomes.
 
BITS - Introduction to comparative genomics
BITS - Introduction to comparative genomicsBITS - Introduction to comparative genomics
BITS - Introduction to comparative genomics
 
Talk for UC Davis Applied Phylogenetics Course at Bodega Bay
Talk for UC Davis Applied Phylogenetics Course at Bodega BayTalk for UC Davis Applied Phylogenetics Course at Bodega Bay
Talk for UC Davis Applied Phylogenetics Course at Bodega Bay
 
Bio380 Cancer Phylogenomics
Bio380 Cancer PhylogenomicsBio380 Cancer Phylogenomics
Bio380 Cancer Phylogenomics
 
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...Therapeutic Strategies to Target the Cellular Transformation Process for Canc...
Therapeutic Strategies to Target the Cellular Transformation Process for Canc...
 
The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...The 'omics' revolution: How will it improve our understanding of infections a...
The 'omics' revolution: How will it improve our understanding of infections a...
 
Comparative genomics and proteomics
Comparative genomics and proteomicsComparative genomics and proteomics
Comparative genomics and proteomics
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
CCBC tutorial beiko
CCBC tutorial beikoCCBC tutorial beiko
CCBC tutorial beiko
 
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)
ISEV2014 - Introduction to EV biogenesis and secretion (C. Thery)
 
2000 JME (51)278-285
2000 JME (51)278-2852000 JME (51)278-285
2000 JME (51)278-285
 
Jonathan Eisen talk at #ievobio 2010
Jonathan Eisen talk at #ievobio 2010Jonathan Eisen talk at #ievobio 2010
Jonathan Eisen talk at #ievobio 2010
 
Protocols for genomics and proteomics
Protocols for genomics and proteomics Protocols for genomics and proteomics
Protocols for genomics and proteomics
 
Mismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__finalMismatch_Cleavage_by_CEL-1_1__final
Mismatch_Cleavage_by_CEL-1_1__final
 
Comparitive genomics
Comparitive genomicsComparitive genomics
Comparitive genomics
 
Mouse genome
Mouse genomeMouse genome
Mouse genome
 
Grindberg - PNAS
Grindberg - PNASGrindberg - PNAS
Grindberg - PNAS
 

Viewers also liked

Lecture8 nervous system
Lecture8 nervous systemLecture8 nervous system
Lecture8 nervous systemReach Na
 
Male: Seminiferous Tubules
Male: Seminiferous TubulesMale: Seminiferous Tubules
Male: Seminiferous TubulesMon Gonzalez
 
Lecture4 blood
Lecture4 bloodLecture4 blood
Lecture4 bloodReach Na
 
Chapter19 bloodvesselsmarieb
Chapter19 bloodvesselsmariebChapter19 bloodvesselsmarieb
Chapter19 bloodvesselsmariebLawrence James
 
Talk by J. Eisen for NZ Computational Genomics meeting
Talk by J. Eisen for NZ Computational Genomics meetingTalk by J. Eisen for NZ Computational Genomics meeting
Talk by J. Eisen for NZ Computational Genomics meetingJonathan Eisen
 
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...Jonathan Eisen
 

Viewers also liked (8)

Lecture8 nervous system
Lecture8 nervous systemLecture8 nervous system
Lecture8 nervous system
 
Medical terminology
Medical terminologyMedical terminology
Medical terminology
 
Male: Seminiferous Tubules
Male: Seminiferous TubulesMale: Seminiferous Tubules
Male: Seminiferous Tubules
 
Lecture4 blood
Lecture4 bloodLecture4 blood
Lecture4 blood
 
Chapter19 bloodvesselsmarieb
Chapter19 bloodvesselsmariebChapter19 bloodvesselsmarieb
Chapter19 bloodvesselsmarieb
 
Cns 3
Cns 3Cns 3
Cns 3
 
Talk by J. Eisen for NZ Computational Genomics meeting
Talk by J. Eisen for NZ Computational Genomics meetingTalk by J. Eisen for NZ Computational Genomics meeting
Talk by J. Eisen for NZ Computational Genomics meeting
 
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...
BIS2C. Biodiversity and the Tree of Life. 2014. L3. Characters, Traits and St...
 

Similar to Phylogenomics talk in 2000 at University of Maryland by J. Eisen

Talk on Phylogenomics for MBL Molecular Evolution Course 2004
Talk on Phylogenomics for MBL Molecular Evolution Course 2004Talk on Phylogenomics for MBL Molecular Evolution Course 2004
Talk on Phylogenomics for MBL Molecular Evolution Course 2004Jonathan Eisen
 
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"Jonathan Eisen
 
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003Jonathan Eisen lecture for MBL Molecular Evolution Course 2003
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003Jonathan Eisen
 
Omics in plant breeding
Omics in plant breedingOmics in plant breeding
Omics in plant breedingpoornimakn04
 
21-22_Classification_04.ppt
21-22_Classification_04.ppt21-22_Classification_04.ppt
21-22_Classification_04.pptdawitg2
 
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...Jonathan Eisen
 
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...Jonathan Eisen
 
Pathogenomics: Challenges and Opportunities
Pathogenomics: Challenges and OpportunitiesPathogenomics: Challenges and Opportunities
Pathogenomics: Challenges and OpportunitiesSANGEETHA BOSE
 
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...Variant (SNP) calling - an introduction (with a worked example, using FreeBay...
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...Manikhandan Mudaliar
 
Tetrahymena genome project 2003 presentation by Jonathan Eisen
Tetrahymena genome project 2003 presentation by Jonathan EisenTetrahymena genome project 2003 presentation by Jonathan Eisen
Tetrahymena genome project 2003 presentation by Jonathan EisenJonathan Eisen
 
Biochemical and molecular markers for characterization
Biochemical and molecular markers for characterizationBiochemical and molecular markers for characterization
Biochemical and molecular markers for characterizationmithraa thirumalai
 
Genome sequencing
Genome sequencingGenome sequencing
Genome sequencingShital Pal
 
Genomics and proteomics ppt
Genomics and proteomics pptGenomics and proteomics ppt
Genomics and proteomics pptPatelSupriya
 
Role of Genome Advancement in Evolution Studies
Role of Genome Advancement in Evolution StudiesRole of Genome Advancement in Evolution Studies
Role of Genome Advancement in Evolution StudiesSarla Rao
 
genomics-180323095216.pptx
genomics-180323095216.pptxgenomics-180323095216.pptx
genomics-180323095216.pptxBharatlalmeena6
 
Models of Human Diseases Conference (2010) Tetrahymena model by Dr. R. Pearl...
Models of Human Diseases Conference (2010)  Tetrahymena model by Dr. R. Pearl...Models of Human Diseases Conference (2010)  Tetrahymena model by Dr. R. Pearl...
Models of Human Diseases Conference (2010) Tetrahymena model by Dr. R. Pearl...Medical Education Advising
 

Similar to Phylogenomics talk in 2000 at University of Maryland by J. Eisen (20)

Talk on Phylogenomics for MBL Molecular Evolution Course 2004
Talk on Phylogenomics for MBL Molecular Evolution Course 2004Talk on Phylogenomics for MBL Molecular Evolution Course 2004
Talk on Phylogenomics for MBL Molecular Evolution Course 2004
 
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"
Talk by Jonathan Eisen for GSAC2000 on "Phylogenomics"
 
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003Jonathan Eisen lecture for MBL Molecular Evolution Course 2003
Jonathan Eisen lecture for MBL Molecular Evolution Course 2003
 
Omics in plant breeding
Omics in plant breedingOmics in plant breeding
Omics in plant breeding
 
21-22_Classification_04.ppt
21-22_Classification_04.ppt21-22_Classification_04.ppt
21-22_Classification_04.ppt
 
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...
Keynote talk at "Society for General Microbiology" meeting in March, 2001 by ...
 
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...
Talk on Microbial Phylogenomics at the Society for General Microbiology meeti...
 
Pathogenomics: Challenges and Opportunities
Pathogenomics: Challenges and OpportunitiesPathogenomics: Challenges and Opportunities
Pathogenomics: Challenges and Opportunities
 
Transposons ask
Transposons askTransposons ask
Transposons ask
 
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...Variant (SNP) calling - an introduction (with a worked example, using FreeBay...
Variant (SNP) calling - an introduction (with a worked example, using FreeBay...
 
Tetrahymena genome project 2003 presentation by Jonathan Eisen
Tetrahymena genome project 2003 presentation by Jonathan EisenTetrahymena genome project 2003 presentation by Jonathan Eisen
Tetrahymena genome project 2003 presentation by Jonathan Eisen
 
Biochemical and molecular markers for characterization
Biochemical and molecular markers for characterizationBiochemical and molecular markers for characterization
Biochemical and molecular markers for characterization
 
Genome sequencing
Genome sequencingGenome sequencing
Genome sequencing
 
THE human genome
THE human genomeTHE human genome
THE human genome
 
NCUR Presentation
NCUR PresentationNCUR Presentation
NCUR Presentation
 
Genomics and proteomics ppt
Genomics and proteomics pptGenomics and proteomics ppt
Genomics and proteomics ppt
 
Role of Genome Advancement in Evolution Studies
Role of Genome Advancement in Evolution StudiesRole of Genome Advancement in Evolution Studies
Role of Genome Advancement in Evolution Studies
 
genomics-180323095216.pptx
genomics-180323095216.pptxgenomics-180323095216.pptx
genomics-180323095216.pptx
 
Comparative genomics
Comparative genomicsComparative genomics
Comparative genomics
 
Models of Human Diseases Conference (2010) Tetrahymena model by Dr. R. Pearl...
Models of Human Diseases Conference (2010)  Tetrahymena model by Dr. R. Pearl...Models of Human Diseases Conference (2010)  Tetrahymena model by Dr. R. Pearl...
Models of Human Diseases Conference (2010) Tetrahymena model by Dr. R. Pearl...
 

More from Jonathan Eisen

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfJonathan Eisen
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesJonathan Eisen
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingJonathan Eisen
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsJonathan Eisen
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Jonathan Eisen
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2Jonathan Eisen
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4Jonathan Eisen
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 Jonathan Eisen
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines Jonathan Eisen
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionJonathan Eisen
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2Jonathan Eisen
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionJonathan Eisen
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionJonathan Eisen
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingJonathan Eisen
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesJonathan Eisen
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingJonathan Eisen
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionJonathan Eisen
 

More from Jonathan Eisen (20)

Eisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdfEisen.CentralValley2024.pdf
Eisen.CentralValley2024.pdf
 
Phylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of MicrobesPhylogenomics and the Diversity and Diversification of Microbes
Phylogenomics and the Diversity and Diversification of Microbes
 
Talk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meetingTalk by Jonathan Eisen for LAMG2022 meeting
Talk by Jonathan Eisen for LAMG2022 meeting
 
Thoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current ActionsThoughts on UC Davis' COVID Current Actions
Thoughts on UC Davis' COVID Current Actions
 
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
Phylogenetic and Phylogenomic Approaches to the Study of Microbes and Microbi...
 
A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2A Field Guide to Sars-CoV-2
A Field Guide to Sars-CoV-2
 
EVE198 Summer Session Class 4
EVE198 Summer Session Class 4EVE198 Summer Session Class 4
EVE198 Summer Session Class 4
 
EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1 EVE198 Summer Session 2 Class 1
EVE198 Summer Session 2 Class 1
 
EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines EVE198 Summer Session 2 Class 2 Vaccines
EVE198 Summer Session 2 Class 2 Vaccines
 
EVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 IntroductionEVE198 Spring2021 Class1 Introduction
EVE198 Spring2021 Class1 Introduction
 
EVE198 Spring2021 Class2
EVE198 Spring2021 Class2EVE198 Spring2021 Class2
EVE198 Spring2021 Class2
 
EVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 VaccinesEVE198 Spring2021 Class5 Vaccines
EVE198 Spring2021 Class5 Vaccines
 
EVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA DetectionEVE198 Winter2020 Class 8 - COVID RNA Detection
EVE198 Winter2020 Class 8 - COVID RNA Detection
 
EVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 IntroductionEVE198 Winter2020 Class 1 Introduction
EVE198 Winter2020 Class 1 Introduction
 
EVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID TestingEVE198 Winter2020 Class 3 - COVID Testing
EVE198 Winter2020 Class 3 - COVID Testing
 
EVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID VaccinesEVE198 Winter2020 Class 5 - COVID Vaccines
EVE198 Winter2020 Class 5 - COVID Vaccines
 
EVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID TransmissionEVE198 Winter2020 Class 9 - COVID Transmission
EVE198 Winter2020 Class 9 - COVID Transmission
 
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 VaccinesEVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
EVE198 Fall2020 "Covid Mass Testing" Class 8 Vaccines
 
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and TestingEVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
EVE198 Fall2020 "Covid Mass Testing" Class 2: Viruses, COIVD and Testing
 
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 IntroductionEVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
EVE198 Fall2020 "Covid Mass Testing" Class 1 Introduction
 

Recently uploaded

Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...navyadasi1992
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptJoemSTuliba
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Four Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.pptFour Spheres of the Earth Presentation.ppt
Four Spheres of the Earth Presentation.ppt
 
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 

Phylogenomics talk in 2000 at University of Maryland by J. Eisen

  • 1. TIGRTIGR Phylogenomics: Combining Evolutionary Reconstructions and Genome Analysis into a Single Composite Approach 0 250000 500000 750000 1000000 1250000 Subject Orf Position 0 250000 500000 750000 1000000 1250000 Query Orf Position Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes ArchaeaBacteriaEukarya Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZeamays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZeamays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85 BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted A B CD E F A B CD E F A B C D E F A B C D E F A’ B’ C’ D’ E’ F’ A B C D E F A’ B’ C’ D’ E’ F’ A C D F A’ B’ E’ E.coli E. coli B C D F A’ B’ D’ E’ V. cholerae A B C D E F A’ B’ C’ D’ E’ F’ B1 A1 B2 A2 B3 A3 A2 A1 A2 A3 B2 B1 B3 B2 24 23 22 21 20 19 18171615 14 13 12 11 10 9 6 7 258 26 27 28 29 30 1 2 3 4 5 3132 B1 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 B3 24 23 22 21 20 19 18171615 14 13 12 11 10 9 6 7 258 26 27 28 29 3 3231 30 4 5 2 1 A1 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 A2 3132 6 7 8 9 10 11 12 13 19 18171615 14 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 A3 2 6 7 8 9 10 11 12 13 19 18171615 14 20 21 22 23 24 25 26 27 5 4 3 31 30 29 28 1 32 B2 Inversion Around Terminus (*) Inversion Around Terminus (*) Inversion Around Origin(*) Inversion Around Origin(*) * * * * * * * * Figure 4 Common Ancestorof A and B 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 Three V. cholerae Photolyases Phr.S thyp PHR E. coli ORFA00965********* phr.neucr Phr.Tricho Phr.Yeast Phr.B firm phr.strpy phr.haloba PHR STRGR pCRY1.huma phr.mouse phr2.human phr2.mouse phr.drosop phr3.Synsp ORF02295.Vibch******** phr.neigo ORF01792.Vibch******* Phr.Adiant Phr2.Adian Phr3.Adian phr.tomato CRY1 ARATH phr.phycom CRY2 ARATH PHH1.arath PHR1 SINAL phr.chlamy PHR ANANI phr.Synsp PHR SYNY3 phr.Theth Rh.caps MTHF type Class I CPD Photolyases 6-4 Photolyases Blue Light Receptors 8-HDF type CPD Photolyases Three Photolyase Homologs inV. cholerae UvrA2 UvrA2 S. coelicolorDrrC S. peuceteusUvrA2 D. radioduransDuplication in UvrA family UvrA1 UvrA H. influenzaeUvrA E. coliUvrA N. gonorrhoaeaUvrA R. prowazekiiUvrA S. mutansUvrA S. pyogenesUvrA S. pneumoniaeUvrA B. subtilisUvrA M. luteusUvrA M. tuberculosisUvrA M. hermoautotrophicumUvrA H. pyloriUvrA C. jejuniUvrA P. gingivalisUvrA C. tepidumuvra1 D. radioduransUvrA T. thermophilusUvrA T. pallidumUvrA B. burgdorefiUvrA T. maritimaUvrA A. aeolicusUvrA Synechocystis sp. UvrA1UvrA2OppDFUUPNodILivFXylGNrtDCPstBMDRHlyBTAP1CFTR, SURA. ABC TransportersB. UvrA Subfamily 01020304050600510152005010015005101520 Number of Species With High Hits050100150200250 Frequency05101520 Papa BearMama BearBaby Bear 010020030040050005101520 E. coli
  • 2. TIGRTIGR Topics of Discussion • Introduction to phylogenomics • Phylogenomics Examples – Functional prediction – Not making functional predictions – Gene duplication – Genetic exchange within genomes – Gene loss – Specialization – Horizontal gene transfer
  • 3. TIGRTIGRTIGRTIGR “Nothing in biology makes sense except in the light of evolution.” T. H. Dobzhansky (1973)
  • 5. TIGRTIGR Uses of Evolutionary Analysis in Molecular Biology • Identification of mutation patterns (e.g., ts/tv ratio) • Amino-acid/nucleotide substitution patterns useful in structural studies (e.g., rRNA) • Sequence searching matrices (e.g., PAM, Blosum) • Motif analysis (e.g., Blocks) • Functional predictions • Classifying multigene families • Evolutionary history puts other information into perspective (e.g., duplications, gene loss) TIGRTIGR
  • 6. TIGRTIGR Evolutionary Studies Improve Most Aspects of Genome Analysis • Phylogeny of species places comparative data in perspective • Evolution of genes and gene families – Functional predictions – Identification of orthologs and paralogs – Species specific mutation patterns • Evolution of pathways – Convergence – Prediction of function • Evolution of gene order/genome rearrangements • Phylogenetic distribution patterns • Identification of novel features
  • 7. TIGRTIGR Genome Information and Analysis Improves Studies of Evolution • Complete genome information particularly useful • Unbiased sampling • More sequences of genes • Presence/absence information needed to infer certain events (e.g., gene loss, duplication) • Genome wide mutation and substitution patterns (e.g., strand bias) • Diversification and duplication
  • 8. TIGRTIGR Phylogenomic Analysis • There are feedback loop between evolutionary and genome analysis such that for many studies, genome and evolutionary analyses are interdependent. • Therefore, I have proposed that they actually be combined into a single composite approach I refer to as phylogenomics • Phylogenomics involves combining evolutionary reconstructions of genes, proteins, pathways, and species with analysis of complete genome sequences.
  • 9. TIGRTIGR Outline of Phylogenomics Gene Evolution EventsPhenotype PredictionsDatabaseSpecies treePresence/AbsenceGene treesCongruenceEvol. DistributionF(x) PredictionsPathway Evolution TIGRTIGR
  • 11. TIGRTIGR Uses of Phylogenomics I: Functional Predictions
  • 12. TIGRTIGR Predicting Function • Identification of motifs • Homology/similarity based methods – Highest hit – Top hits – Clusters of orthologous groups – HMM models – Structural threading and modeling – Evolutionary reconstructions TIGRTIGR
  • 13. TIGRTIGR Types of Molecular Homology • Homologs: genes that are descended from a common ancestor (e.g., all globins) • Orthologs: homologs that have diverged after speciation events (e.g., human and chimp β-globins) • Paralogs: homologs that have diverged after gene duplication events (e.g., α and β globin). • Xenologs: homologs that have diverged after lateral transfer events • Positional homology: common ancestry of specific amino acid or nucleotide positions in different genes
  • 14. TIGRTIGR Phylogenomic Analysis of the MutS Family of Proteins • Published analysis – Eisen JA et al. 1997. Nature Medicine 3(10):1076-1078. – Eisen JA. 1998. Nucleic Acids Research 26(18): 4291-4300
  • 16. TIGRTIGR Blast Search of H. pylori “MutS” Score E Sequences producing significant alignments: (bits) Value sp|P73625|MUTS_SYNY3 DNA MISMATCH REPAIR PROTEIN 117 3e-25 sp|P74926|MUTS_THEMA DNA MISMATCH REPAIR PROTEIN 69 1e-10 sp|P44834|MUTS_HAEIN DNA MISMATCH REPAIR PROTEIN 64 3e-09 sp|P10339|MUTS_SALTY DNA MISMATCH REPAIR PROTEIN 62 2e-08 sp|O66652|MUTS_AQUAE DNA MISMATCH REPAIR PROTEIN 57 4e-07 sp|P23909|MUTS_ECOLI DNA MISMATCH REPAIR PROTEIN 57 4e-07 • Blast search pulls up Syn. sp MutS#2 with much higher p value than other MutS homologs
  • 17. TIGRTIGR H. pylori and MutS • Prior to this genome, all species that encoded a MutS homolog also encoded a MutL homolog • Experimental studies have shown MutS and MutL always work together in mismatch repair • Problem: what do we conclude about H. pylori mismatch repair
  • 18. TIGRTIGR Phylogenetic Tree of MutS Family AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathStrpyBacsuCelegHumanYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHuman
  • 20. TIGRTIGR MutS Subfamilies • MutS1 Bacterial MMR • MSH1 Euk - mitochondrial MMR • MSH2 Euk - all MMR in nucleus • MSH3 Euk - loop MMR in nucleus • MSH6 Euk - base:base MMR in nucleus • MutS2 Bacterial - function unknown • MSH4 Euk - meiotic crossing-over • MSH5 Euk - meiotic crossing-over
  • 21. TIGRTIGR Overlaying Functions onto Tree AquaeTrepaRatFlyXenlaMouseHumanYeastNeucrArathBorbuSynspNeigoThemaStrpyBacsuEcoliTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathStrpyBacsuHumanCelegYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2
  • 22. TIGRTIGR Functional Prediction Using Tree AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathMSH1 Repair in Mictochondria MSH3 Repair of Loops in Nucleus MSH6 Repair of Mismatches in Nucleus MutS1 Repair of Loops and Mismatches StrpyBacsuCelegHumanYeastMetthBorbuAquaeSynspDeiraHelpymSacoYeastCelegHumanMSH4 Meiotic Crossing-Over MSH5 Meiotic Crossing-Over MutS2 Unknown FunctionsMSH2 Repair of Loops and Mismatches in Nucleus
  • 23. TIGRTIGR Table 3. Presence of MutS Homologs in Complete Genomes Sequences Species # of MutS Homologs Which Subfamilies? MutL Homologs Bacteria Escherichia coli K12 1 MutS1 1 Haemophilus influenzae Rd KW20 1 MutS1 1 Neisseria gonorrhoeae 1 MutS1 1 Helicobacter pylori 26695 1 MutS2 - Mycoplasma genitalium G-37 - - - Mycoplasma pneumoniae M129 - - - Bacillus subtilis 169 2 MutS1,MutS2 1 Streptococcus pyogenes 2 MutS1,MutS2 1 Mycobacterium tuberculosis - - - Synechocystis sp. PCC6803 2 MutS1,MutS2 1 Treponema pallidum Nichols 1 MutS1 1 Borrelia burgdorferi B31 2 MutS1,MutS2 1 Aquifex aeolicus 2 MutS1,MutS2 1 Deinococcus radiodurans R1 2 MutS1,MutS2 1 Archaea Archaeoglobus fulgidus VC-16, DSM4304 - - - Methanococcus janasscii DSM 2661 - - - Methanobacterium thermoautotrophicum ∆Η 1 ΜυτΣ2 − Ευκαρψοτεσ Σαχχηαροµψχεσχερεϖισιαε 6 ΜΣΗ1−6 3+ Ηοµο σαπιενσ 5 ΜΣΗ2−6 3+
  • 24. TIGRTIGR Why was the MutS2 Family Missed? Blast Search of Syn. sp. MutS#2 Sequences producing significant alignments: (bits) Value sp|Q56239|MUTS_THETH DNA MISMATCH REPAIR PROTEIN MUT 91 3e-17 sp|P26359|SWI4_SCHPO MATING-TYPE SWITCHING PROTEIN 87 4e-16 sp|P27345|MUTS_AZOVI DNA MISMATCH REPAIR PROTEIN MUTS 83 1e-14 sp|P74926|MUTS_THEMA DNA MISMATCH REPAIR PROTEIN MUTS 81 3e-14 sp|Q56215|MUTS_THEAQ DNA MISMATCH REPAIR PROTEIN MUTS 81 4e-14 sp|P10564|HEXA_STRPN DNA MISMATCH REPAIR PROTEIN HEXA 80 5e-14 • Blast search pulls up standard MutS genes but with only a moderate p value (10-17 )
  • 25. TIGRTIGR Problems with Similarity Based Functional Prediction • Prone to database error propagation. • Cannot identify orthologous groups reliably. • Perform poorly in cases of evolutionary rate variation and non-hierarchical trees (similarity will not reflect evolutionary relationships in these cases) • May be misled by modular proteins or large insertion/deletion events. • Are not set up to deal with expanding data sets. TIGRTIGR
  • 27. TIGRTIGR Rate Variation and Duplication Species 3Species 1Species 21A2A3A1B2B3BDuplication
  • 28. TIGRTIGR Evolutionary Method PHYLOGENENETIC PREDICTION OF GENE FUNCTIONIDENTIFY HOMOLOGSOVERLAY KNOWN FUNCTIONS ONTO TREE INFER LIKELY FUNCTION OF GENE(S) OF INTEREST 1234563531A2A3A1B2B3B2A1B1A3A1B2B3BALIGN SEQUENCESCALCULATE GENE TREE1246CHOOSE GENE(S) OF INTEREST2A2A53Species 3Species 1Species 211222311A3A1A2A3A1A2A3A464564562B3B1B2B3B1B2B3B ACTUAL EVOLUTION (ASSUMED TO BE UNKNOWN) Duplication?EXAMPLE AEXAMPLE BDuplication?Duplication?Duplication5 METHODAmbiguous
  • 29. TIGRTIGR MutS.Aquaeorf.TrepaSPE1.DromeMSH2.XenlaMSH2.RatMSH2.MouseMSH2.HumanMSH2.YeastMSH2.NeucratMSH2.ArathMutS.Borbuorf.StrpyMutS.BacsuMutS Synsp MutS Ecoli orf Neigo MutS Thema MutS Theaq orf.Deiraorf.ChltrMSH1.SpombeMSH1.YeastMSH3.YeastSwi4.SpombeRep3.MousehMSH3.Humanorf.ArathMSH6.YeastGTBP.HumanGTBP.MouseMSH6.Arathorf Strpy yshD Bacsu MSH5 Caeel hMHS5 human MSH5 Yeast MutS.Metthorf Borbu MutS2 Aquae MutS Synsp orf Deira MutS.HelpysgMutS.SauglMSH4.YeastMSH4.CaeelhMSH4.Human A.AquaeTrepaFlyXenlaRatMouseHumanYeastNeucrArathBorbuStrpyBacsuSynspEcoliNeigoThemaTheaqDeiraChltrSpombeYeastYeastSpombeMouseHumanArathYeastHumanMouseArathMutS2.MetthMutS2.SauglStrpyBacsuCaeelHumanYeastBorbuAquaeSynspDeiraHelpyYeastCaeelHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2B.AquaeTrepaXenlaNeucrArathBorbuSynspNeigoThemaDeiraChltrSpombeSpombeArathMouseMouseFlyRatMouseHumanYeastStrpyBacsuEcoliTheaqYeastYeastHumanYeastHumanArathStrpyBacsuHumanMutS2-MetthBorbuAquaeSynspDeiraHelpyMutS2-SauglCaeelYeastYeastCaeelHumanMSH4MSH5MutS2MutS1MSH1MSH3MSH6MSH2C.MutS2StrpyBacsuMutS2.MetthBorbuAquaeSynspDeiraHelpyMutS2.SauglCaeelYeastYeastCaeelHumanHumanMSH4 Segregation & Crossover MSH5 Segregation & Crossover FlyMouseHumanYeastAquaeTrepaXenlaNeucrArathBorbuSynspNeigoThemaDeiraChltrSpombeSpombeArathArathMutS1 All MMR (Bacteria) RatStrpyBacsuEcoliTheaqYeastYeastMouseHumanYeastHumanMouseMSH1 MMR in Mitochondria MSH3 MMR of Large Loops in Nucleus MSH6 MMR of Mismatches and Small Loops in Nucleus MSH2 All MMR in Nucleus D.
  • 31. TIGRTIGR 4 F17L22 170 Arabidopsis thali 4455279 Arabidopsis thaliana 1049068 Lycopersicon esculentu Homo sapiens 5514652 Drosophila melanogaste Drosophila melanogaster2 123725 Caenorhabditis elegans 6606113 Capronia mansonii RpoII.Yeast.YOR151C 107346 Schizosaccharomyces pom 151348 Euplotes octocarinatus 265427 Euplotes octocarinatus 3845258 Plasmodium falciparum RpoIII.Drome RpoIII.Drome.7303535 EGAD 114464 Caenorhabditis ele RpoIII.Yeast.172383 EGAD 145012 Schizosaccharomyce RpoIII.Neucr.7800864 ARATH5 K18C1 1 Aeropyrum pernix EGAD 8025 Sulfolobus acidocald 5458046 Pyrococcus abyssi PH1546 Pyrococcus horikoshii Thermococcus celer EGAD 14667 Methanococcus vanni MJ1040 Methanococcus jannaschi AF1886 Archaeoglobus fulgidus Halobacterium halobium Thermoplasma acidophilum RPB2 Methanobacterium thermoau atmystery.BAB02021 ARATH3 MRC8.7 ARATH3 MYM9.12 6723961 Schizosaccharomyces po RpoI.Yeast.YPR010C RpoI.Neucr.3668171 RPA2 Rattus norvegicus Mus musculus RpoI.Drome.7296211 Caenorhabditis elegans 92131 Euplotes octocarinatus ARATH1 T1P2.15 ARATH1 F1N18.2 1492072Molluscum contagiosum v 439046 Variola major virus 1143635 Variola virus 2772787 Vaccinia virus 323395 Cowpox virus 6578643 Rabbit fibroma virus 6523969 Myxoma virus 6682809 Yaba monkey tumor viru 7271687 Fowlpox virus 4049822 Melanoplus sanguinipes 2887 Kluyveromyces lactis EGAD 151364 Sacch kluyveri 1369760 Borrelia burgdorferi BB0389 Borrelia burgdorferi TP0241 Treponema pallidum 6652714 Rickettsia massiliae 6652723 Rickettsia sp. Bar29 6652720 Rickettsia conorii RP140 Rickettsia prowazekii 6960339 Salmonella typhimurium EGAD 1084 Salmonella choleraes EC3987 Escherichia coli EGAD 23892 Buchnera aphidicola HI0515 Haemophilus influenzae EGAD 6020 Pseudomonas putida RPOB Coxiella burnetii 3549149 Legionella pneumophila RPOB Neisseria meningitidis HP1198 Helicobacter pylori 6967949 Campylobacter jejuni AA1339 Aquifex aeolicus BS0107 Bacillus subtilis 4512396 Bacillus halodurans 6002201 Listeria monocytogenes EGAD 32012 Staphylococcus aure EGAD 32011 Spiroplasma citri MG341 Mycoplasma genitalium MP326 Mycoplasma pneumoniae 6899151 Ureaplasma urealyticum Rv0667 Mycobacterium tuberculo Mycobacterium leprae 7144498 Mycobacterium smegmati EGAD 39063 Mycobacterium smegm GP 7331268 Amycolatopsis medit 7248348 Streptomyces coelicolo 7573273 Thermus aquaticus DR0912 Deinococcus radiodurans TM0458 Thermotoga maritima EGAD 74970 80693 Heterosigma c EGAD Odontella sinensis EGAD 60306 Spinacia oleracea EGAD Nicotiana tabacum 6723742 Oenothera elata 5457427 Sinapis alba 5881686 Arabidopsis thaliana 4958867 Triticum aestivum EGAD 76270 Zea mays RPOB Oryza sativa EGAD Pinus thunbergii EGAD Marchantia polymorpha 7259525 Mesostigma viride 5880717 Nephroselmis olivacea RPOB Guillardia theta sll1787 Synechocystis PCC6803 EGAD 75526 Porphyra purpurea 6466433 Cyanidium caldarium EGAD 76712 Cyanophora paradoxa RPOB Chlorella vulgaris EGAD 76424 Euglena gracilis 5231258 Toxoplasma gondii 6492294 Neospora caninum EGAD 83446 Plasmodium falcipar 100 78 100 85 93 83 100 79 100 100 100 100 100 100 94100 100 74 99 100 99 100 100 99 9480 100 100 100 100 59 100 100 99 56100 100 100 100 58 95 100 97 63 95 100 100 100 81 100 100 100 59 60 99 100 100 94 100 100 69 100 77 100 97 100 71 100 99 58 83 100100 100 99 100 98 100 100 61 99 75 100 73 100 100 59 100 100 72 72 98 52 98 59 100 100 a Novel RNA Polymerase in A. thaliana Archaeal IV II III I Viral Bacterial - RpoB Plastid- RpoBs
  • 32. TIGRTIGR Novel Large Subunit Rubisco in Chlorobium tepidumAgathis.gi3982533 Agathis.gi3982549 Araucaria.gi3982517 Agathis.gi3982535 Agathis.gi3982541 Venturiella.gi4009420 Leucobryum.gi6230571 Mougeotia.gi1145415 Anabaena.gi68158 Thife.gi2411435 Thiin.gi4105518 Metja.gi2129276 Pyrho.gi|3257353 Pyrab.gi|5458634 Pyr karaensis.gi3769302 Arcfu.gi2648911 Arcfu.gi2648975 Bacsu.gi2633730 Chlte.ORF02314 100 100 96 54 99 58 66 59 100 100 82 67 100 100 100 93 Type X Type I Rubisco Large Subunit Phylogeny
  • 33. TIGRTIGR Uses of Phylogenomics II: Knowing when to Not Predict Functions
  • 35. TIGRTIGR DNA Repair Genes in D. radiodurans Complete Genome Process Genes in D. radiodurans Nucleotide Excision Repair UvrABCD, UvrA2 Base Excision Repair AlkA, Ung, Ung2, GT, MutM, MutY-Nths, MPG AP Endonuclease Xth Mismatch Excision Repair MutS, MutL Recombination Initiation Recombinase Migration and resolution RecFJNRQ, SbcCD, RecD RecA RuvABC, RecG Replication PolA, PolC, PolX, phage Pol Ligation DnlJ dNTP pools, cleanup MutTs, RRase Other LexA, RadA, HepA, UVDE, MutS2
  • 36. TIGRTIGR Recombination Genes in Genomes Pathway |------------------------------Bacteria---------------------------| |---Archaea---| Euks Protein Name(s) Initiation RecBCD pathway RecB + + - - - - - - + + - + - - - - - - - - RecC + + - - - - - - + ±+ - ± - - - - - - - - RecD + + - - ± - - - + ±+ - ++ - ± ±+ - - - - - RecF pathway RecF + + + - + - - + + - + ± - - + - - ± ± ± RecJ + + + + + - - + - + + + + + + - - - - - RecO + + - - + - - + + - - - - - ± - - - - - RecR + + + ±+ + - - + + - + + - + + - - - - - RecN + + + + + - - + + - + - ± + + - - ± ± - RecQ + + - - + - - + - - + - - - + - - - - + ++ RecE pathway RecE/ExoVIII + - - - - - - - - - - - - - - - - - - - RecT + - - - + - - - - - - - - - - - - - - - SbcBCD pathway SbcB/ExoI + + - - - - - - - - - - - - - - - - - - SbcC + - - - + - - + - + + - + + + ± ± ± ± ± ± SbcD + - - - + - - + - + + - + + + ± ± ± ± ± ± AddAB Pathway AddA/RexA - - + - + - - - - - + + - ± - - - - - - AddB/RexB - - - - + - - - - - - - - - - - - - - - Rad52 pathway Rad52, Rad59 - - - - - - - - - - - - - - - - - - - ++ + Mre11/Rad32 ± - - - ± - - ± - ± ± - ± ± ± + + + + + + Rad50 ± - - - ± - - ± - ± ± - ± ± ± + + + ± + + Recombinase RecA, Rad51 + + + + + + + + + + + + + + + + + + + ++ ++ Branch migration RuvA + + + + + + + + + + + + + - + - - - - - RuvB + + + + + + + + + + + + + - + - - - - - RecG + + + + + - - + + + + - + + + - - - - - Resolvases RuvC + + + + - - - + + - + + + - + - - - - - RecG + + + + + - - + + + + - + + + - - - - - Rus + - - - - - - - ±+ - - - - ±+ - - - - - - CCE1 - - - - - - - - - - - - - - - - - - - + Other recombination proteins Rad54 - - - - - - - - - - - - - - - - - - - + + Rad55 - - - - - - - - - - - - - - - - - - - + + Rad57 - - - - - - - - - - - - - - - - - - - + + Xrs2 - - - - - - - - - - - - - - - - - - - +
  • 37. TIGRTIGR Unusual Features of D. radiodurans DNA Repair Genes Process Genes Nucleotide excision repair Two UvrAs Base excision repair Four MutY-Nths Recombination RecD but not RecBC Replication Four Pol genes dNTP pools Many MutTs, two RRases Other UVDE
  • 38. TIGRTIGR Problem: List of DNA repair gene homologs in D. radiodurans genome is not significantly different from other bacterial genomes of the similar size
  • 39. TIGRTIGR -Ogt -RecFRQN -RuvC -Dut -SMS -PhrI -AlkA -Nfo -Vsr -SbcCD -LexA -UmuC -PhrI -PhrII -AlkA -Fpg -Nfo -MutLS -RecFORQ -SbcCD -LexA -UmuC -TagI -PhrI -Ogt -AlkA -Xth -MutLS -RecFJORQN -Mfd -SbcCD -RecG -Dut -PriA -LexA -SMS -MutT -PhrI -PhrII? -AlkA -Fpg -Nfo -RecO -LexA -UmuC -PhrI -Ung? -MutLS -RecQ? -Dut -UmuC -PhrII -Ogg -Ogt -AlkA -TagI -Nfo -Rec -SbcCD -LexA -Ogt -AlkA -Nfo -RecQ -SbcD? -Lon -LexA -AlkA -Xth -Rad25? -AlkA -Rad25 -Nfo -Ogt -Ung -Nfo -Dut -Lon -Ung -PhrII -PhrI Ecoli Haein Neigo Helpy Bacsu Strpy Mycge Mycpn Borbu Trepa Synsp Metjn Arcfu Metth Human Yeast BACTERIA ARCHAEA EUKARYOTES from mitochondria +Ada +MutH +SbcB dPhr +TagI? +Fpg +UvrABCD +Mfd +RecFJNOR +RuvABC +RecG +LigI +LexA +SSB +PriA +Dut? +Rus +UmuD +Nei? +RecE tRecT? +Vsr +RecBCD? +RFAs +TFIIH +Rad4,10,14,16,23,26 +CSA +Rad52,53,54 +DNA-PK, Ku dSNF2 dMutS dMutL dRecA +Rad1 +Rad2 +Rad25? +Ogg +LigII +Ung? +SSB, +Dut? +PhrI, PhrII +Ogt +Ung, AlkA, MutY-Nth +AlkA +Xth, Nfo? +MutLS? +SbcCD +RecA +UmuC +MutT +Lon dMutSI/MutSII dRecA/SMS dPhrI/PhrII +Spr t3MG +Rad7 +CCE1 +P53 dRecQ dRad23 +MAG? -PhrII -RuvC tRad25 +TagI? +RecT tUvrABCD tTagI ? Gain and Loss of Repair Genes TIGRTIGR
  • 40. TIGRTIGR Repair Studies in Different Species (determined by Medline searches as of 1998) Humans 7028 E. coli 3926 S. cerevisiae 988 Drosophila 387 B. subtilits 284 S. pombe 116 Xenopus 56 C. elegans 25 A. thaliana 20 Methanogens 16 Haloferax 5 Giardia 0
  • 41. TIGRTIGR Uses of Phylogenomics III: Gene Duplication
  • 42. TIGRTIGR Why Duplications Are Useful to Identify • Allows division into orthologs and paralogs • Aids functional predictions • Recent duplications may be indicative of species’ specific adaptations • Helps identify mechanisms of duplication • Can be used to study mutation processes in different parts of genome
  • 45. TIGRTIGR Expansion of MCP Family in V. choleraeE.coli gi1787690B.subtilis gi2633766Synechocystis sp. gi1001299Synechocystis sp. gi1001300Synechocystis sp. gi1652276Synechocystis sp. gi1652103H.pylori gi2313716H.pylori99 gi4155097C.jejuni Cj1190cC.jejuni Cj1110cA.fulgidus gi2649560A.fulgidus gi2649548B.subtilis gi2634254B.subtilis gi2632630B.subtilis gi2635607B.subtilis gi2635608B.subtilis gi2635609B.subtilis gi2635610B.subtilis gi2635882E.coli gi1788195E.coli gi2367378E.coli gi1788194E.coli gi1789453C.jejuni Cj0144C.jejuni Cj0262cH.pylori gi2313186H.pylori99 gi4154603C.jejuni Cj1564C.jejuni Cj1506cH.pylori gi2313163H.pylori99 gi4154575H.pylori gi2313179H.pylori99 gi4154599C.jejuni Cj0019cC.jejuni Cj0951cC.jejuni Cj0246cB.subtilis gi2633374T.maritima TM0014T.pallidum gi3322777T.pallidum gi3322939T.pallidum gi3322938B.burgdorferi gi2688522T.pallidum gi3322296B.burgdorferi gi2688521T.maritima TM0429T.maritima TM0918T.maritima TM0023T.maritima TM1428T.maritima TM1143T.maritima TM1146P.abyssi PAB1308P.horikoshii gi3256846P.abyssi PAB1336P.horikoshii gi3256896P.abyssi PAB2066P.horikoshii gi3258290P.abyssi PAB1026P.horikoshii gi3256884D.radiodurans DRA00354D.radiodurans DRA0353D.radiodurans DRA0352P.abyssi PAB1189P.horikoshii gi3258414B.burgdorferi gi2688621M.tuberculosis gi1666149V.cholerae VC0512V.cholerae VCA1034V.cholerae VCA0974V.cholerae VCA0068V.cholerae VC0825V.cholerae VC0282V.cholerae VCA0906V.cholerae VCA0979V.cholerae VCA1056V.cholerae VC1643V.cholerae VC2161V.cholerae VCA0923V.cholerae VC0514V.cholerae VC1868V.cholerae VCA0773V.cholerae VC1313V.cholerae VC1859V.cholerae VC1413V.cholerae VCA0268V.cholerae VCA0658V.cholerae VC1405V.cholerae VC1298V.cholerae VC1248V.cholerae VCA0864V.cholerae VCA0176V.cholerae VCA0220V.cholerae VC1289V.cholerae VCA1069V.cholerae VC2439V.cholerae VC1967V.cholerae VCA0031V.cholerae VC1898V.cholerae VCA0663V.cholerae VCA0988V.cholerae VC0216V.cholerae VC0449V.cholerae VCA0008V.cholerae VC1406V.cholerae VC1535V.cholerae VC0840V.cholerae VC0098V.cholerae VCA1092V.cholerae VC1403V.cholerae VCA1088V.cholerae VC1394V.cholerae VC0622NJ*******************************************************************************
  • 47. TIGRTIGR Levels of Paralogy Within A Genome • All – All members of a gene family are linked together • Top matches – Only top matching pairs are linked together. Therefore, if in a large gene family, only the pair from the most recent duplication event is included • Recent – Operational definition based on comparison to other species. Only pairs which are more similar to each other than to selected other species are included.
  • 48. TIGRTIGR C. pneumoniae Paralogs - All 0 250000 500000 750000 1000000 1250000 Subject Orf Position 0 250000 500000 750000 1000000 1250000 Query Orf Position
  • 49. TIGRTIGR C. pneumoniae Paralogs - Top 0 250000 500000 750000 1000000 1250000 Subject Orf Position 0 250000 500000 750000 1000000 1250000 Query Orf Position
  • 50. TIGRTIGR C. pneumoniae Paralogs – Recent 0 250000 500000 750000 1000000 1250000 Subject Orf Position 0 250000 500000 750000 1000000 1250000 Query Orf Position
  • 51. TIGRTIGR Uses of Phylogenomics IV: Genetic Exchange within Genomes
  • 55. TIGRTIGR Why Gene Loss is Useful to Identify • Indicates that gene is not absolutely required for survival • Helps distinguish likelihood of gene transfers • Correlated loss of same gene in different species may indicate selective advantage of loss of that gene • Correlated loss of genes in a pathway indicates a conserved association among those genes
  • 56. TIGRTIGR EuksArchBacteriaLossEvolutionary Origin of GeneMTMJSCHSAADRTABSMGMPBBTPHPHIECSSMTPresence ( ) or Absence of GeneSpecies AbbreviationKingdom Example of Tracing Gene Loss TIGRTIGR
  • 57. TIGRTIGR 51234 E. coliH. influenzaeN. gonorrhoeaeH. pyloriSyn. spB. subtilisS. pyogenesM. pneumoniaeM. genitaliumA. aeolicusD. radioduransT. pallidumB.burgdorferiA. aeolicusS pyogenesB. subtilisSyn. spD. radioduransB. burgdorferiSyn. spB. subtilisS. pyogenesA. aeolicusD. radioduransB. burgdorferiMutS2MutS1A.B.Gene Duplication Gene Duplication Ancient Duplication in MutS Family
  • 58. TIGRTIGR Loss of MMR • Lost in many pathogen species • Mechanism of loss – gene deletion (e.g., M. tuberculosis, H. pylori) – frameshifts (e.g., N. meningitidis, S. pneumoniae) – some species have evolved systems to turn MMR on and off depending on conditions (e.g., E. coli)
  • 59. TIGRTIGR Need for Phylogenomics Example: Gene Duplication and Loss • Genome analysis required to determine number of homologs in different species • Evolutionary analysis required to divide into orthology groups and identify gene duplications • Genome analysis is then required to determine presence and absence of orthologs • Then loss of orthologs can be traced onto evolutionary tree of species
  • 60. TIGRTIGR Uses of Phylogenomics VI: Specialization
  • 62. TIGRTIGR Species Distribution of Homologs of D. radiodurans Genes 01020304050600510152005010015005101520 Number of Species With High Hits050100150200250 Frequency05101520 Papa BearMama BearBaby Bear010020030040050005101520 E. coli
  • 63. TIGRTIGR Specialized Genetic Elements (Chromosome II and Megaplasmid) • Many two component systems • Nitrogen metabolism • LexA • Ribonucleotide reductase • UvrA2 • Many transcription factors (e.g., HepA) • Iron metabolism
  • 64. TIGRTIGR Uses of Phylogenomics VII: Genome Rearrangements
  • 65. TIGRTIGR V. cholerae vs. E. coli All Hits 0 1000000 2000000 3000000 4000000 5000000 E. coli Coordinates 0 1000000 2000000 3000000 V. cholerae Coordinates
  • 66. TIGRTIGR V. cholerae vs. E. coli Top Hits 0 1000000 2000000 3000000 4000000 5000000 E. coli Coordinates 0 1000000 2000000 3000000 V. cholerae Coordinates
  • 67. TIGRTIGR V. cholerae vs. E. coli Only if EC-Orf is Closest in All Genomes 0 1000000 2000000 3000000 4000000 5000000 E. coli Coordinates 0 1000000 2000000 3000000 V. cholerae Coordinates
  • 68. TIGRTIGR V. cholerae vs. E. coli Proteins Top 0 1000000 2000000 3000000 4000000 V. cholerae ORF Coordinates
  • 69. TIGRTIGR S. pneumoniae vs. S. pyogenes DNA F+R 0500000100000015000002000000BSP vs Spyo
  • 70. TIGRTIGR M. tuberculosis vs. M. leprae DNA 0 1000000 2000000 3000000 4000000 M1
  • 71. TIGRTIGR Duplication and Gene Loss Model A B CD E F A B CD E F A B C D E F A B C D E F A’ B’ C’ D’ E’ F’ A B C D E F A’ B’ C’ D’ E’ F’ A C D F A’ B’ E’ E. coli E. coli B C D F A’ B’ D’ E’ V. cholerae A B C D E F A’ B’ C’ D’ E’ F’
  • 72. TIGRTIGR V. cholerae vs. E. coli Proteins Top 0 1000000 2000000 3000000 4000000 V. cholerae ORF Coordinates
  • 73. TIGRTIGR C. trachomatis MoPn C.pneumoniaeAR39 Origin Termination C. trachomatis vs C. pneumoniae Dot Plot
  • 74. TIGRTIGR B1 A1 B2 A2 B3 A3 A2 A1 A2 A3 B2 B1 B3 B2 24 23 22 21 20 19 18171615 14 13 12 11 10 9 6 7 258 26 27 28 29 30 1 2 3 4 5 3132 B1 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 B3 24 23 22 21 20 19 18171615 14 13 12 11 10 9 6 7 258 26 27 28 29 3 3231 30 4 5 2 1 A1 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 A2 3132 6 7 8 9 10 11 12 13 19 18171615 14 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132 A3 2 6 7 8 9 10 11 12 13 19 18171615 14 20 21 22 23 24 25 26 27 5 4 3 31 30 29 28 1 32 B2 Inversion Around Terminus (*) Inversion Around Terminus (*) Inversion Around Origin (*) Inversion Around Origin (*) * * * * * * * * Figure 4 Common Ancestor of A and B 3132 6 7 8 9 10 11 12 13 14 15161718 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 3132
  • 75. TIGRTIGR Uses of Phylogenomics VIII: Horizontal Gene Transfer and Species Evolution
  • 77. TIGRTIGR Examples of Horizontal Transfers • Antibiotic resistance genes on plasmids • Insertion sequences • Pathogenicity islands • Toxin resistance genes on plasmids • Agrobacterium Ti plasmid • Viruses and viroids • Organelle to nucleus transfers
  • 78. TIGRTIGR Why Gene Transfers Are Useful to Identify • Laterally transferred genes frequently involved in environmental adaptations and/or pathogenicity • Helps identify transposons, integrons, and other vectors of gene transfer • Helps identify species associations in the environment
  • 79. TIGRTIGR Steps in Lateral Gene Transfer 1 2 3-5 6 A B C D
  • 80. TIGRTIGR How to Infer Gene Transfers • Unusual distribution patterns • Unusual nucleotide composition • High sequence similarity to supposedly distantly related species • Unusual gene trees • Observe transfer events
  • 81. TIGRTIGR E. coli and S. typhimurium Transfer E. coliS. typhimuriumOld ModelE. coliS. typhimuriumNew Model
  • 82. TIGRTIGR Archaeal genes in bacterial genomesArchaeal genes in bacterial genomes** Bacterial speciesBacterial species Best hits to ArchaealBest hits to Archaeal Thermotoga maritimaThermotoga maritima 451 (24%)451 (24%) Aquifex aeolicusAquifex aeolicus 246 (16%)246 (16%) SynechocystisSynechocystis sp.sp. 126 (4%)126 (4%) Borrelia burgdorferiBorrelia burgdorferi 45 (3.6%)45 (3.6%) Escherichia coliEscherichia coli 99 (2.3%)99 (2.3%) ** 1010-5-5 over 60% of sequenceover 60% of sequence
  • 83. TIGRTIGR Evidence for lateral gene transfer inEvidence for lateral gene transfer in ThermotogaThermotoga 1. 81 archaeal-like genes are clustered in 15 regions which range in size from ~ 4 to 20 kb; many share conserved gene order with their archaeal counterparts. 2. Many of the archaeal-like genes correspond to regions with a significantly different base composition than the rest of the chromosome. 3. Some of these regions are associated with a 30 bp repeat structure found only in thermophiles. 4. Initial phylogenetic analyses of some of these genes lends support to lateral gene transfer.
  • 84. TIGRTIGR 0987 09900989ThermotogaThermotoga ORFORF Archaea homologArchaea homolog Bacterial homologBacterial homolog Eukaryote homologEukaryote homolog ThermotogaThermotoga ORFORF Archaea homologArchaea homolog Bacterial homologBacterial homolog Eukaryote homologEukaryote homolog 0988 0991 0992 0993 0994 0995 0996 0997 0998 0999 1000 10021001 1003 Region TM00987 - TM1003 ( 21kb Archaea-like stretch)Region TM00987 - TM1003 ( 21kb Archaea-like stretch) 79% 69% 69% 72% 72% 69% 65%61% 78% 72% TransposonTransposon 54% 48% 68% 51% 73% 73% Regulatory proteinRegulatory protein
  • 85. TIGRTIGR 0 100 200 300 400 500 600 700 500 1000 1500 2000 2500 3000 3500 4000 4500 Orfs in Target Genome Best Matches Best Matches to Prokaryotes CAUCR BACSU ECOLI MYCTU SYNSP
  • 86. TIGRTIGR A. thaliana T1E2.8 is a Chloroplast Derived HSP60ARATH -T1E2.8**********ECOLHAEINVIBCHVIBCHRICPRYEASTCHLPNCHLTRAQUAECAMJEHELPYBBURTREPATHEMABACSUDEIRAMCYTUMCYTUSYNSPSYNSPODONT CPSTMYCGEMYCPNCHLPNCHLTRCHLPNCHLTRARCFUARCFUMETJAPYRHOMETTHMETTHYEASTYEASTYEASTYEASTCELEGYEASTYEASTYEASTCELEGYEASTYEASTCELEGYEASTCELEGCELEG EukaryaArchaeaBacteriaCyano/Cpst
  • 87. TIGRTIGR Organellar HSP60s DROMECG12101DROMECG7235DROMECG2830DROMECG16954ARATH At2g33210ARATH F14O13.19ARATH MCP4.7YEAST SWCAUCR ORF03639RICPR gi|3861167ECOLI gi|1790586NEIMEb gi|7227233.AQUAE gi|2984379CHLPN gi|4376399|DEIRA ORF02245BACSU gi|2632916SYNSP gi|1652489SYNSP gi|1001103ARATH At2g28000ARATH MRP15.11MCYTU gi|2909515MCYTU gi|1449370THEMA TM0506BBUR gi|2688576TREPA gi|3322286PORGI ORF00933CHLTE ORF00173HELPY gi|2313084 Mitochondrial Forms α−ΠροτεοΧψανοβαχτεριαΠλαστιδ Φορµσ
  • 88. TIGRTIGR ParA Phylogeny pOMB25.Bor BBl32.Borb Borbu3 Borbu.2 BBM32.Borb CP32-6.Bor BBA20.Borb Cp18.Borbu pOMB10.Bor pLp7E.Borb BBE19.Borb BBB12.Borb BBN32.Borb BBF13.Borb BBH28.Borb BBK21.Borb BBU05.Borb BBJ17.Borb BBQ08.Borb BBF24.Borb OrfC.Borbu BBG08.Borb Pyrab Pyrho YZ24 METJA IncC1.Enta IncC2.Enta INC1 ECOLI INC2 ECOLI Orf.pRK2 IncC.pRK2 pM3.ParA ORF3.Pseae ORFB.Psepu 2603.Vibch***** ParA.Strco Strco2 Strco3 Myctu4 Mycle3 Deira.Chro Soj.Trepa SOJ BACSU Ricpr YGI1 PSEPU ParA.Caucr pAG1.Corgl Mycle Mycle2 Rv1708.Myc Strco Rv3213.Myc Helpy99 Helpy26695 A00900.Vib***** ParB.pR27. ParA.pMT1. parA.pMT1 parA.phage ParA phage ORFA00900 SOPA ECOLI F-Plasmid PhageN13 pCD1.Yerpe pCD1#2.Yer pYVe227.Ye pNL1.Sphar pQPH1.Coxb p42d.Rhile p42d.Rhiet REPA AGRRA pRiA4b.Agr pTiB6S3.Ag pTi-SAKURA pRL8JI.Rhi Y4CK Plasm ParA.Raleu pL6.5.Psef Chr2.Deira MP1#2.Deir MP1.Deira PX02.Bacan ORF298.Clo SojC.Halsp Borbu4 sojD.Halsp plasmid.St SojB.Halsp ParA.Rhoer SOJ MYCPN SOJ MYCGE MinD2.Pyra Pyrho2 pK214.Lacl PatA.synsp Deira.ParA pCHL1.Chlt2 GP5D CHLTR pCHL1.Chlt Chltr Chlps Chlps2 Chlpn Chltr2 Chlpn2 Chromosomal Plasmid and Phage BBQ08.Borb Chlamydial Inc Borrelia Plasmids Archaea Misc Evolution of Chromosome Partitioning Proteins (ParA)
  • 90. TIGRTIGR Reconciling a Tree of Life in the Context of Lateral Gene Transfer
  • 91. TIGRTIGR rRNA Tree of Complete Genomes Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes ArchaeaBacteriaEukarya
  • 93. TIGRTIGR rRNA vs. Whole Genome Trees Mycobacterium tuberculosisBacillus subtilisSynechocystis sp.Caenorhabditis elegansDrosophila melanogasterSaccharomyces cerevisiaeMethanobacterium thermoautotrophicumArchaeoglobus fulgidusPyrococcus horikoshiiMethanococcus jannaschiiAeropyrum pernixAquifex aeolicusThermotoga maritimaDeinococcus radioduransTreponema pallidumBorrelia burgdorferiHelicobacter pyloriCampylobacter jejuniNeisseria meningitidisEscherichia coliVibrio choleraeHaemophilus influenzaeRickettsia prowazekiiMycoplasma pneumoniaeMycoplasma genitaliumChlamydia trachomatisChlamydia pneumoniae0.05 changes ArchaeaBacteriaEukarya
  • 94. TIGRTIGR Outline of Phylogenomics Gene Evolution EventsPhenotype PredictionsDatabaseSpecies treePresence/AbsenceGene treesCongruenceEvol. DistributionF(x) PredictionsPathway Evolution TIGRTIGR
  • 95. TIGRTIGR Evolutionary Genome Scanning • Distribution patterns/phylogenetic profiles • Patterns of evolution (ds/dn, correlations, constraints) • Lateral gene transfers (organellar genes, Pathogenicity islands) • Subdividing gene families • Functional predictions (gene trees, PG profiles) • Gene duplications • Gene loss • Specialization • Comparing close relatives • Species evolution
  • 96. TIGRTIGR Evolutionary Diversity Still Poorly Represented in Complete Genomes Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85 BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted
  • 97. TIGRTIGR True Phylogenetic Methods Work Best MutS2.SynsMutS2.BacsMutS2.HelpMutS2.DeirMutsl.MettMSH4.CelegMSH4.YeastMSH4.humanmMutS.SacoMSH3.yeastC23C11.SpoMSH1.YeastMSH3.HumanREP1.MouseGTBP.MouseGTBP.HumanMSH6.YeastMSH5.HumanMSH5.CelegMSH5.YeastMSH2.HumanMSH2.MouseMSH2.YeastMutS.EcoliMutS.SynspMutS.DeiraMutS.Bacsu MutS.EcoliMutS.SynspMutS.BacsuMutS.DeiraMSH2.HumanMSH2.MouseMSH2.YeastMSH3.HumanREP1.MouseGTBP.MouseGTBP.HumanMSH6.YeastC23C11.SpoMSH1.YeastMSH3.yeastMSH4.CelegMSH4.humanMSH5.CelegMSH5.YeastmMutS.SacoMSH5.HumanMSH4.YeastMutS2.SynsMutS2.BacsMutS2.DeirMutS2.HelpMutsl.Mett UPGMANeighbor-Joining
  • 98. TIGRTIGR Acknowledgements • Genome duplications: S. Salzberg, J. Heidelberg, O. White, A. Stoltzfus, J. Peterson • Genome sequences and analysis: J. Heidelberg, T. Read, H. Tettelin, K. Nelson, J. Peterson, R. Fleischmann, D. Bryant • Horizontal transfers: K. Nelson, W. F. Doolittle • TIGR: C. Fraser, J. Venter, M-I. Benito, S. Kaul, Seqcore • $$$: DOE, NSF, NIH, ONR
  • 99. TIGRTIGR Evolutionary Diversity Still Poorly Represented in Complete Genomes Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85Tmf-pendenR-rubrum3Azs-brasi2Rm-vannielRhb-legum8Bdr-japoniSpg-capsulRic-prowazSte-maltopSpr-volutaRub-gelat2Rcy-purpurNis-gonor1Hrh-halch2Alm-vinosmPs-aerugi3E-coliMyx-xanthuBde-stolpiDsv-desulfDsb-postgaC-leptumC-butyric4C-pasteuriEub-barkerC-quercicoHel-chlor2Acp-laidlaM-capricolC-ramosumB-stearothEco-faecalLis-monoc3B-cereus4B-subtilisStc-therm3L-delbruckL-caseiFus-nucleaGlb-violacOlst-lut_CZea mays CNost-muscrSyn-6301Tnm-lapsumFlx-litoraCy-lyticaEmb-brevi2Bac-fragilPrv-rumcolPrb-diffluCy-hutchinFlx-canadaSap-grandiChl-limicoWln-succi2Hlb-pylor6Cam-jejun5Stm-ambofaArb-globifCor-xerosiBif-bifiduCfx-aurantTmc-roseumAqu-pyrophenv-SBAR12env-SBAR16Msr-barkerTpl-acidopMsp-hungatHf-volcaniMb-formiciMt-fervid1Tc-celerArg-fulgidMpy-kandl1Mc-vannielMc-jannascenv-pJP27Sul-acaldaThp-tenaxenv-pJP89Tt-maritimFer-islandMei-ruber4D-radiodurChd-psittaAcbt-capslenv-MC18Pir-staleyLpn-illiniLps-interKSpi-stenosTrp-pallidBor-burgdoSpi-halophBrs-hyodysFib-sucS85 BacteriaArchaeaBacteriaArchaeaA. rRNA tree of Bacterial and Archaeal Major GroupsB. Groups with Completed Genomes Highlighted
  • 101. TIGRTIGR TIGTIG RR OtherOther peoplepeople Mom and DadMom and Dad S. KarlinS. Karlin M. FeldmanM. Feldman A. M. CampbellA. M. Campbell R. FernaldR. Fernald R. ShaferR. Shafer D. AckerlyD. Ackerly D. GoldsteinD. Goldstein M. EisenM. Eisen J. CourcelleJ. Courcelle R. MyersR. Myers C. M. CavanaughC. M. Cavanaugh P. HanawaltP. Hanawalt NSFNSF J. HeidelberJ. Heidelber T.ReadT.Read S. KaulS. Kaul M-I BenitoM-I Benito J. C. VenterJ. C. VenterC. FraseC. Fraser S. SalzbergS. Salzberg O. WhiteO. White K. NelsonK. Nelson $$$$$$ ONRONR DOEDOE NIHNIH H. TettelinH. Tettelin
  • 102. TIGRTIGR Uses of Phylogenomics IX: Evolution Within Species
  • 103. TIGRTIGR M. tuberculosis strain phylogeny (Indels)
  • 104. TIGRTIGR Musser-Type Evolution (Indel Phylogeny) 98a 107a 43a 73a 105a 133a 114a 169a 218a 290a 160a 159a 13a 18a 26a 30a 32a 53a 58a 70a 96a 97a 100a 124a 204a 208a 236a 239a 249a 286a 99a 279a 205a 304a 54a 155a 165a CDC1551a 223a 110a 122a 245a 313a 36a 40a 71a 79a 168a 254a 283a 312a 4a 12a 41a 42a 52a 77a 187a 214a 81a 129a 274a 220a 64a 48a 55a 60a 72a 80a 83a 85a 89a 91a 95a 111a 170a 171a 182a 212a 219a 225a 244a 278a 301a 195a 2a 123a 207a 306a 69a 94a 101a 102a 112a 113a 121a 132a 211a 222a 235a 250a 284a 285a N1a 87a 117a 120a 136a 191a 237a 261a 37a 131a 269a 240a 63a 197a 206a 75a 108a 263a 128a 172a 162a 86a 38a 109a 119a 248a 6a 65a 68a 189a 66a 106a 227a 31a 78a 202a 213a 62a 163a 224a 256a 276a 287a 173a 291a 252a 281a 295a 310a 251a 151a 188a 292a 140a 141a 103a 174a 229a 259a H37Rv 88a 44a 74a 76a 126a 282a 166a 210a 84a
  • 105. TIGRTIGR Consistency Indices (Indel Phylogeny) Calculated over stored trees CI 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 maximum average minimum 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 201 Character
  • 107. TIGRTIGR Phylogenomics I: Presence/Absence of Homologs • Important to have complete genomes • Similarity searches with high “homology threshold” (to prevent false positives) • Iterative searches (to prevent false negatives) • Multiple sequence alignments to confirm assignment of homology and to divide up multi-domain proteins
  • 108. TIGRTIGR Phylogenomics II: Phylogenetic Analysis of Homologs • Multiple sequence alignment • Mask alignment (exclude certain regions) – ambiguous regions of alignment – hypervariable regions and regions with large gaps • Phylogenetic tree with method of choice • Robustness checks – bootstrapping – compare trees with different alignments – compare trees with different tree-building methods
  • 109. TIGRTIGR Phylogenomics III: Inferring Evolutionary Events • Infer evolutionary distribution patterns (overlay presence/absence onto species tree) • Compare gene tree vs. species tree • Compare gene tree vs. evolutionary distribution • Infer gene duplication and transfer events • Combine gene transfer and duplication information with evolutionary distribution analysis to infer gene loss, gene origin, and timing of gene duplications and transfers
  • 110. TIGRTIGR Phylogenomics IV: Functional Predictions and Evolution • Overlay experimentally determined functions onto gene tree • Infer changes in function – many changes suggests caution should be used in making new predictions • Predict functions based on position in tree relative to genes with known functions and based on orthology groups
  • 111. TIGRTIGR Phylogenomics V: Pathway Analysis • Correlated presence/absence of all genes in pathway in different species? – If not, maybe non-orthologous gene displacement – Alternatively, pathway may be different between species • Correlated evolutionary events for genes in pathway – loss of all genes at once – correlated duplications? • Compare evolution of function between pathways – The number of times an activity has evolved helps in making predictions of function/phenotype
  • 112. TIGRTIGR Steps in Phylogenomic Analysis • Create database of genes of interest • Presence/absence of homologs in complete genomes • Phylogenetic trees of each gene family • Infer evolutionary events (gene origin, duplication, loss and transfer) • Refine presence/absence (orthologs, paralogs, subfamilies) • Functional predictions and functional evolution • Analysis of pathways
  • 113. TIGRTIGR Evolution as a Screening Method • Gene duplications • Gene loss • Lateral gene transfers • Organellar genes • Structurally constrained genes • Correlated evolutionary changes
  • 114. TIGRTIGR Evolutionary Genome Scanning • Distribution patterns/phylogenetic profiles • Patterns of evolution – (ds/dn) – Structurally constrained genes – Correlated evolutionary changes • Lateral gene transfers – Organellar genes – Pathogenicity islands • Subdividing gene families – Orthologs vs paralogs – Functional predictions – Subfamilies – Motif identification • Gene duplications • Gene loss
  • 115. TIGRTIGR Genome Sequences Allow “Hypothesisless Research” • DNA microarrays • Proteomics • GC skew and other nucleotide composition analyses • Parallel genome wide genetic experiments • Evolutionary genome scanning • Phylogenetic profiles

Editor's Notes

  1. <number>
  2. <number>