Se ha denunciado esta presentación.
Utilizamos tu perfil de LinkedIn y tus datos de actividad para personalizar los anuncios y mostrarte publicidad más relevante. Puedes cambiar tus preferencias de publicidad en cualquier momento.
F# IN YOUR PIPE
COPENHAGEN R
Phil Trelford
@ptrelford
F#UNCTIONAL LONDONERS
Founded Feb 2010
800 Members
Meet every 2 weeks
Key topics:
 Functional Programming
 Machine Learn...
CASE STUDIES Phillip Trelford, @ptrelford
Copenhagen R, 2014
F# TOOLS FOR HALO 3
Questions
Controllable player skill distribution (slow down!)
Controllable skills distributions (re-or...
ADCENTER
Weeks of data in training:
7,000,000,000 impressions
2 weeks of CPU time during
sessions
2 wks x 7 days x 86,400 ...
TESTIMONIALS – F# IN
MACHINE LEARNING
Phillip Trelford, @ptrelford
Copenhagen R, 2014
FSHARP.ORG/TESTIMONIALS -
MICROSOFT
For a machine learning scientist, speed of experimentation is the
critical factor to o...
FSHARP.ORG/TESTIMONIALS -
AMYRIS BIOTECH
F# has been phenomenally useful.
I would be writing a lot of this in Python other...
LIVE DEMOS Phil Trelford, @ptrelford
Copenhagen R, 2014
PIPE IT
load(transform(extract(data)))
f3( f2( f1( x ) ) )
let (|>) x f = f x
x |> f1 |> f2 |> f3
data |> extract |> trans...
K-MEANS CLUSTERING ALGORITHM
(* K-Means Algorithm *)
/// Group all the vectors by the nearest center.
let classify centroi...
TYPE PROVIDERS
JSON
XML
CSV
Excel
SQL
R
MATLAB
Hadoop
…
CSV TYPE PROVIDER
R – TYPE PROVIDER
FSLAB
Data
Charting
Deedle
Math.Net
R Provider
RESOURCES Phil Trelford, @ptrelford
Copenhagen R, 2014
TRY IT BEFORE YOU BUY IT
BUY THE BOOK
JOIN THE COMMUNITY
F# Foundation
http://fsharp.org
Copenhagen F# Meetup
http://www.meetup.com/MoedegruppeFunktionelleKoebe...
Próxima SlideShare
Cargando en…5
×

F# in your pipe

  • Sé el primero en comentar

F# in your pipe

  1. 1. F# IN YOUR PIPE COPENHAGEN R Phil Trelford @ptrelford
  2. 2. F#UNCTIONAL LONDONERS Founded Feb 2010 800 Members Meet every 2 weeks Key topics:  Functional Programming  Machine Learning  Apps and Games http://meetup.com/fsharplondon
  3. 3. CASE STUDIES Phillip Trelford, @ptrelford Copenhagen R, 2014
  4. 4. F# TOOLS FOR HALO 3 Questions Controllable player skill distribution (slow down!) Controllable skills distributions (re-ordering) Simulations Large scale simulation of 8,000,000,000 matches Distributed computation – 15 machines for 2wks Tools Result viewer (Logged results: 52GB of data) Real-time simulator of partial update
  5. 5. ADCENTER Weeks of data in training: 7,000,000,000 impressions 2 weeks of CPU time during sessions 2 wks x 7 days x 86,400 sec/day Learning algorithm speed requirement: 5,787 impression updates /sec 172.8 µs per impression update
  6. 6. TESTIMONIALS – F# IN MACHINE LEARNING Phillip Trelford, @ptrelford Copenhagen R, 2014
  7. 7. FSHARP.ORG/TESTIMONIALS - MICROSOFT For a machine learning scientist, speed of experimentation is the critical factor to optimize. Compiling is fast but loading large amounts of data in memory takes a long time. With F#’s REPL, you only need to load the data once and you can then code and explore in the interactive environment. Unlike C# and C++, F# was designed for this mode of interaction. - Patrice Simard, Microsoft
  8. 8. FSHARP.ORG/TESTIMONIALS - AMYRIS BIOTECH F# has been phenomenally useful. I would be writing a lot of this in Python otherwise and F# is more robust, 20x - 100x faster to run and for anything but the most trivial programs, faster to develop. - Darren Platt, Amyris Biotechnology
  9. 9. LIVE DEMOS Phil Trelford, @ptrelford Copenhagen R, 2014
  10. 10. PIPE IT load(transform(extract(data))) f3( f2( f1( x ) ) ) let (|>) x f = f x x |> f1 |> f2 |> f3 data |> extract |> transform |> load
  11. 11. K-MEANS CLUSTERING ALGORITHM (* K-Means Algorithm *) /// Group all the vectors by the nearest center. let classify centroids vectors = vectors |> Array.groupBy (fun v -> centroids |> Array.minBy (distance v)) /// Repeatedly classify the vectors, starting with the seed centroids let computeCentroids seed vectors = seed |> Seq.iterate (fun centers -> classify centers vectors |> Array.map (snd >> average))
  12. 12. TYPE PROVIDERS JSON XML CSV Excel SQL R MATLAB Hadoop …
  13. 13. CSV TYPE PROVIDER
  14. 14. R – TYPE PROVIDER
  15. 15. FSLAB Data Charting Deedle Math.Net R Provider
  16. 16. RESOURCES Phil Trelford, @ptrelford Copenhagen R, 2014
  17. 17. TRY IT BEFORE YOU BUY IT
  18. 18. BUY THE BOOK
  19. 19. JOIN THE COMMUNITY F# Foundation http://fsharp.org Copenhagen F# Meetup http://www.meetup.com/MoedegruppeFunktionelleKoebenhavnere/ Progressive F# Tutorials London https://skillsmatter.com/conferences/1926-progressive-f-tutorials- 2014

×