SlideShare una empresa de Scribd logo
1 de 13
Descargar para leer sin conexión
CAPITULO 3. DIFUSION DE METALES
Difusión. Mecanismo por el cual la materia es transportada a
través de la materia. Simplemente movimiento de átomos.
En gases: rápida (gases y olores)
En líquidos: más lenta (tinta en agua)
En sólidos: las vibraciones térmicas permiten el movimiento
En sólidos la difusión permite las reacciones en estado
sólido: precipitación de una segunda fase(TT), crecimiento
de nuevos granos en la recristalización de metales trabajados
en frío, manufactura de cerámicos y cambios alotrópicos.
Los mecanismos de difusión pueden ser:
Mecanismos de vacancias o sustitucional. Los átomos se
mueven en la red cristalina desde una posición a otra, si hay
suficiente energía de activación (vibración térmica y
vacancias)
Mecanismo intersticial. Los átomos se trasladan de un
intersticio a otro, sin desplazar permanentemente a ninguno
de los átomos de la matriz de la red cristalina (el tamaño de
los átomos que se difunden debe ser relativamente pequeño
comparado con el de los átomos de la matriz)
Energía de activación para la difusión
Los átomos se mueven de manera ordenada, tendiendo a
eliminar las diferencias de concentración y producir una
composición homogenea en el material.
El átomo esta originalmente en un sitio de baja energía,
relativamente estable. Para desplazarse a otro lugar, el
átomo de atravesar una barrera de energía potencial que
requiere una energía de activación Q. El calor proporciona al
átomo la energía para vencer esta barrera.
La energía de activación es menor en la difusión intersticial
que en la difusión por vacantes (o sustitucional).
Difusión en estado estacionario
Cuando con el tiempo no existen cambios en la
concentración de átomos en estos planos.
La primera ley de Fick determina el flujo neto de átomos J.
Cuando se incrementa la temperatura de un material, el
coeficiente de difusión y el flujo neto de átomos se
incrementan.
El coeficiente de difusión D depende:
a. Tipo de mecanismo de difusión (Intersticial o
sustitucional)
b. Temperatura
c. Estructura cristalina del disolvente (factor de
empaquetamiento).
d. Tipo de imperfecciones en la red cristalina (bordes
de grano y vacantes)
e. Concentración de la especie que se difunde.
La siguiente tabla presenta la relación de algunas energías
de activación para la autodifusión en metales puros.
Cs = Concentración superficial del elemento que se difunde
Co = Concentración inicial en el sólido
Cx = Concentración del elemento a una distancia x de la superficie
en un tiempo t
x = distancia desde la superficie
D = Difusividad del elemento que se difunde
t = Tiempo
La segunda ley de Fick, describe la difusión dinámica o
no estable de los átomos .
Permite calcular la concentración de muestras cercanas
a la superficie del material como una función del tiempo y
la distancia, siempre y cuando el coeficiente de difusión
D permanezca constante y las concentraciones de
átomos difundidos en la superficie Cs y Co permanezca
sin cambios.
x erf x x erf x x erf x x erf x
0 0 0,40 0,4284 0,85 0,7707 1,6 0,9763
0,025 0,0282 0,45 0,4755 0,90 0,7970 1,7 0,9838
0,05 0,0564 0,50 0,5205 0,95 0,8209 1,8 0,9891
0,10 0,1125 0,55 0,5633 1,0 0,8427 1,9 0,9928
0,15 0,1680 0,60 0,6039 1,1 0,8802 2,0 0,9953
0,20 0,2227 0,65 0,6420 1,2 0,9103 2,2 0,9981
0,25 0,2763 0,70 0,6778 1,3 0,9340 2,4 0,9993
0,30 0,3286 0,75 0,7112 1,4 0,9523 2,6 0,9998
0,35 0,3794 0,80 0,7421 1,5 0,9661 2,8 0,9999
Capas de difusión después de 1, 4, 15 y 28 horas
APLICACIONES INDUSTRIALES
a. Endurecimiento del acero por cementación gaseosa
b. Difusión de impurezas en obleas de silicio.
cc.
Otras aplicaciones: Soldadura por difusión y sinterizado
en metalurgia de polvos

Más contenido relacionado

La actualidad más candente

Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de caloralvaro gómez
 
Defectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinosDefectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinosJuan Carlos Corpi
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASEdisson Paguatian
 
Ejercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-CarbonoEjercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-CarbonoRoy Roger Zamudio Orbeso
 
Equilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporEquilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporArturo Caballero
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calorALEXITTOOh
 
Endurecimiento por deformación y recocido
Endurecimiento por deformación y recocidoEndurecimiento por deformación y recocido
Endurecimiento por deformación y recocidoLEONEL Aguilar Chavez
 
Solucionario materiales de ingeniería
Solucionario materiales de ingenieríaSolucionario materiales de ingeniería
Solucionario materiales de ingenieríaLuis Vaque Vargas
 
Evaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónEvaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónYohn Barrera
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gasesdaszemog
 
Solidificación y defectos
Solidificación y defectosSolidificación y defectos
Solidificación y defectosIzbeth Hernandez
 
Eg021 conducción ejercicio
Eg021 conducción ejercicioEg021 conducción ejercicio
Eg021 conducción ejerciciodalonso29
 
Conducción Termodinámica
Conducción TermodinámicaConducción Termodinámica
Conducción TermodinámicaDash920820
 
Reaccion Peritectica - Ciencia de los Materiales
Reaccion Peritectica - Ciencia de los MaterialesReaccion Peritectica - Ciencia de los Materiales
Reaccion Peritectica - Ciencia de los MaterialesDavid Alejandro Mora
 

La actualidad más candente (20)

Ejercicios resultos transporte de calor
Ejercicios resultos transporte de calorEjercicios resultos transporte de calor
Ejercicios resultos transporte de calor
 
Defectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinosDefectos o imperfecciones en los sistemas cristalinos
Defectos o imperfecciones en los sistemas cristalinos
 
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPASTRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
TRANSFERENCIA DE CALOR POR CONDUCCIÓN-CONDUCCIÓN LINEAL EN MULTIPLES CAPAS
 
Metalurgia de polvos
Metalurgia de polvosMetalurgia de polvos
Metalurgia de polvos
 
Ejercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-CarbonoEjercicios Resueltos Sistema Hierro-Carbono
Ejercicios Resueltos Sistema Hierro-Carbono
 
Equilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-VaporEquilibrio de Fases: Líquido-Vapor
Equilibrio de Fases: Líquido-Vapor
 
Ejercicios tema 3 2 Estructura Cristalina
Ejercicios tema 3 2 Estructura CristalinaEjercicios tema 3 2 Estructura Cristalina
Ejercicios tema 3 2 Estructura Cristalina
 
metalurgia cristalografia
metalurgia cristalografiametalurgia cristalografia
metalurgia cristalografia
 
5.disoluciones.
5.disoluciones.5.disoluciones.
5.disoluciones.
 
Intercambiadores de calor
Intercambiadores de calorIntercambiadores de calor
Intercambiadores de calor
 
Endurecimiento por deformación y recocido
Endurecimiento por deformación y recocidoEndurecimiento por deformación y recocido
Endurecimiento por deformación y recocido
 
Solucionario materiales de ingeniería
Solucionario materiales de ingenieríaSolucionario materiales de ingeniería
Solucionario materiales de ingeniería
 
Evaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosiónEvaluación de la velocidad de corrosión
Evaluación de la velocidad de corrosión
 
Capacidad calorifica de gases
Capacidad calorifica de gasesCapacidad calorifica de gases
Capacidad calorifica de gases
 
Imperfecciones
ImperfeccionesImperfecciones
Imperfecciones
 
Solidificación y defectos
Solidificación y defectosSolidificación y defectos
Solidificación y defectos
 
Ejercicios tema 3 3
Ejercicios tema 3 3Ejercicios tema 3 3
Ejercicios tema 3 3
 
Eg021 conducción ejercicio
Eg021 conducción ejercicioEg021 conducción ejercicio
Eg021 conducción ejercicio
 
Conducción Termodinámica
Conducción TermodinámicaConducción Termodinámica
Conducción Termodinámica
 
Reaccion Peritectica - Ciencia de los Materiales
Reaccion Peritectica - Ciencia de los MaterialesReaccion Peritectica - Ciencia de los Materiales
Reaccion Peritectica - Ciencia de los Materiales
 

Similar a Capitulo 3. difusión en estado sólido

Similar a Capitulo 3. difusión en estado sólido (20)

Difusion en Solidos
Difusion en SolidosDifusion en Solidos
Difusion en Solidos
 
DIFUCION DE LOS MATERIALES
DIFUCION DE LOS MATERIALES DIFUCION DE LOS MATERIALES
DIFUCION DE LOS MATERIALES
 
TEMA 1.pptx
TEMA 1.pptxTEMA 1.pptx
TEMA 1.pptx
 
Cetch quimica 1a ley de schmidt
Cetch quimica 1a ley de schmidtCetch quimica 1a ley de schmidt
Cetch quimica 1a ley de schmidt
 
cap 4.pdf
cap 4.pdfcap 4.pdf
cap 4.pdf
 
1.4 movimiento de átomos
1.4 movimiento de átomos 1.4 movimiento de átomos
1.4 movimiento de átomos
 
1.4 movimiento de átomos
1.4 movimiento de átomos 1.4 movimiento de átomos
1.4 movimiento de átomos
 
Bla bla 3_1aleycerrados
Bla bla 3_1aleycerradosBla bla 3_1aleycerrados
Bla bla 3_1aleycerrados
 
Bla bla 3_1aleycerrados
Bla bla 3_1aleycerradosBla bla 3_1aleycerrados
Bla bla 3_1aleycerrados
 
GERMAN
GERMANGERMAN
GERMAN
 
Metalurgia fisica ii cont.
Metalurgia fisica ii cont.Metalurgia fisica ii cont.
Metalurgia fisica ii cont.
 
Ctede stefanboltzmanversionfinal
Ctede stefanboltzmanversionfinalCtede stefanboltzmanversionfinal
Ctede stefanboltzmanversionfinal
 
Tema4 difusion
Tema4 difusionTema4 difusion
Tema4 difusion
 
UNI5_mov de atomos-difusión2.pptx
UNI5_mov de atomos-difusión2.pptxUNI5_mov de atomos-difusión2.pptx
UNI5_mov de atomos-difusión2.pptx
 
UNI5_mov de atomos-difusión2.pptx
UNI5_mov de atomos-difusión2.pptxUNI5_mov de atomos-difusión2.pptx
UNI5_mov de atomos-difusión2.pptx
 
Semana4,5 Ondas
Semana4,5 OndasSemana4,5 Ondas
Semana4,5 Ondas
 
tema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambientetema de radiacion que se utilizara para mejorare el medio ambiente
tema de radiacion que se utilizara para mejorare el medio ambiente
 
TransmisiÓN Del Calor 2006
TransmisiÓN Del Calor 2006TransmisiÓN Del Calor 2006
TransmisiÓN Del Calor 2006
 
6fisicasiglo xx
6fisicasiglo xx6fisicasiglo xx
6fisicasiglo xx
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
 

Más de raul cabrera f

Plan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiPlan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiraul cabrera f
 
Capitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesCapitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesraul cabrera f
 
Capitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesCapitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesraul cabrera f
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímerosraul cabrera f
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestosraul cabrera f
 
Capitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosCapitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosraul cabrera f
 
Capitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasCapitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasraul cabrera f
 
Capitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosCapitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosraul cabrera f
 
Capitulo 1. aleaciones hierro carbono (mat ii)
Capitulo 1. aleaciones hierro carbono (mat ii)Capitulo 1. aleaciones hierro carbono (mat ii)
Capitulo 1. aleaciones hierro carbono (mat ii)raul cabrera f
 
Plan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiPlan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiraul cabrera f
 
Capitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesCapitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesraul cabrera f
 
Capitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesCapitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesraul cabrera f
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímerosraul cabrera f
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestosraul cabrera f
 
Capitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosCapitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosraul cabrera f
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímerosraul cabrera f
 
Capitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasCapitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasraul cabrera f
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestosraul cabrera f
 

Más de raul cabrera f (20)

Plan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiPlan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales ii
 
Capitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesCapitulo 6. caracterización de materiales
Capitulo 6. caracterización de materiales
 
Capitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesCapitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materiales
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímeros
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestos
 
Capitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosCapitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicos
 
Capitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasCapitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosas
 
Capitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicosCapitulo 2. tratamientos tèrmicos
Capitulo 2. tratamientos tèrmicos
 
Capitulo 1. aleaciones hierro carbono (mat ii)
Capitulo 1. aleaciones hierro carbono (mat ii)Capitulo 1. aleaciones hierro carbono (mat ii)
Capitulo 1. aleaciones hierro carbono (mat ii)
 
Capitulo 4. madera
Capitulo 4. maderaCapitulo 4. madera
Capitulo 4. madera
 
Plan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales iiPlan analítico de ingenieria de materiales ii
Plan analítico de ingenieria de materiales ii
 
Capitulo 6. caracterización de materiales
Capitulo 6. caracterización de materialesCapitulo 6. caracterización de materiales
Capitulo 6. caracterización de materiales
 
Capitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materialesCapitulo 5. deterioro de los materiales
Capitulo 5. deterioro de los materiales
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímeros
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestos
 
Capitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosCapitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicos
 
Capitulo 4. madera
Capitulo 4. maderaCapitulo 4. madera
Capitulo 4. madera
 
Capitulo 4. materiales polímeros
Capitulo 4. materiales polímerosCapitulo 4. materiales polímeros
Capitulo 4. materiales polímeros
 
Capitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasCapitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosas
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestos
 

Capitulo 3. difusión en estado sólido

  • 1. CAPITULO 3. DIFUSION DE METALES Difusión. Mecanismo por el cual la materia es transportada a través de la materia. Simplemente movimiento de átomos. En gases: rápida (gases y olores) En líquidos: más lenta (tinta en agua) En sólidos: las vibraciones térmicas permiten el movimiento En sólidos la difusión permite las reacciones en estado sólido: precipitación de una segunda fase(TT), crecimiento de nuevos granos en la recristalización de metales trabajados en frío, manufactura de cerámicos y cambios alotrópicos.
  • 2. Los mecanismos de difusión pueden ser: Mecanismos de vacancias o sustitucional. Los átomos se mueven en la red cristalina desde una posición a otra, si hay suficiente energía de activación (vibración térmica y vacancias)
  • 3. Mecanismo intersticial. Los átomos se trasladan de un intersticio a otro, sin desplazar permanentemente a ninguno de los átomos de la matriz de la red cristalina (el tamaño de los átomos que se difunden debe ser relativamente pequeño comparado con el de los átomos de la matriz)
  • 4. Energía de activación para la difusión Los átomos se mueven de manera ordenada, tendiendo a eliminar las diferencias de concentración y producir una composición homogenea en el material. El átomo esta originalmente en un sitio de baja energía, relativamente estable. Para desplazarse a otro lugar, el átomo de atravesar una barrera de energía potencial que requiere una energía de activación Q. El calor proporciona al átomo la energía para vencer esta barrera. La energía de activación es menor en la difusión intersticial que en la difusión por vacantes (o sustitucional).
  • 5. Difusión en estado estacionario Cuando con el tiempo no existen cambios en la concentración de átomos en estos planos.
  • 6. La primera ley de Fick determina el flujo neto de átomos J. Cuando se incrementa la temperatura de un material, el coeficiente de difusión y el flujo neto de átomos se incrementan.
  • 7. El coeficiente de difusión D depende: a. Tipo de mecanismo de difusión (Intersticial o sustitucional) b. Temperatura c. Estructura cristalina del disolvente (factor de empaquetamiento). d. Tipo de imperfecciones en la red cristalina (bordes de grano y vacantes) e. Concentración de la especie que se difunde.
  • 8. La siguiente tabla presenta la relación de algunas energías de activación para la autodifusión en metales puros.
  • 9. Cs = Concentración superficial del elemento que se difunde Co = Concentración inicial en el sólido Cx = Concentración del elemento a una distancia x de la superficie en un tiempo t x = distancia desde la superficie D = Difusividad del elemento que se difunde t = Tiempo
  • 10. La segunda ley de Fick, describe la difusión dinámica o no estable de los átomos . Permite calcular la concentración de muestras cercanas a la superficie del material como una función del tiempo y la distancia, siempre y cuando el coeficiente de difusión D permanezca constante y las concentraciones de átomos difundidos en la superficie Cs y Co permanezca sin cambios.
  • 11. x erf x x erf x x erf x x erf x 0 0 0,40 0,4284 0,85 0,7707 1,6 0,9763 0,025 0,0282 0,45 0,4755 0,90 0,7970 1,7 0,9838 0,05 0,0564 0,50 0,5205 0,95 0,8209 1,8 0,9891 0,10 0,1125 0,55 0,5633 1,0 0,8427 1,9 0,9928 0,15 0,1680 0,60 0,6039 1,1 0,8802 2,0 0,9953 0,20 0,2227 0,65 0,6420 1,2 0,9103 2,2 0,9981 0,25 0,2763 0,70 0,6778 1,3 0,9340 2,4 0,9993 0,30 0,3286 0,75 0,7112 1,4 0,9523 2,6 0,9998 0,35 0,3794 0,80 0,7421 1,5 0,9661 2,8 0,9999
  • 12. Capas de difusión después de 1, 4, 15 y 28 horas
  • 13. APLICACIONES INDUSTRIALES a. Endurecimiento del acero por cementación gaseosa b. Difusión de impurezas en obleas de silicio. cc. Otras aplicaciones: Soldadura por difusión y sinterizado en metalurgia de polvos