STATISTICS

INTRODUCTION TO STATISTICS
Definitions ,[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SCOPE OF STATISTICS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object]
LIMITATIONS OF STATISTICS ,[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object]
ROLE OF STATISTICS IN MANAGEMENT DECISIONS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object]
Definitions Continued ,[object Object]
Some More Definitions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
More Definitions ,[object Object]
Illustration – Individual Series ,[object Object],[object Object]
Illustration – Discrete Frequency Distribution 4 68 6 66 10 64 18 62 12 60 No. of Students  Height (in inches)
Illustration – Grouped or Continuous Frequency Distribution ,[object Object],9 40-45 23 35-40 40 30-35 2 25-30 8 20-25 Frequency Class-Intervals
Illustration – Grouped or Continuous Frequency Distribution contd… ,[object Object],12 41-50 15 31-40 10 21-30 6 11-20 2 1-10 Frequency Class-Intervals
CONVERSION OF INCLUSIVE TYPE CLASS-INTERVALS TO EXCLUSIVE TYPE CLASS INTERVALS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
CONVERSION OF INCLUSIVE TYPE CLASS-INTERVALS TO EXCLUSIVE TYPE CLASS INTERVALS contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],12 41-50 15 31-40 10 21-30 6 11-20 2 1-10 Frequency Class-Intervals
CONVERSION OF INCLUSIVE TYPE CLASS-INTERVALS TO EXCLUSIVE TYPE CLASS INTERVALS contd… ,[object Object],[object Object],12 40.5-50.5 15 30.5-40.5 10 20.5-30.5 6 10.5-20.5 2 0.5-10.5 Frequency Class-Intervals
Obtaining Cumulative Frequency Distribution 73 + 2 = 75  2 2 45-50 65 + 8 = 73  2 + 8 = 10 8 40-45 55 + 10 = 65  10 + 10 = 20 10 35-40 49 + 6 =55  20 + 6 = 26 6 30-35 15 +34 =49  26 + 34 = 60  34 25-30 15  60 + 15 = 75 15 20-25 Less than type  More than type  Cum.frequency  cum.frequency Frequency Class -Intervals
Introduction to Measures of Central Tendency ,[object Object],[object Object],[object Object],[object Object]
Objectives of Averages ,[object Object],[object Object],[object Object],[object Object],[object Object]
Requisites of a Good Average ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Common Measures of Central Tendency ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Averages Mathematical Averages Positional Averages A.M G.M H.M Median Mode
Arithmetic Mean ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Arithmetic Mean contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],f 4  f 4 x 4 x 4 f 3   f 3 x 3 x 3 f 2  f 2 x 2   x 2 f 1   f 1 x 1 x 1 Freq.  fx X
μ  = 3144 / 50 = 62.88  Ans. Illustration 4  272 50  = N  3144  =  Σ  fx 68 6  396 66 10  640  64 18  1116 62 12  60 x 12 = 720 60 No. of Students  f   fX Height (in inches) X
Arithmetic Mean contd… ,[object Object],[object Object],[object Object],[object Object]
Arithmetic Mean Formulae ,[object Object],μ  = f 1 x 1  + f 2 x 2  + …..f n x n  =  Σ fx N  Σ f Where N = f 1  +f 2  +…+f n x = mid value of a C.I = (U.L + L.L) 2
Arithmetic Mean Formulae contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Arithmetic Mean Formulae contd… ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Illustration – Direct Method ,[object Object],[object Object],μ  =  Σ  fx Σ  f 442 =  Σ fx 50 =  Σ f Total 65 13 5 12-14 110 11 10 10-12 153 9 17 8-10 84 7 12 6-8 30 5 6 4-6 fX Mid-Value X Freq f C.I
Illustration – Assumed Mean Method ,[object Object],[object Object],[object Object],[object Object],μ  = A +  Σ  fd Σ f Σ fd = 105 Σ f= 36 60 15 37.5 4 35-40 60 10 32.5 6 30-35 40 5 27.5 8 25-30 0 0 22.5 = A 9 20-25 -35 -5 17.5 7 15-20 -20 -10 12.5 2 10-15 fd d =(x-A) Mid Values  (x) Freq. f C.I
Illustration- Step Deviation Method ,[object Object],[object Object],[object Object],[object Object],μ   =  A +  Σ  fd  x i Σ f Σ fd = 2100 Σ f= 3600 1200 3 37.5 400 35-40 1200 2 32.5 600 30-35 800 1 27.5 800 25-30 0 0 22.5 = A 900 20-25 -700 -1 17.5 700 15-20 -400 -2 12.5 200 10-15 fd d=  (x-A) I  (i= 5) MidValues (x) Freq.(f) C.I
Illustration Proceed as usual 2-0=2 90-100 2 90 0 100 9-2=7 80-90 9 80 25-9=16 70-80 25 70 45-25=20 60-70 45 60 75-45=30 50-60 75 50 100-75=25 40-50 100 40 118-100=18 30-40 118 30 133-118=15 20-30 133 20 140-133= 7 10-20 140 10 Freq. C.I Cum. Freq. Marks X or more
What if… ? N=40 Total 3 0-9 15 10-19 10 20-29 8 30-39 3 40-49 1 50-59 Frequency C.I
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Determining missing frequency when A.M is known – Illustration Mean = 16.82 Σ fd = -12 N = 70 + f 4 24 3 32.5 8 30-35 20 2 27.5 10 25-30 14 1 22.5 14 20-25 0 0 17.5 = A ? = f 4 15-20 -16 -1 12.5 16 10-15 -24 -2 7.5 12 5-10 -30 -3 2.5 10 0-5 fd d=  (x –A)/i M.V (x) Freq. Marks
Determining missing frequency when A.M is known - Illustration ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Some More Applications of A.M ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Combined A.M ,[object Object],[object Object],[object Object]
Illustration- Combined A.M ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Practice Questions- Arithmetic Mean ,[object Object],[object Object],[object Object],400 600 800 900 700 200 No.of workers 45-50 40-45 35-40 30-35 25-30 20-25 Weekly Income  (in Rs.) 2 6 14 18 12 5 3 No.of Students 60-64 55-59 50-54 45-49 40-44 35-39 30-34 Weight (in kgs) 4 10 12 35 25 10 8 No.of workers 425-475 375-425 325-375 275-325 225-275 175-225 125-175 Wages(in Rs.)
Practice Questions- Arithmetic Mean contd… ,[object Object],374 Less than 1000 392 Less than 1100 400 Less than 1200 324 Less than 900 265 Less than 800 194 Less than 700 116 Less than 600 60 Less than 500 20 Less than 400 0 Less than 300 No. of tubes Lifetime (in hrs.)
Merits of A.M ,[object Object],[object Object],[object Object],[object Object],[object Object]
Drawbacks of A.M ,[object Object],[object Object],[object Object],[object Object]
Weighted Arithmetic Mean ,[object Object],[object Object],[object Object]
Illustration – Weighted A.M 106000 =  Σ wX 350 =  Σ w 15000 150 100 Lower Staff 25000 100 250 Clerical Staff 35000 70 500 Subordinate Staff 16000 20 800 Class II officers 15000 10 1500 Class I Officers wX No. of employees (w) Monthly Salary (in Rs.) (X) Designation
Illustration – Weighted A.M ,[object Object],[object Object],[object Object],[object Object],[object Object]
Median – Positional Average ,[object Object],[object Object]
Calculation of Median  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of Median – Illustration  (Individual Series)  ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of Median – Illustration  (Individual Series) ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of Median ,[object Object],[object Object],[object Object],[object Object],[object Object]
Calculation of Median-Illustration  (Discrete Freq. Distribution) Here N = 50 (i) N/2 = 25 (ii) Cum. Frequency just greater than N/2 = 30 (iii)Corresponding value of item  is 62. Median = 60  Ans.   12 12  60 30 18  62 40 10 64 46 6  66 50 4 68 N = 50 Cum. Freq. No. of students Height (in inches)
Calculation of Median ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Md = L1 +  N/2 - C   (L2 – L1) f
Calculation of Median-Illustration (Grouped Freq. Distribution) N/2 = 3600/2 = 1800 Cum.freq. just greater than 1800 is 2600. Hence median class is 25-30. Hence L1 = 25 L2 = 30 C = 1800 f =  800 Md = 25 +  1800 - 1800  (30 – 25 ) 800 = 25  Ans.   Σ f= 3600 3600 400 35-40 3200 600 30-35 2600 800 25-30 1800 900 20-25 900 700 15-20 200 200 10-15 Cum. Freq Freq.(f) C.I
Calculation of  Missing Frequencies when median is known : Illustration : Median = 50 N = 100  15  56 + f1 + f2 80-100 ? = f 2  41+ f 1 +f 2 60-80 27  41 + f 1 40-60 ? = f 1  14 + f 1   20-40 14  14 0-20 No. of Families  Cumulative Freq.  Expenditure
Calculation of  Missing Frequencies when median is known : Illustration ,[object Object],[object Object],[object Object],[object Object],Md = L 1  +  N/2 - C   (L 2  – L 1 ) f 50 = 40 +  50 – (14 + f 1 ) (60 – 40) 27 10 =  720 – 20 f 1 27 f 1  = 450/20 = 22.5 = 23 families approx.  N = 56 + f 1  + f 2 100 = 56 + 23 + f 2 f 2  = 21  Ans. f 1  = 23 and f 2  = 21
Practice Numericals - Median ,[object Object],[object Object],7 55-60 13 50-55 15 45-50 20 40-45 30 35-40 33 30-35 28 25-30 14 20-25 No. of Persons Age 125 Less than 80 120 Less than 70 112 Less than 60 96 Less than 50 76 Less than 40 40 Less than 30 16 Less than 20 4 Less than 10 Frequency Value
Practice Problems- Median ,[object Object],229 = N 18 70-80 25 60-70 ? 50-60 65 40-50 ? 30-40 30 20-30 12 10-20 Frequency Class-Intervals
Merits - Median ,[object Object],[object Object],[object Object],[object Object]
Demerits - Median ,[object Object],[object Object],[object Object]
Mode ,[object Object],[object Object],[object Object],[object Object]
Mode – Discrete Frequency Distribution ,[object Object],[object Object],10 Total 1 141 1 140 2 135 2 132 3 130 1 120 No.of students Wt. in pounds
Mode – Continuous Frequency Distribution ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Mode: Formula for Continuous Frequency Distribution Mode = L1  +  h(f1 – f0)  2f1-f0-f2
Empirical Relationship between Mean, Median & Mode Mode = 3 Median – 2 Mean
Geometric Mean ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Geometric Mean ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Geometric Mean ,[object Object],[object Object]
Harmonic Mean ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Harmonic Mean ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Harmonic Mean ,[object Object],[object Object]
1 de 81

Recomendados

Arithmetic mean por
Arithmetic meanArithmetic mean
Arithmetic meanmah123end456
31.6K vistas29 diapositivas
Introduction to Statistics por
Introduction to StatisticsIntroduction to Statistics
Introduction to StatisticsAnjan Mahanta
66.4K vistas157 diapositivas
Introduction to statistics...ppt rahul por
Introduction to statistics...ppt rahulIntroduction to statistics...ppt rahul
Introduction to statistics...ppt rahulRahul Dhaker
139.8K vistas41 diapositivas
Measure OF Central Tendency por
Measure OF Central TendencyMeasure OF Central Tendency
Measure OF Central TendencyIqrabutt038
181.2K vistas34 diapositivas
Introduction to statistics por
Introduction to statisticsIntroduction to statistics
Introduction to statisticsakbhanj
31.8K vistas18 diapositivas
Introduction to Statistics (Part -I) por
Introduction to Statistics (Part -I)Introduction to Statistics (Part -I)
Introduction to Statistics (Part -I)YesAnalytics
6.3K vistas33 diapositivas

Más contenido relacionado

La actualidad más candente

Measures of central tendency por
Measures of central tendencyMeasures of central tendency
Measures of central tendencyRaj Teotia
7.6K vistas39 diapositivas
Measures of central tendency por
Measures of central tendencyMeasures of central tendency
Measures of central tendencyAlex Chris
14K vistas26 diapositivas
Tabular and Graphical Representation of Data por
Tabular and Graphical Representation of Data Tabular and Graphical Representation of Data
Tabular and Graphical Representation of Data Sir Parashurambhau College, Pune
11.5K vistas39 diapositivas
Type of data por
Type of dataType of data
Type of dataAmit Sharma
15K vistas10 diapositivas
Diagrammatic and Graphical Representation of Data in Statistics por
Diagrammatic and Graphical Representation of Data in StatisticsDiagrammatic and Graphical Representation of Data in Statistics
Diagrammatic and Graphical Representation of Data in StatisticsAsha Dhilip
7K vistas33 diapositivas
Graphical Representation of data por
Graphical Representation of dataGraphical Representation of data
Graphical Representation of dataJijo K Mathew
115.7K vistas35 diapositivas

La actualidad más candente(20)

Measures of central tendency por Raj Teotia
Measures of central tendencyMeasures of central tendency
Measures of central tendency
Raj Teotia7.6K vistas
Measures of central tendency por Alex Chris
Measures of central tendencyMeasures of central tendency
Measures of central tendency
Alex Chris14K vistas
Diagrammatic and Graphical Representation of Data in Statistics por Asha Dhilip
Diagrammatic and Graphical Representation of Data in StatisticsDiagrammatic and Graphical Representation of Data in Statistics
Diagrammatic and Graphical Representation of Data in Statistics
Asha Dhilip7K vistas
Graphical Representation of data por Jijo K Mathew
Graphical Representation of dataGraphical Representation of data
Graphical Representation of data
Jijo K Mathew115.7K vistas
Basics of statistics por donthuraj
Basics of statisticsBasics of statistics
Basics of statistics
donthuraj21.4K vistas
Measures of Central Tendency - Biostatstics por Harshit Jadav
Measures of Central Tendency - BiostatsticsMeasures of Central Tendency - Biostatstics
Measures of Central Tendency - Biostatstics
Harshit Jadav184.1K vistas
Graphical Representation of Statistical data por MD SAMSER
Graphical Representation of Statistical dataGraphical Representation of Statistical data
Graphical Representation of Statistical data
MD SAMSER92.5K vistas
Basics stat ppt-types of data por Farhana Shaheen
Basics stat ppt-types of dataBasics stat ppt-types of data
Basics stat ppt-types of data
Farhana Shaheen26.5K vistas
Coefficient of variation por Nadeem Uddin
Coefficient of variationCoefficient of variation
Coefficient of variation
Nadeem Uddin2.8K vistas
What is statistics por Raj Teotia
What is statisticsWhat is statistics
What is statistics
Raj Teotia40.9K vistas
A power point presentation on statistics por Kriace Ward
A power point presentation on statisticsA power point presentation on statistics
A power point presentation on statistics
Kriace Ward12.7K vistas
050 sampling theory por Raj Teotia
050 sampling theory050 sampling theory
050 sampling theory
Raj Teotia15.8K vistas

Destacado

Statistical ppt por
Statistical pptStatistical ppt
Statistical pptfeminaargonza09
94.3K vistas27 diapositivas
Introduction To Statistics por
Introduction To StatisticsIntroduction To Statistics
Introduction To Statisticsalbertlaporte
180.8K vistas54 diapositivas
Median and mode por
Median and modeMedian and mode
Median and modewaziristani
8.7K vistas30 diapositivas
Statistics in research por
Statistics in researchStatistics in research
Statistics in researchBalaji P
38K vistas53 diapositivas
What is statistics por
What is statisticsWhat is statistics
What is statisticspujachaudhary
11K vistas20 diapositivas
What Is Statistics por
What Is StatisticsWhat Is Statistics
What Is StatisticsAkila Jayarathna
38.9K vistas9 diapositivas

Destacado(12)

Introduction To Statistics por albertlaporte
Introduction To StatisticsIntroduction To Statistics
Introduction To Statistics
albertlaporte180.8K vistas
Median and mode por waziristani
Median and modeMedian and mode
Median and mode
waziristani8.7K vistas
Statistics in research por Balaji P
Statistics in researchStatistics in research
Statistics in research
Balaji P38K vistas
Problems Faced By Researcher por ankur19june
Problems Faced By ResearcherProblems Faced By Researcher
Problems Faced By Researcher
ankur19june131.9K vistas
Commonly Used Statistics in Survey Research por Pat Barlow
Commonly Used Statistics in Survey ResearchCommonly Used Statistics in Survey Research
Commonly Used Statistics in Survey Research
Pat Barlow173.1K vistas
Introduction to statistics por madan kumar
Introduction to statisticsIntroduction to statistics
Introduction to statistics
madan kumar33.5K vistas
Basic Statistical Concepts and Methods por Ahmed-Refat Refat
Basic Statistical Concepts and MethodsBasic Statistical Concepts and Methods
Basic Statistical Concepts and Methods
Ahmed-Refat Refat114.9K vistas
Role of Statistics in Scientific Research por Varuna Harshana
Role of Statistics in Scientific ResearchRole of Statistics in Scientific Research
Role of Statistics in Scientific Research
Varuna Harshana188.1K vistas
Sampling and Sample Types por Dr. Sunil Kumar
Sampling  and Sample TypesSampling  and Sample Types
Sampling and Sample Types
Dr. Sunil Kumar186.7K vistas

Similar a STATISTICS

SP and R.pptx por
SP and R.pptxSP and R.pptx
SP and R.pptxssuserfc98db
2 vistas92 diapositivas
Mod 6 ch 17 18 por
Mod 6 ch 17 18Mod 6 ch 17 18
Mod 6 ch 17 18Sajina Nair
692 vistas33 diapositivas
Statistics For Entrepreneurs por
Statistics For  EntrepreneursStatistics For  Entrepreneurs
Statistics For EntrepreneursDr. Trilok Kumar Jain
1K vistas34 diapositivas
Research Methodology por
Research MethodologyResearch Methodology
Research MethodologyEvanNathan3
85 vistas13 diapositivas
STATISTICS-AND-PROBABLITY-A-REVIEW-FOR-SHS.pdf por
STATISTICS-AND-PROBABLITY-A-REVIEW-FOR-SHS.pdfSTATISTICS-AND-PROBABLITY-A-REVIEW-FOR-SHS.pdf
STATISTICS-AND-PROBABLITY-A-REVIEW-FOR-SHS.pdfMariaCatherineErfeLa
3 vistas80 diapositivas
Lecture_4_-_Data_Management_using_Statistics(3).pptx por
Lecture_4_-_Data_Management_using_Statistics(3).pptxLecture_4_-_Data_Management_using_Statistics(3).pptx
Lecture_4_-_Data_Management_using_Statistics(3).pptxssuser10eca22
12 vistas18 diapositivas

Similar a STATISTICS(20)

Research Methodology por EvanNathan3
Research MethodologyResearch Methodology
Research Methodology
EvanNathan385 vistas
Lecture_4_-_Data_Management_using_Statistics(3).pptx por ssuser10eca22
Lecture_4_-_Data_Management_using_Statistics(3).pptxLecture_4_-_Data_Management_using_Statistics(3).pptx
Lecture_4_-_Data_Management_using_Statistics(3).pptx
ssuser10eca2212 vistas
Module stats por Nidhi
Module statsModule stats
Module stats
Nidhi2K vistas
Module por asha
ModuleModule
Module
asha640 vistas
NOTE STATISTIC BA301 por faijmsk
NOTE STATISTIC BA301NOTE STATISTIC BA301
NOTE STATISTIC BA301
faijmsk2.7K vistas
Topic-1-Review-of-Basic-Statistics.pptx por JohnLester81
Topic-1-Review-of-Basic-Statistics.pptxTopic-1-Review-of-Basic-Statistics.pptx
Topic-1-Review-of-Basic-Statistics.pptx
JohnLester8111 vistas
Biostatistics /certified fixed orthodontic courses by Indian dental academy por Indian dental academy
Biostatistics /certified fixed orthodontic courses by Indian dental academy Biostatistics /certified fixed orthodontic courses by Indian dental academy
Biostatistics /certified fixed orthodontic courses by Indian dental academy
Indian dental academy3.9K vistas
Basic Statistics for Class 11, B.COm, BSW, B.A, BBA, MBA por Gaurav Rana
Basic Statistics for Class 11, B.COm, BSW, B.A, BBA, MBABasic Statistics for Class 11, B.COm, BSW, B.A, BBA, MBA
Basic Statistics for Class 11, B.COm, BSW, B.A, BBA, MBA
Gaurav Rana1.3K vistas
BRM Unit 3 Data Analysis-1.pptx por VikasRai405977
BRM Unit 3 Data Analysis-1.pptxBRM Unit 3 Data Analysis-1.pptx
BRM Unit 3 Data Analysis-1.pptx
VikasRai40597710 vistas
STANDARD DEVIATION (2018) (STATISTICS) por sumanmathews
STANDARD DEVIATION (2018) (STATISTICS)STANDARD DEVIATION (2018) (STATISTICS)
STANDARD DEVIATION (2018) (STATISTICS)
sumanmathews622 vistas

Último

StudioX.pptx por
StudioX.pptxStudioX.pptx
StudioX.pptxNikhileshSathyavarap
106 vistas18 diapositivas
Java Simplified: Understanding Programming Basics por
Java Simplified: Understanding Programming BasicsJava Simplified: Understanding Programming Basics
Java Simplified: Understanding Programming BasicsAkshaj Vadakkath Joshy
663 vistas155 diapositivas
Career Building in AI - Technologies, Trends and Opportunities por
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and OpportunitiesWebStackAcademy
47 vistas44 diapositivas
What is Digital Transformation? por
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?Mark Brown
41 vistas11 diapositivas
Introduction to AERO Supply Chain - #BEAERO Trainning program por
Introduction to AERO Supply Chain  - #BEAERO Trainning programIntroduction to AERO Supply Chain  - #BEAERO Trainning program
Introduction to AERO Supply Chain - #BEAERO Trainning programGuennoun Wajih
123 vistas78 diapositivas
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating... por
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...Taste
38 vistas34 diapositivas

Último(20)

Career Building in AI - Technologies, Trends and Opportunities por WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy47 vistas
What is Digital Transformation? por Mark Brown
What is Digital Transformation?What is Digital Transformation?
What is Digital Transformation?
Mark Brown41 vistas
Introduction to AERO Supply Chain - #BEAERO Trainning program por Guennoun Wajih
Introduction to AERO Supply Chain  - #BEAERO Trainning programIntroduction to AERO Supply Chain  - #BEAERO Trainning program
Introduction to AERO Supply Chain - #BEAERO Trainning program
Guennoun Wajih123 vistas
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating... por Taste
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...
Creative Restart 2023: Christophe Wechsler - From the Inside Out: Cultivating...
Taste38 vistas
Education of marginalized and socially disadvantages segments.pptx por GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati547 vistas
JRN 362 - Lecture Twenty-Three (Epilogue) por Rich Hanley
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)
Rich Hanley43 vistas
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37 por MysoreMuleSoftMeetup
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
Payment Integration using Braintree Connector | MuleSoft Mysore Meetup #37
JRN 362 - Lecture Twenty-Two por Rich Hanley
JRN 362 - Lecture Twenty-TwoJRN 362 - Lecture Twenty-Two
JRN 362 - Lecture Twenty-Two
Rich Hanley39 vistas

STATISTICS

  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. Illustration – Discrete Frequency Distribution 4 68 6 66 10 64 18 62 12 60 No. of Students Height (in inches)
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26. Obtaining Cumulative Frequency Distribution 73 + 2 = 75 2 2 45-50 65 + 8 = 73 2 + 8 = 10 8 40-45 55 + 10 = 65 10 + 10 = 20 10 35-40 49 + 6 =55 20 + 6 = 26 6 30-35 15 +34 =49 26 + 34 = 60 34 25-30 15 60 + 15 = 75 15 20-25 Less than type More than type Cum.frequency cum.frequency Frequency Class -Intervals
  • 27.
  • 28.
  • 29.
  • 30.
  • 31. Averages Mathematical Averages Positional Averages A.M G.M H.M Median Mode
  • 32.
  • 33.
  • 34. μ = 3144 / 50 = 62.88 Ans. Illustration 4 272 50 = N 3144 = Σ fx 68 6 396 66 10 640 64 18 1116 62 12 60 x 12 = 720 60 No. of Students f fX Height (in inches) X
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42. Illustration Proceed as usual 2-0=2 90-100 2 90 0 100 9-2=7 80-90 9 80 25-9=16 70-80 25 70 45-25=20 60-70 45 60 75-45=30 50-60 75 50 100-75=25 40-50 100 40 118-100=18 30-40 118 30 133-118=15 20-30 133 20 140-133= 7 10-20 140 10 Freq. C.I Cum. Freq. Marks X or more
  • 43. What if… ? N=40 Total 3 0-9 15 10-19 10 20-29 8 30-39 3 40-49 1 50-59 Frequency C.I
  • 44.
  • 45. Determining missing frequency when A.M is known – Illustration Mean = 16.82 Σ fd = -12 N = 70 + f 4 24 3 32.5 8 30-35 20 2 27.5 10 25-30 14 1 22.5 14 20-25 0 0 17.5 = A ? = f 4 15-20 -16 -1 12.5 16 10-15 -24 -2 7.5 12 5-10 -30 -3 2.5 10 0-5 fd d= (x –A)/i M.V (x) Freq. Marks
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55. Illustration – Weighted A.M 106000 = Σ wX 350 = Σ w 15000 150 100 Lower Staff 25000 100 250 Clerical Staff 35000 70 500 Subordinate Staff 16000 20 800 Class II officers 15000 10 1500 Class I Officers wX No. of employees (w) Monthly Salary (in Rs.) (X) Designation
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62. Calculation of Median-Illustration (Discrete Freq. Distribution) Here N = 50 (i) N/2 = 25 (ii) Cum. Frequency just greater than N/2 = 30 (iii)Corresponding value of item is 62. Median = 60 Ans. 12 12 60 30 18 62 40 10 64 46 6 66 50 4 68 N = 50 Cum. Freq. No. of students Height (in inches)
  • 63.
  • 64. Calculation of Median-Illustration (Grouped Freq. Distribution) N/2 = 3600/2 = 1800 Cum.freq. just greater than 1800 is 2600. Hence median class is 25-30. Hence L1 = 25 L2 = 30 C = 1800 f = 800 Md = 25 + 1800 - 1800 (30 – 25 ) 800 = 25 Ans. Σ f= 3600 3600 400 35-40 3200 600 30-35 2600 800 25-30 1800 900 20-25 900 700 15-20 200 200 10-15 Cum. Freq Freq.(f) C.I
  • 65. Calculation of Missing Frequencies when median is known : Illustration : Median = 50 N = 100 15 56 + f1 + f2 80-100 ? = f 2 41+ f 1 +f 2 60-80 27 41 + f 1 40-60 ? = f 1 14 + f 1 20-40 14 14 0-20 No. of Families Cumulative Freq. Expenditure
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74. Mode: Formula for Continuous Frequency Distribution Mode = L1 + h(f1 – f0) 2f1-f0-f2
  • 75. Empirical Relationship between Mean, Median & Mode Mode = 3 Median – 2 Mean
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.