SlideShare una empresa de Scribd logo
1 de 12
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 1
Unit-IV: VECTOR DIFFERENTIATION
Sr. No. Name of the Topic Page No.
1 Scalar and Vector Point Function 2
2 Vector Differential Operator Del 3
3 Gradient of a Scalar Function 3
4 Normal and Directional Derivative 3
5 Divergence of a vector function 6
6 Curl 8
7 Reference Book 12
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 2
VECTOR DIFFERENTIATION
 Introduction:
If vector r is a function of a scalar variable t, then we write
𝑟⃗ = 𝑟⃗(𝑡)
If a particle is moving along a curved path then the position vector 𝑟⃗ of the
particle is a function of 𝑡. If the component of 𝑓(𝑡) along 𝑥 − 𝑎𝑥𝑖𝑠,
𝑦 − 𝑎𝑥𝑖𝑠, 𝑧 − 𝑎𝑥𝑖𝑠 are𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡) respectively.
Then,
𝑓(𝑡)⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡) 𝑗̂ + 𝑓3(𝑡) 𝑘̂
1.1 Scalar and Vector Point Function :
Point function: A variable quantity whose value at any point in a region of
space depends upon the position of the point, is called a point function.
There are two types of point functions.
1) Scalar point function:
If to each point 𝑃(𝑥, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a
unique scalar 𝑓(𝑃) , then 𝑓 is called a scalar point function.
For example:
The temperature distribution in a heated body, density of a body and
potential due to gravity are the examples of a scalar point function.
2) Vector point function:
If to each point 𝑃(𝑥, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a
unique vector 𝑓(𝑃) , then 𝑓 is called a vector point function.
For example:
The velocities of a moving fluid, gravitational force are the examples
of vector point function.
2.1 Vector Differential Operator Del 𝒊. 𝒆. 𝛁
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 3
The vector differential operator Del is denoted by 𝛁. It is defined as
𝛁 = 𝒊̂
𝝏
𝝏𝒙
+ 𝒋̂
𝝏
𝝏𝒚
+ 𝒌̂
𝝏
𝝏𝒛
Note: 𝛁 is read Del or nebla.
3.1 Gradient of a Scalar Function:
If ∅(𝑥, 𝑦, 𝑧) be a scalar function then 𝑖̂
𝜕∅
𝜕𝑥
+ 𝑗̂
𝜕∅
𝜕𝑦
+ 𝑘̂ 𝜕∅
𝜕𝑧
is called the gradient
of the scalar function ∅.
And is denoted by grad ∅.
Thus, grad ∅ = 𝒊̂
𝝏∅
𝝏𝒙
+ 𝒋̂
𝝏∅
𝝏𝒚
+ 𝒌̂ 𝝏∅
𝝏𝒛
grad ∅ = (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) ∅(𝑥, 𝑦, 𝑧)
grad ∅ = 𝛁 ∅
4.1 Normal and Directional Derivative:
1) Normal:
If ∅(𝑥, 𝑦, 𝑧) = 𝑐 represents a family of surfaces for different values of
the constant 𝑐. On differentiating ∅, we get 𝑑∅ = 0
But 𝑑∅ = ∇ ∅ . 𝑑𝑟⃗
So ∇∅. 𝑑𝑟 = 0
The scalar product of two vectors ∇∅ and 𝑑𝑟⃗ being zero, ∇ ∅ and 𝑑𝑟⃗
are perpendicular to each other. 𝑑𝑟⃗ is in the direction of tangent to the
giving surface.
Thus ∇∅ is a vector normal to the surface ∅(𝑥, 𝑦, 𝑧) = 𝑐.
2) Directional derivative:
The component of ∇∅ in the direction of a vector 𝑑⃗ is equal to ∇∅. 𝑑⃗
and is called the directional derivative of ∅ in the direction of 𝑑⃗.
𝜕∅
𝜕𝑟
= lim
𝛿𝑟→0
𝛿∅
𝛿𝑟
Where, 𝛿𝑟 = 𝑃𝑄
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 4
𝜕∅
𝜕𝑟
is called the directional derivative of ∅ at 𝑃 in the direction of 𝑃𝑄.
4.2 Examples:
Example 1: If ∅ = 3𝑥2
𝑦 − 𝑦3
𝑧2
; find grad ∅ at the point (1,-2, 1).
Solution:
grad ∅ = ∇∅
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) (3𝑥2
𝑦 − 𝑦3
𝑧2
)
= 𝑖̂
𝜕
𝜕𝑥
(3𝑥2
𝑦 − 𝑦3
𝑧2) + 𝑗̂
𝜕
𝜕𝑦
(3𝑥2
𝑦 − 𝑦3
𝑧2) + 𝑘̂ 𝜕
𝜕𝑧
(3𝑥2
𝑦 − 𝑦3
𝑧2
)
= 𝑖̂(6𝑥𝑦) + 𝑗̂(3𝑥2
− 3𝑦2
𝑧2) + 𝑘̂(−2𝑦3
𝑧)
grad ∅ at (1, −2,1)
= 𝑖̂(6)(1)(−2) + 𝑗̂[(3)(1) − 3(4)(1)] + 𝑘̂(−2)(−8)(−1)
= −12𝑖̂ − 9𝑗̂ − 16𝑘̂
Example 2: Find the directional derivative of 𝑥2
𝑦2
𝑧2
at the point (1, −1,1)
in the direction of the tangent to the curve
𝑥 = 𝑒 𝑡
, 𝑦 = sin 2𝑡 + 1, 𝑧 = 1 − 𝑐𝑜𝑠𝑡 𝑎𝑡 𝑡 = 0.
Solution: Let ∅ = 𝑥2
𝑦2
𝑧2
Direction Derivative of ∅ = ∇∅
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) (𝑥2
𝑦2
𝑧2)
∇∅ = 2𝑥𝑦2
𝑧2
𝑖̂ + 2𝑦𝑥2
𝑧2
𝑗̂ + 2𝑧𝑥2
𝑦2
𝑘̂
Directional Derivative of ∅ at (1,1,-1)
= 2(1)(1)2
(−1)2
𝑖̂ + 2(1)(1)2
(−1)2
𝑗̂ + 2(−1)(1)2(1)2
𝑘̂
= 2𝑖̂ + 2𝑗̂ − 2𝑘̂ _________ (1)
𝑟⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ = 𝑒 𝑡
𝑖̂ + (𝑠𝑖𝑛2𝑡 + 1)𝑗̂ + (1 − 𝑐𝑜𝑠𝑡)𝑘̂
𝑇⃗⃗ =
𝑑𝑟⃗
𝑑𝑡
= 𝑒 𝑡
𝑖̂ + 2 𝑐𝑜𝑠2𝑡 𝑗̂ + 𝑠𝑖𝑛𝑡 𝑘̂
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 5
Tangent vector,
Tangent (𝑎𝑡 𝑡 = 0) = 𝑒0
𝑖̂ + 2 (cos 0)𝑗̂ + (𝑠𝑖𝑛0)𝑘̂
= 𝑖̂ + 2𝑗̂ __________ (2)
Required directional derivative along tangent = (2 𝑖̂ + 2𝑗̂ − 2𝑘̂)
(𝑖̂+2𝑗̂)
√1+4
[𝑓𝑟𝑜𝑚 (1)𝑎𝑛𝑑 (2)]
=
2+4+0
√5
=
6
√5
_______ Ans.
Example 3: Verify ∇̅ × [𝑓(𝑟)𝑟⃗] = 0
Solution:
∇̅ × [𝑓(𝑟)𝑟⃗] = [𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
] × [𝑓(𝑟)𝑟⃗]
= [𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
] × 𝑓(𝑟)(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂)
= [𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
] × [𝑓(𝑟)𝑥𝑖̂ + 𝑓(𝑟)𝑦𝑗̂ + 𝑓(𝑟)𝑧𝑘̂]
= |
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝑓(𝑟)𝑥 𝑓(𝑟)𝑦 𝑓(𝑟)𝑧
|
= [𝑧
𝜕𝑓(𝑟)
𝜕𝑦
− 𝑦
𝜕
𝜕𝑧
𝑓(𝑟)] 𝑖̂ − [𝑧
𝜕
𝜕𝑥
𝑓(𝑟) − 𝑥
𝜕
𝜕𝑧
𝑓(𝑟)] 𝑗̂ + [𝑦
𝜕
𝜕𝑥
𝑓(𝑟) − 𝑥
𝜕
𝜕𝑦
𝑓(𝑟)] 𝑘̂
= [𝑧
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑦
− 𝑦
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑧
] 𝑖̂ − [𝑧
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑥
− 𝑥
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑧
] 𝑗̂ + [𝑦
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑥
−
𝑥
𝑑
𝑑𝑟
𝑓(𝑟)
𝜕𝑟
𝜕𝑦
] 𝑘̂
=
𝑓′(𝑟)
𝑟
[(𝑦𝑧 − 𝑦𝑧)𝑖̂ − (𝑥𝑧 − 𝑥𝑧)𝑗̂ + (𝑥𝑦 − 𝑥𝑦)𝑘̂] = 0 ____ Proved.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 6
4.3 Exercise:
1) Find a unit vector normal to the surface 𝑥2
+ 3𝑦2
+ 2𝑧2
=
6 𝑎𝑡 𝑃(2,0,1).
2) Find the direction derivative of
1
𝑟
in the direction 𝑟⃗ where
𝑟⃗⃗⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂.
3) If 𝑟⃗⃗⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂, show that
a) grad 𝑟 =
𝑟⃗⃗⃗
𝑟
b) grad (
1
𝑟
) = −
𝑟⃗⃗⃗
𝑟3
4) Find the rate of change of ∅ = 𝑥𝑦𝑧 in the direction normal to the
surface 𝑥2
𝑦 + 𝑦2
𝑥 + 𝑦𝑧2
= 3 at the point (1, 1, 1).
5.1 DIVERGENCE OF A VECTOR FUNCTION:
The divergence of a vector point function 𝐹⃗ is denoted by div 𝐹 and is
defined as below.
Let 𝐹⃗ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 𝑘̂
div 𝐹⃗ = ∇⃗⃗⃗. 𝐹⃗ = (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) (𝑖̂ 𝐹1 + 𝑗̂ 𝐹2 + 𝑘̂ 𝐹3)
=
𝜕𝐹1
𝜕𝑥
+
𝜕𝐹2
𝜕𝑦
+
𝜕𝐹3
𝜕𝑧
It is evident that div 𝐹 is scalar function.
Note: If the fluid is compressible, there can be no gain or loss in the volume
element. Hence
div 𝑽̅ = 𝟎
Here, V is called a Solenoidal vector function. And this equation is called
equation of continuity or conservation of mass.
Example 1: If 𝑢 = 𝑥2
+ 𝑦2
+ 𝑧2
, 𝑎𝑛𝑑 𝑟̅ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂, then find div (𝑢𝑟̅)
in terms of u.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 7
Solution: div (𝑢𝑟̅) = (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) [(𝑥2
+ 𝑦2
+ 𝑧2)(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂)]
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) . [(𝑥2
+ 𝑦2
+ 𝑧2)𝑥𝑖̂ + (𝑥2
+ 𝑦2
+ 𝑧2)𝑦𝑗̂ +
(𝑥2
+ 𝑦2
+ 𝑧2)𝑧𝑘̂]
=
𝜕
𝜕𝑥
(𝑥3
+ 𝑥𝑦2
+ 𝑥𝑧2) +
𝜕
𝜕𝑦
(𝑥2
𝑦 + 𝑦3
+ 𝑦𝑧2) +
𝜕
𝜕𝑧
(𝑥2
𝑧 + 𝑦2
𝑧 + 𝑧3)
= (3𝑥2
+ 𝑦2
+ 𝑧2) + (𝑥2
+ 3𝑦2
+ 𝑧2) + (𝑥2
+ 𝑦2
+ 3𝑧2)
= 5(𝑥2
+ 𝑦2
+ 𝑧2)
= 5𝑢 ___________ Ans.
Example 2: Find the directional derivative of the divergence of 𝑓̅( 𝑥, 𝑦, 𝑧) =
𝑥𝑦𝑖̂ + 𝑥𝑦2
𝑗̂ + 𝑧2
𝑘̂ at the point (2, 1, 2) in the direction of the outer normal to
the sphere 𝑥2
+ 𝑦2
+ 𝑧2
= 9.
Solution: 𝑓̅( 𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑖̂ + 𝑥𝑦2
𝑗̂ + 𝑧2
𝑘̂
Divergence of 𝑓̅( 𝑥, 𝑦, 𝑧) = ∇.̅ 𝑓̅ = (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) . (𝑥𝑦𝑖̂ + 𝑥𝑦2
𝑗̂ + 𝑧2
𝑘̂)
= 𝑦 + 2𝑥𝑦 + 2𝑧
Directional derivative of divergence of (𝑦 + 2𝑥𝑦 + 2𝑧)
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) (𝑦 + 2𝑥𝑦 + 2𝑧)
= 2𝑦𝑖̂ + (1 + 2𝑥)𝑗̂ + 2𝑘̂ __________(i)
Directional derivative at the point (2,1,2) = 2𝑖̂ + 5𝑗̂ + 2𝑘̂
Normal to the sphere = (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) (𝑥2
+ 𝑦2
+ 𝑧2
− 9)
= 2𝑥𝑖̂ + 2𝑦𝑗̂ + 2𝑧𝑘̂
Normal at the point (2,1,2) = 4𝑖̂ + 2𝑗̂ + 4𝑘̂ __________ (ii)
Directional derivative along normal at (2,1,2) = (2𝑖̂ + 5𝑗̂ + 2𝑘̂).
(4𝑖̂+2𝑗̂+4𝑘̂ )
√16+4+16
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 8
[𝐹𝑟𝑜𝑚 (𝑖), (𝑖𝑖)]
=
1
6
(8 + 10 + 8)
=
13
3
____________ Ans.
5.2 Exercise:
1) If 𝑣̅ =
𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂
√𝑥2+𝑦2+𝑧2
, find the value of div 𝑣̅.
2) Find the directional derivative of div (𝑢⃗⃗) at the point (1, 2, 2) in the
direction of the outer normal of the sphere 𝑥2
+ 𝑦2
+ 𝑧2
= 9 for 𝑢⃗⃗ =
𝑥4
𝑖̂ + 𝑦4
𝑗̂ + 𝑧4
𝑘̂.
6.1 CURL:
The curl of a vector point function 𝐹 is defined as below
Curl 𝐹̅ = ∇̅ × 𝐹̅ (𝐹̅ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ +
𝐹3 𝑘̂)
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) × 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 𝑘̂
= |
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝐹1 𝐹2 𝐹3
|
= 𝑖̂ (
𝜕𝐹3
𝜕𝑦
−
𝜕𝐹2
𝜕𝑧
) − 𝑗̂ (
𝜕𝐹3
𝜕𝑥
−
𝜕𝐹1
𝜕𝑧
) + 𝑘̂ (
𝜕𝐹2
𝜕𝑥
−
𝜕𝐹1
𝜕𝑦
)
Curl 𝐹̅ is a vector quantity.
Note: Curl 𝑭̅ = 𝟎, the field 𝐹 is termed as irrotational.
Example 1: Find the divergence and curl of
𝑣̅ = (𝑥𝑦𝑧)𝑖̂ + (3𝑥2
𝑦)𝑗̂ + (𝑥𝑧2
− 𝑦2
𝑧)𝑘̂ 𝑎𝑡 (2, −1,1)
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 9
Solution: Here, we have
𝑣̅ = (𝑥𝑦𝑧)𝑖̂ + (3𝑥2
𝑦)𝑗̂ + (𝑥𝑧2
− 𝑦2
𝑧)𝑘̂
Div 𝑣̅ = ∇∅
Div 𝑣̅ =
𝜕
𝜕𝑥
(𝑥𝑦𝑧) +
𝜕
𝜕𝑦
(3𝑥2
𝑦) +
𝜕
𝜕𝑧
(𝑥𝑧2
− 𝑦2
𝑧)
= 𝑦𝑧 + 3𝑥2
+ 2𝑥𝑧 − 𝑦2
𝑣̅(2,−1,1) = −1 + 12 + 4 − 1 = 14
Curl 𝑣̅ = |
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝑥𝑦𝑧 3𝑥2
𝑦 𝑥𝑧2
− 𝑦2
𝑧
|
= −2𝑦𝑧𝑖̂ − (𝑧2
− 𝑥𝑦)𝑗̂ + (6𝑥𝑦 − 𝑥𝑧)𝑘̂
= −2𝑦𝑧𝑖̂ + (𝑥𝑦 − 𝑧2)𝑗̂ + (6𝑥𝑦 − 𝑥𝑧)𝑘̂
Curl at (2, -1, 1)
= 2(−1)(1)𝑖̂ + {2(−1) − 1}𝑗̂ + {6(2)(−1) − 2(1)}𝑘̂
= 2𝑖̂ − 3𝑗̂ − 14𝑘̂ __________ Ans.
Example 2: Prove that
(𝑦2
− 𝑧2
+ 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ + (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂ is both
Solenoidal and irrotational.
Solution:
Let 𝐹̅ = (𝑦2
− 𝑧2
+ 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ + (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂
For Solenoidal, we have to prove ∇.̅ 𝐹̅ = 0.
Now,
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 10
∇.̅ 𝐹̅ = [𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
] . [(𝑦2
− 𝑧2
+ 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ +
(3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂]
= −2 + 2𝑥 − 2𝑥 + 2
= 0
Thus, 𝐹̅ is Solenoidal.
For irrotational, we have to prove Curl 𝐹̅ = 0
Now, Curl 𝐹̅ =
|
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
(𝑦2
− 𝑧2
+ 3𝑦𝑧 − 2𝑥) (3𝑥𝑦 + 2𝑥𝑦) (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)
|
= (3𝑧 + 2𝑦 − 2𝑦 + 3𝑧)𝑖̂ − (−2𝑧 + 3𝑦 − 3𝑦 + 2𝑧)𝑗̂ + (3𝑧 + 2𝑦 − 2𝑦 − 3𝑧)𝑘̂
= 0𝑖̂ + 0𝑗̂ + 0𝑘̂
= 0
Thus, 𝐹̅ is irrotational.
Hence, 𝐹̅ is both Solenoidal and irrotational. __________ Proved.
Example 3: Find the scalar potential (velocity potential) function 𝑓 for 𝐴⃗ =
𝑦2
𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2
𝑘̂.
Solution: We have, 𝐴⃗ = 𝑦2
𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2
𝑘̂.
Curl 𝐴⃗ = ∇ × 𝐴⃗
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) × (𝑦2
𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2
𝑘̂).
= |
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝑦2
2𝑥𝑦 −𝑧2
|
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 11
= 𝑖̂(0) − 𝑗̂(0) + 𝑘̂(2𝑦 − 2𝑦)
= 0
Hence, 𝐴⃗ is irrotational.
To find the scalar potential function 𝑓.
𝐴⃗ = ∇ 𝑓
𝑑𝑓 =
𝜕𝑓
𝜕𝑥
𝑑𝑥 +
𝜕𝑓
𝜕𝑦
𝑑𝑦 +
𝜕𝑓
𝜕𝑧
𝑑𝑧
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) . (𝑖̂ 𝑑 𝑥 + 𝑗̂ 𝑑 𝑦 + 𝑘̂ 𝑑𝑧)
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
) 𝑓. 𝑑𝑟⃗
= ∇𝑓. 𝑑𝑟⃗
= 𝐴⃗. 𝑑𝑟⃗ (𝐴 = ∇ 𝑓)
= (𝑦2
𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2
𝑘̂). (𝑖̂ 𝑑 𝑥 + 𝑗̂ 𝑑 𝑦 + 𝑘̂ 𝑑𝑧)
= 𝑦2
𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 − 𝑧2
𝑑𝑧
= 𝑑(𝑥𝑦2) − 𝑧2
𝑑𝑧
𝑓 = ∫ 𝑑(𝑥𝑦2) − ∫ 𝑧2
𝑑𝑧
∴ 𝑓 = 𝑥𝑦2
−
𝑧3
3
+ 𝑐 ________ Ans.
6.2 Exercise:
1) If a vector field is given by 𝐹⃗ = (𝑥2
− 𝑦2
+ 𝑥)𝑖̂ − (2𝑥𝑦 + 𝑦)𝑗̂. Is this
field irrotational? If so, find its scalar potential.
Unit-4 VECTOR DIFFERENTIATION
RAI UNIVERSITY, AHMEDABAD 12
2) Determine the constants a and b such that the curl of vector 𝐴̅ =
(2𝑥𝑦 + 3𝑦𝑧)𝑖̂ + (𝑥2
+ 𝑎𝑥𝑧 − 4𝑧2)𝑗̂ − (3𝑥𝑦 + 𝑏𝑦𝑧)𝑘̂ is zero.
3) A fluid motion is given by𝑣̅ = (𝑦 + 𝑧)𝑖̂ + (𝑧 + 𝑥)𝑗̂ + (𝑥 + 𝑦)𝑘̂. Show
that the motion is irrotational and hence find the velocity potential.
4) Given that vector field 𝑉̅ = (𝑥2
− 𝑦2
+ 2𝑥𝑧)𝑖̂ + (𝑥𝑧 − 𝑥𝑦 + 𝑦𝑧)𝑗̂ +
(𝑧2
+ 𝑥2
)𝑘̂ find curl 𝑉. Show that the vectors given by curl 𝑉 at
𝑃0(1,2, −3) 𝑎𝑛𝑑 𝑃1(2,3,12) are orthogonal.
5) Suppose that 𝑈⃗⃗⃗, 𝑉⃗⃗ and 𝑓 are continuously differentiable fields then
Prove that, div(𝑈⃗⃗⃗ × 𝑉⃗⃗) = 𝑉⃗⃗. 𝑐𝑢𝑟𝑙 𝑈⃗⃗⃗ − 𝑈⃗⃗⃗. 𝑐𝑢𝑟𝑙 𝑉⃗⃗.
7.1 REFERECE BOOKS:
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
S. CHAND
2) Higher Engineering Mathematics
By B.V. RAMANA
Mc Graw Hill Education
3) Higher Engineering Mathematics
By Dr. B.S. GREWAL
KHANNA PUBLISHERS
4) http://elearning.vtu.ac.in/P7/enotes/MAT1/Vector.pdf

Más contenido relacionado

La actualidad más candente

B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionRai University
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spacesEasyStudy3
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace Manikanta satyala
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationAbhishek Choksi
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...Smit Shah
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method Bhavik Vashi
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Jayanshu Gundaniya
 
Gram schmidt orthogonalization | Orthonormal Process
Gram schmidt orthogonalization | Orthonormal Process Gram schmidt orthogonalization | Orthonormal Process
Gram schmidt orthogonalization | Orthonormal Process Isaac Yowetu
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiKundan Kumar
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its ApplicationChandra Kundu
 

La actualidad más candente (20)

B.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma functionB.tech ii unit-2 material beta gamma function
B.tech ii unit-2 material beta gamma function
 
Rolles theorem
Rolles theoremRolles theorem
Rolles theorem
 
Inner product spaces
Inner product spacesInner product spaces
Inner product spaces
 
Roll's theorem
Roll's theoremRoll's theorem
Roll's theorem
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Liner algebra-vector space-1 introduction to vector space and subspace
Liner algebra-vector space-1   introduction to vector space and subspace Liner algebra-vector space-1   introduction to vector space and subspace
Liner algebra-vector space-1 introduction to vector space and subspace
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Maxwell's equations
Maxwell's equationsMaxwell's equations
Maxwell's equations
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
 
Analytic function
Analytic functionAnalytic function
Analytic function
 
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...ORTHOGONAL, ORTHONORMAL  VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
ORTHOGONAL, ORTHONORMAL VECTOR, GRAM SCHMIDT PROCESS, ORTHOGONALLY DIAGONALI...
 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
 
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
Engineering Mathematics - Total derivatives, chain rule and derivative of imp...
 
Gram schmidt orthogonalization | Orthonormal Process
Gram schmidt orthogonalization | Orthonormal Process Gram schmidt orthogonalization | Orthonormal Process
Gram schmidt orthogonalization | Orthonormal Process
 
engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-ii
 
Laplace Transformation & Its Application
Laplace Transformation & Its ApplicationLaplace Transformation & Its Application
Laplace Transformation & Its Application
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Green Theorem
Green TheoremGreen Theorem
Green Theorem
 

Destacado

BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IRai University
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Rai University
 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryRai University
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-IIIKundan Kumar
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSRai University
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSRai University
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSRai University
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSRai University
 
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingBCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingRai University
 
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsMCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsRai University
 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsRai University
 
Diploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIDiploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIRai University
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 

Destacado (20)

Unit 1 Introduction
Unit 1 IntroductionUnit 1 Introduction
Unit 1 Introduction
 
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-IBSC_Computer Science_Discrete Mathematics_Unit-I
BSC_Computer Science_Discrete Mathematics_Unit-I
 
Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4Btech_II_ engineering mathematics_unit4
Btech_II_ engineering mathematics_unit4
 
B.Tech-II_Unit-V
B.Tech-II_Unit-VB.Tech-II_Unit-V
B.Tech-II_Unit-V
 
B.Tech-II_Unit-IV
B.Tech-II_Unit-IVB.Tech-II_Unit-IV
B.Tech-II_Unit-IV
 
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theoryBCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
 
merged_document
merged_documentmerged_document
merged_document
 
B.Tech-II_Unit-III
B.Tech-II_Unit-IIIB.Tech-II_Unit-III
B.Tech-II_Unit-III
 
B.Tech-II_Unit-I
B.Tech-II_Unit-IB.Tech-II_Unit-I
B.Tech-II_Unit-I
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
 
Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2Btech_II_ engineering mathematics_unit2
Btech_II_ engineering mathematics_unit2
 
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
 
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and orderingBCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
 
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical MethodsMCA_UNIT-4_Computer Oriented Numerical Statistical Methods
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
 
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical MethodsMCA_UNIT-2_Computer Oriented Numerical Statistical Methods
MCA_UNIT-2_Computer Oriented Numerical Statistical Methods
 
Diploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-IIIDiploma_Basic_Mathematics_Unit-III
Diploma_Basic_Mathematics_Unit-III
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 

Similar a B.tech ii unit-4 material vector differentiation

Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
 
Application of Integration
Application of IntegrationApplication of Integration
Application of IntegrationRaymundo Raymund
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiationSanthanam Krishnan
 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxMeryAnnMAlday
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Rai University
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Demetrio Ccesa Rayme
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minimaSanthanam Krishnan
 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisJAGARANCHAKMA2
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
 

Similar a B.tech ii unit-4 material vector differentiation (20)

Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
 
Application of Integration
Application of IntegrationApplication of Integration
Application of Integration
 
Differential Calculus- differentiation
Differential Calculus- differentiationDifferential Calculus- differentiation
Differential Calculus- differentiation
 
Basic calculus (ii) recap
Basic calculus (ii) recapBasic calculus (ii) recap
Basic calculus (ii) recap
 
graphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptxgraphs of quadratic function grade 9.pptx
graphs of quadratic function grade 9.pptx
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Z transforms
Z transformsZ transforms
Z transforms
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3Btech_II_ engineering mathematics_unit3
Btech_II_ engineering mathematics_unit3
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Differential calculus maxima minima
Differential calculus  maxima minimaDifferential calculus  maxima minima
Differential calculus maxima minima
 
GraphTransformations.pptx
GraphTransformations.pptxGraphTransformations.pptx
GraphTransformations.pptx
 
Elasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysisElasticity, Plasticity and elastic plastic analysis
Elasticity, Plasticity and elastic plastic analysis
 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
 
A05330107
A05330107A05330107
A05330107
 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
 

Más de Rai University

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University Rai University
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,Rai University
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02Rai University
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditureRai University
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public financeRai University
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introductionRai University
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflationRai University
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economicsRai University
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructureRai University
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competitionRai University
 

Más de Rai University (20)

Brochure Rai University
Brochure Rai University Brochure Rai University
Brochure Rai University
 
Mm unit 4point2
Mm unit 4point2Mm unit 4point2
Mm unit 4point2
 
Mm unit 4point1
Mm unit 4point1Mm unit 4point1
Mm unit 4point1
 
Mm unit 4point3
Mm unit 4point3Mm unit 4point3
Mm unit 4point3
 
Mm unit 3point2
Mm unit 3point2Mm unit 3point2
Mm unit 3point2
 
Mm unit 3point1
Mm unit 3point1Mm unit 3point1
Mm unit 3point1
 
Mm unit 2point2
Mm unit 2point2Mm unit 2point2
Mm unit 2point2
 
Mm unit 2 point 1
Mm unit 2 point 1Mm unit 2 point 1
Mm unit 2 point 1
 
Mm unit 1point3
Mm unit 1point3Mm unit 1point3
Mm unit 1point3
 
Mm unit 1point2
Mm unit 1point2Mm unit 1point2
Mm unit 1point2
 
Mm unit 1point1
Mm unit 1point1Mm unit 1point1
Mm unit 1point1
 
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,Bdft ii, tmt, unit-iii,  dyeing & types of dyeing,
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
 
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02Bsc agri  2 pae  u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
 
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri  2 pae  u-4.3 public expenditureBsc agri  2 pae  u-4.3 public expenditure
Bsc agri 2 pae u-4.3 public expenditure
 
Bsc agri 2 pae u-4.2 public finance
Bsc agri  2 pae  u-4.2 public financeBsc agri  2 pae  u-4.2 public finance
Bsc agri 2 pae u-4.2 public finance
 
Bsc agri 2 pae u-4.1 introduction
Bsc agri  2 pae  u-4.1 introductionBsc agri  2 pae  u-4.1 introduction
Bsc agri 2 pae u-4.1 introduction
 
Bsc agri 2 pae u-3.3 inflation
Bsc agri  2 pae  u-3.3  inflationBsc agri  2 pae  u-3.3  inflation
Bsc agri 2 pae u-3.3 inflation
 
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri  2 pae  u-3.2 introduction to macro economicsBsc agri  2 pae  u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.2 introduction to macro economics
 
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri  2 pae  u-3.1 marketstructureBsc agri  2 pae  u-3.1 marketstructure
Bsc agri 2 pae u-3.1 marketstructure
 
Bsc agri 2 pae u-3 perfect-competition
Bsc agri  2 pae  u-3 perfect-competitionBsc agri  2 pae  u-3 perfect-competition
Bsc agri 2 pae u-3 perfect-competition
 

Último

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 

Último (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 

B.tech ii unit-4 material vector differentiation

  • 1. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 1 Unit-IV: VECTOR DIFFERENTIATION Sr. No. Name of the Topic Page No. 1 Scalar and Vector Point Function 2 2 Vector Differential Operator Del 3 3 Gradient of a Scalar Function 3 4 Normal and Directional Derivative 3 5 Divergence of a vector function 6 6 Curl 8 7 Reference Book 12
  • 2. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 2 VECTOR DIFFERENTIATION  Introduction: If vector r is a function of a scalar variable t, then we write 𝑟⃗ = 𝑟⃗(𝑡) If a particle is moving along a curved path then the position vector 𝑟⃗ of the particle is a function of 𝑡. If the component of 𝑓(𝑡) along 𝑥 − 𝑎𝑥𝑖𝑠, 𝑦 − 𝑎𝑥𝑖𝑠, 𝑧 − 𝑎𝑥𝑖𝑠 are𝑓1(𝑡), 𝑓2(𝑡), 𝑓3(𝑡) respectively. Then, 𝑓(𝑡)⃗⃗⃗⃗⃗⃗⃗⃗⃗ = 𝑓1(𝑡) 𝑖̂ + 𝑓2(𝑡) 𝑗̂ + 𝑓3(𝑡) 𝑘̂ 1.1 Scalar and Vector Point Function : Point function: A variable quantity whose value at any point in a region of space depends upon the position of the point, is called a point function. There are two types of point functions. 1) Scalar point function: If to each point 𝑃(𝑥, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a unique scalar 𝑓(𝑃) , then 𝑓 is called a scalar point function. For example: The temperature distribution in a heated body, density of a body and potential due to gravity are the examples of a scalar point function. 2) Vector point function: If to each point 𝑃(𝑥, 𝑦, 𝑧) of a region 𝑅 in space there corresponds a unique vector 𝑓(𝑃) , then 𝑓 is called a vector point function. For example: The velocities of a moving fluid, gravitational force are the examples of vector point function. 2.1 Vector Differential Operator Del 𝒊. 𝒆. 𝛁
  • 3. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 3 The vector differential operator Del is denoted by 𝛁. It is defined as 𝛁 = 𝒊̂ 𝝏 𝝏𝒙 + 𝒋̂ 𝝏 𝝏𝒚 + 𝒌̂ 𝝏 𝝏𝒛 Note: 𝛁 is read Del or nebla. 3.1 Gradient of a Scalar Function: If ∅(𝑥, 𝑦, 𝑧) be a scalar function then 𝑖̂ 𝜕∅ 𝜕𝑥 + 𝑗̂ 𝜕∅ 𝜕𝑦 + 𝑘̂ 𝜕∅ 𝜕𝑧 is called the gradient of the scalar function ∅. And is denoted by grad ∅. Thus, grad ∅ = 𝒊̂ 𝝏∅ 𝝏𝒙 + 𝒋̂ 𝝏∅ 𝝏𝒚 + 𝒌̂ 𝝏∅ 𝝏𝒛 grad ∅ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) ∅(𝑥, 𝑦, 𝑧) grad ∅ = 𝛁 ∅ 4.1 Normal and Directional Derivative: 1) Normal: If ∅(𝑥, 𝑦, 𝑧) = 𝑐 represents a family of surfaces for different values of the constant 𝑐. On differentiating ∅, we get 𝑑∅ = 0 But 𝑑∅ = ∇ ∅ . 𝑑𝑟⃗ So ∇∅. 𝑑𝑟 = 0 The scalar product of two vectors ∇∅ and 𝑑𝑟⃗ being zero, ∇ ∅ and 𝑑𝑟⃗ are perpendicular to each other. 𝑑𝑟⃗ is in the direction of tangent to the giving surface. Thus ∇∅ is a vector normal to the surface ∅(𝑥, 𝑦, 𝑧) = 𝑐. 2) Directional derivative: The component of ∇∅ in the direction of a vector 𝑑⃗ is equal to ∇∅. 𝑑⃗ and is called the directional derivative of ∅ in the direction of 𝑑⃗. 𝜕∅ 𝜕𝑟 = lim 𝛿𝑟→0 𝛿∅ 𝛿𝑟 Where, 𝛿𝑟 = 𝑃𝑄
  • 4. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 4 𝜕∅ 𝜕𝑟 is called the directional derivative of ∅ at 𝑃 in the direction of 𝑃𝑄. 4.2 Examples: Example 1: If ∅ = 3𝑥2 𝑦 − 𝑦3 𝑧2 ; find grad ∅ at the point (1,-2, 1). Solution: grad ∅ = ∇∅ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) (3𝑥2 𝑦 − 𝑦3 𝑧2 ) = 𝑖̂ 𝜕 𝜕𝑥 (3𝑥2 𝑦 − 𝑦3 𝑧2) + 𝑗̂ 𝜕 𝜕𝑦 (3𝑥2 𝑦 − 𝑦3 𝑧2) + 𝑘̂ 𝜕 𝜕𝑧 (3𝑥2 𝑦 − 𝑦3 𝑧2 ) = 𝑖̂(6𝑥𝑦) + 𝑗̂(3𝑥2 − 3𝑦2 𝑧2) + 𝑘̂(−2𝑦3 𝑧) grad ∅ at (1, −2,1) = 𝑖̂(6)(1)(−2) + 𝑗̂[(3)(1) − 3(4)(1)] + 𝑘̂(−2)(−8)(−1) = −12𝑖̂ − 9𝑗̂ − 16𝑘̂ Example 2: Find the directional derivative of 𝑥2 𝑦2 𝑧2 at the point (1, −1,1) in the direction of the tangent to the curve 𝑥 = 𝑒 𝑡 , 𝑦 = sin 2𝑡 + 1, 𝑧 = 1 − 𝑐𝑜𝑠𝑡 𝑎𝑡 𝑡 = 0. Solution: Let ∅ = 𝑥2 𝑦2 𝑧2 Direction Derivative of ∅ = ∇∅ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) (𝑥2 𝑦2 𝑧2) ∇∅ = 2𝑥𝑦2 𝑧2 𝑖̂ + 2𝑦𝑥2 𝑧2 𝑗̂ + 2𝑧𝑥2 𝑦2 𝑘̂ Directional Derivative of ∅ at (1,1,-1) = 2(1)(1)2 (−1)2 𝑖̂ + 2(1)(1)2 (−1)2 𝑗̂ + 2(−1)(1)2(1)2 𝑘̂ = 2𝑖̂ + 2𝑗̂ − 2𝑘̂ _________ (1) 𝑟⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ = 𝑒 𝑡 𝑖̂ + (𝑠𝑖𝑛2𝑡 + 1)𝑗̂ + (1 − 𝑐𝑜𝑠𝑡)𝑘̂ 𝑇⃗⃗ = 𝑑𝑟⃗ 𝑑𝑡 = 𝑒 𝑡 𝑖̂ + 2 𝑐𝑜𝑠2𝑡 𝑗̂ + 𝑠𝑖𝑛𝑡 𝑘̂
  • 5. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 5 Tangent vector, Tangent (𝑎𝑡 𝑡 = 0) = 𝑒0 𝑖̂ + 2 (cos 0)𝑗̂ + (𝑠𝑖𝑛0)𝑘̂ = 𝑖̂ + 2𝑗̂ __________ (2) Required directional derivative along tangent = (2 𝑖̂ + 2𝑗̂ − 2𝑘̂) (𝑖̂+2𝑗̂) √1+4 [𝑓𝑟𝑜𝑚 (1)𝑎𝑛𝑑 (2)] = 2+4+0 √5 = 6 √5 _______ Ans. Example 3: Verify ∇̅ × [𝑓(𝑟)𝑟⃗] = 0 Solution: ∇̅ × [𝑓(𝑟)𝑟⃗] = [𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ] × [𝑓(𝑟)𝑟⃗] = [𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ] × 𝑓(𝑟)(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂) = [𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ] × [𝑓(𝑟)𝑥𝑖̂ + 𝑓(𝑟)𝑦𝑗̂ + 𝑓(𝑟)𝑧𝑘̂] = | 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝑓(𝑟)𝑥 𝑓(𝑟)𝑦 𝑓(𝑟)𝑧 | = [𝑧 𝜕𝑓(𝑟) 𝜕𝑦 − 𝑦 𝜕 𝜕𝑧 𝑓(𝑟)] 𝑖̂ − [𝑧 𝜕 𝜕𝑥 𝑓(𝑟) − 𝑥 𝜕 𝜕𝑧 𝑓(𝑟)] 𝑗̂ + [𝑦 𝜕 𝜕𝑥 𝑓(𝑟) − 𝑥 𝜕 𝜕𝑦 𝑓(𝑟)] 𝑘̂ = [𝑧 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑦 − 𝑦 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑧 ] 𝑖̂ − [𝑧 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑥 − 𝑥 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑧 ] 𝑗̂ + [𝑦 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑥 − 𝑥 𝑑 𝑑𝑟 𝑓(𝑟) 𝜕𝑟 𝜕𝑦 ] 𝑘̂ = 𝑓′(𝑟) 𝑟 [(𝑦𝑧 − 𝑦𝑧)𝑖̂ − (𝑥𝑧 − 𝑥𝑧)𝑗̂ + (𝑥𝑦 − 𝑥𝑦)𝑘̂] = 0 ____ Proved.
  • 6. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 6 4.3 Exercise: 1) Find a unit vector normal to the surface 𝑥2 + 3𝑦2 + 2𝑧2 = 6 𝑎𝑡 𝑃(2,0,1). 2) Find the direction derivative of 1 𝑟 in the direction 𝑟⃗ where 𝑟⃗⃗⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂. 3) If 𝑟⃗⃗⃗ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂, show that a) grad 𝑟 = 𝑟⃗⃗⃗ 𝑟 b) grad ( 1 𝑟 ) = − 𝑟⃗⃗⃗ 𝑟3 4) Find the rate of change of ∅ = 𝑥𝑦𝑧 in the direction normal to the surface 𝑥2 𝑦 + 𝑦2 𝑥 + 𝑦𝑧2 = 3 at the point (1, 1, 1). 5.1 DIVERGENCE OF A VECTOR FUNCTION: The divergence of a vector point function 𝐹⃗ is denoted by div 𝐹 and is defined as below. Let 𝐹⃗ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 𝑘̂ div 𝐹⃗ = ∇⃗⃗⃗. 𝐹⃗ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) (𝑖̂ 𝐹1 + 𝑗̂ 𝐹2 + 𝑘̂ 𝐹3) = 𝜕𝐹1 𝜕𝑥 + 𝜕𝐹2 𝜕𝑦 + 𝜕𝐹3 𝜕𝑧 It is evident that div 𝐹 is scalar function. Note: If the fluid is compressible, there can be no gain or loss in the volume element. Hence div 𝑽̅ = 𝟎 Here, V is called a Solenoidal vector function. And this equation is called equation of continuity or conservation of mass. Example 1: If 𝑢 = 𝑥2 + 𝑦2 + 𝑧2 , 𝑎𝑛𝑑 𝑟̅ = 𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂, then find div (𝑢𝑟̅) in terms of u.
  • 7. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 7 Solution: div (𝑢𝑟̅) = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) [(𝑥2 + 𝑦2 + 𝑧2)(𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂)] = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) . [(𝑥2 + 𝑦2 + 𝑧2)𝑥𝑖̂ + (𝑥2 + 𝑦2 + 𝑧2)𝑦𝑗̂ + (𝑥2 + 𝑦2 + 𝑧2)𝑧𝑘̂] = 𝜕 𝜕𝑥 (𝑥3 + 𝑥𝑦2 + 𝑥𝑧2) + 𝜕 𝜕𝑦 (𝑥2 𝑦 + 𝑦3 + 𝑦𝑧2) + 𝜕 𝜕𝑧 (𝑥2 𝑧 + 𝑦2 𝑧 + 𝑧3) = (3𝑥2 + 𝑦2 + 𝑧2) + (𝑥2 + 3𝑦2 + 𝑧2) + (𝑥2 + 𝑦2 + 3𝑧2) = 5(𝑥2 + 𝑦2 + 𝑧2) = 5𝑢 ___________ Ans. Example 2: Find the directional derivative of the divergence of 𝑓̅( 𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑖̂ + 𝑥𝑦2 𝑗̂ + 𝑧2 𝑘̂ at the point (2, 1, 2) in the direction of the outer normal to the sphere 𝑥2 + 𝑦2 + 𝑧2 = 9. Solution: 𝑓̅( 𝑥, 𝑦, 𝑧) = 𝑥𝑦𝑖̂ + 𝑥𝑦2 𝑗̂ + 𝑧2 𝑘̂ Divergence of 𝑓̅( 𝑥, 𝑦, 𝑧) = ∇.̅ 𝑓̅ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) . (𝑥𝑦𝑖̂ + 𝑥𝑦2 𝑗̂ + 𝑧2 𝑘̂) = 𝑦 + 2𝑥𝑦 + 2𝑧 Directional derivative of divergence of (𝑦 + 2𝑥𝑦 + 2𝑧) = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) (𝑦 + 2𝑥𝑦 + 2𝑧) = 2𝑦𝑖̂ + (1 + 2𝑥)𝑗̂ + 2𝑘̂ __________(i) Directional derivative at the point (2,1,2) = 2𝑖̂ + 5𝑗̂ + 2𝑘̂ Normal to the sphere = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) (𝑥2 + 𝑦2 + 𝑧2 − 9) = 2𝑥𝑖̂ + 2𝑦𝑗̂ + 2𝑧𝑘̂ Normal at the point (2,1,2) = 4𝑖̂ + 2𝑗̂ + 4𝑘̂ __________ (ii) Directional derivative along normal at (2,1,2) = (2𝑖̂ + 5𝑗̂ + 2𝑘̂). (4𝑖̂+2𝑗̂+4𝑘̂ ) √16+4+16
  • 8. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 8 [𝐹𝑟𝑜𝑚 (𝑖), (𝑖𝑖)] = 1 6 (8 + 10 + 8) = 13 3 ____________ Ans. 5.2 Exercise: 1) If 𝑣̅ = 𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂ √𝑥2+𝑦2+𝑧2 , find the value of div 𝑣̅. 2) Find the directional derivative of div (𝑢⃗⃗) at the point (1, 2, 2) in the direction of the outer normal of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 9 for 𝑢⃗⃗ = 𝑥4 𝑖̂ + 𝑦4 𝑗̂ + 𝑧4 𝑘̂. 6.1 CURL: The curl of a vector point function 𝐹 is defined as below Curl 𝐹̅ = ∇̅ × 𝐹̅ (𝐹̅ = 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 𝑘̂) = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) × 𝐹1 𝑖̂ + 𝐹2 𝑗̂ + 𝐹3 𝑘̂ = | 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝐹1 𝐹2 𝐹3 | = 𝑖̂ ( 𝜕𝐹3 𝜕𝑦 − 𝜕𝐹2 𝜕𝑧 ) − 𝑗̂ ( 𝜕𝐹3 𝜕𝑥 − 𝜕𝐹1 𝜕𝑧 ) + 𝑘̂ ( 𝜕𝐹2 𝜕𝑥 − 𝜕𝐹1 𝜕𝑦 ) Curl 𝐹̅ is a vector quantity. Note: Curl 𝑭̅ = 𝟎, the field 𝐹 is termed as irrotational. Example 1: Find the divergence and curl of 𝑣̅ = (𝑥𝑦𝑧)𝑖̂ + (3𝑥2 𝑦)𝑗̂ + (𝑥𝑧2 − 𝑦2 𝑧)𝑘̂ 𝑎𝑡 (2, −1,1)
  • 9. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 9 Solution: Here, we have 𝑣̅ = (𝑥𝑦𝑧)𝑖̂ + (3𝑥2 𝑦)𝑗̂ + (𝑥𝑧2 − 𝑦2 𝑧)𝑘̂ Div 𝑣̅ = ∇∅ Div 𝑣̅ = 𝜕 𝜕𝑥 (𝑥𝑦𝑧) + 𝜕 𝜕𝑦 (3𝑥2 𝑦) + 𝜕 𝜕𝑧 (𝑥𝑧2 − 𝑦2 𝑧) = 𝑦𝑧 + 3𝑥2 + 2𝑥𝑧 − 𝑦2 𝑣̅(2,−1,1) = −1 + 12 + 4 − 1 = 14 Curl 𝑣̅ = | 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝑥𝑦𝑧 3𝑥2 𝑦 𝑥𝑧2 − 𝑦2 𝑧 | = −2𝑦𝑧𝑖̂ − (𝑧2 − 𝑥𝑦)𝑗̂ + (6𝑥𝑦 − 𝑥𝑧)𝑘̂ = −2𝑦𝑧𝑖̂ + (𝑥𝑦 − 𝑧2)𝑗̂ + (6𝑥𝑦 − 𝑥𝑧)𝑘̂ Curl at (2, -1, 1) = 2(−1)(1)𝑖̂ + {2(−1) − 1}𝑗̂ + {6(2)(−1) − 2(1)}𝑘̂ = 2𝑖̂ − 3𝑗̂ − 14𝑘̂ __________ Ans. Example 2: Prove that (𝑦2 − 𝑧2 + 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ + (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂ is both Solenoidal and irrotational. Solution: Let 𝐹̅ = (𝑦2 − 𝑧2 + 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ + (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂ For Solenoidal, we have to prove ∇.̅ 𝐹̅ = 0. Now,
  • 10. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 10 ∇.̅ 𝐹̅ = [𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ] . [(𝑦2 − 𝑧2 + 3𝑦𝑧 − 2𝑥)𝑖̂ + (3𝑥𝑦 + 2𝑥𝑦)𝑗̂ + (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧)𝑘̂] = −2 + 2𝑥 − 2𝑥 + 2 = 0 Thus, 𝐹̅ is Solenoidal. For irrotational, we have to prove Curl 𝐹̅ = 0 Now, Curl 𝐹̅ = | 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 (𝑦2 − 𝑧2 + 3𝑦𝑧 − 2𝑥) (3𝑥𝑦 + 2𝑥𝑦) (3𝑥𝑦 − 2𝑥𝑧 + 2𝑧) | = (3𝑧 + 2𝑦 − 2𝑦 + 3𝑧)𝑖̂ − (−2𝑧 + 3𝑦 − 3𝑦 + 2𝑧)𝑗̂ + (3𝑧 + 2𝑦 − 2𝑦 − 3𝑧)𝑘̂ = 0𝑖̂ + 0𝑗̂ + 0𝑘̂ = 0 Thus, 𝐹̅ is irrotational. Hence, 𝐹̅ is both Solenoidal and irrotational. __________ Proved. Example 3: Find the scalar potential (velocity potential) function 𝑓 for 𝐴⃗ = 𝑦2 𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2 𝑘̂. Solution: We have, 𝐴⃗ = 𝑦2 𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2 𝑘̂. Curl 𝐴⃗ = ∇ × 𝐴⃗ = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) × (𝑦2 𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2 𝑘̂). = | 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝑦2 2𝑥𝑦 −𝑧2 |
  • 11. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 11 = 𝑖̂(0) − 𝑗̂(0) + 𝑘̂(2𝑦 − 2𝑦) = 0 Hence, 𝐴⃗ is irrotational. To find the scalar potential function 𝑓. 𝐴⃗ = ∇ 𝑓 𝑑𝑓 = 𝜕𝑓 𝜕𝑥 𝑑𝑥 + 𝜕𝑓 𝜕𝑦 𝑑𝑦 + 𝜕𝑓 𝜕𝑧 𝑑𝑧 = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) . (𝑖̂ 𝑑 𝑥 + 𝑗̂ 𝑑 𝑦 + 𝑘̂ 𝑑𝑧) = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ) 𝑓. 𝑑𝑟⃗ = ∇𝑓. 𝑑𝑟⃗ = 𝐴⃗. 𝑑𝑟⃗ (𝐴 = ∇ 𝑓) = (𝑦2 𝑖̂ + 2𝑥𝑦𝑗̂ − 𝑧2 𝑘̂). (𝑖̂ 𝑑 𝑥 + 𝑗̂ 𝑑 𝑦 + 𝑘̂ 𝑑𝑧) = 𝑦2 𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 − 𝑧2 𝑑𝑧 = 𝑑(𝑥𝑦2) − 𝑧2 𝑑𝑧 𝑓 = ∫ 𝑑(𝑥𝑦2) − ∫ 𝑧2 𝑑𝑧 ∴ 𝑓 = 𝑥𝑦2 − 𝑧3 3 + 𝑐 ________ Ans. 6.2 Exercise: 1) If a vector field is given by 𝐹⃗ = (𝑥2 − 𝑦2 + 𝑥)𝑖̂ − (2𝑥𝑦 + 𝑦)𝑗̂. Is this field irrotational? If so, find its scalar potential.
  • 12. Unit-4 VECTOR DIFFERENTIATION RAI UNIVERSITY, AHMEDABAD 12 2) Determine the constants a and b such that the curl of vector 𝐴̅ = (2𝑥𝑦 + 3𝑦𝑧)𝑖̂ + (𝑥2 + 𝑎𝑥𝑧 − 4𝑧2)𝑗̂ − (3𝑥𝑦 + 𝑏𝑦𝑧)𝑘̂ is zero. 3) A fluid motion is given by𝑣̅ = (𝑦 + 𝑧)𝑖̂ + (𝑧 + 𝑥)𝑗̂ + (𝑥 + 𝑦)𝑘̂. Show that the motion is irrotational and hence find the velocity potential. 4) Given that vector field 𝑉̅ = (𝑥2 − 𝑦2 + 2𝑥𝑧)𝑖̂ + (𝑥𝑧 − 𝑥𝑦 + 𝑦𝑧)𝑗̂ + (𝑧2 + 𝑥2 )𝑘̂ find curl 𝑉. Show that the vectors given by curl 𝑉 at 𝑃0(1,2, −3) 𝑎𝑛𝑑 𝑃1(2,3,12) are orthogonal. 5) Suppose that 𝑈⃗⃗⃗, 𝑉⃗⃗ and 𝑓 are continuously differentiable fields then Prove that, div(𝑈⃗⃗⃗ × 𝑉⃗⃗) = 𝑉⃗⃗. 𝑐𝑢𝑟𝑙 𝑈⃗⃗⃗ − 𝑈⃗⃗⃗. 𝑐𝑢𝑟𝑙 𝑉⃗⃗. 7.1 REFERECE BOOKS: 1) Introduction to Engineering Mathematics By H. K. DASS. & Dr. RAMA VERMA S. CHAND 2) Higher Engineering Mathematics By B.V. RAMANA Mc Graw Hill Education 3) Higher Engineering Mathematics By Dr. B.S. GREWAL KHANNA PUBLISHERS 4) http://elearning.vtu.ac.in/P7/enotes/MAT1/Vector.pdf