Se ha denunciado esta presentación.
Se está descargando tu SlideShare. ×

boundary_layers_History.ppt

Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Anuncio
Cargando en…3
×

Eche un vistazo a continuación

1 de 41 Anuncio

boundary_layers_History.ppt

Descargar para leer sin conexión

vLinear boundary layer theory
Ekman layers, Boundary layers in density stratified fluids, control of interior, experimental applications.
2) Coastal bottom boundary layer.
Boundary layer on shelf for upwelling and downwelling.
Observations (Lentz)
3) Boundary layers in the General Oceanic Circulation.

vLinear boundary layer theory
Ekman layers, Boundary layers in density stratified fluids, control of interior, experimental applications.
2) Coastal bottom boundary layer.
Boundary layer on shelf for upwelling and downwelling.
Observations (Lentz)
3) Boundary layers in the General Oceanic Circulation.

Anuncio
Anuncio

Más Contenido Relacionado

Similares a boundary_layers_History.ppt (20)

Anuncio

Más reciente (20)

boundary_layers_History.ppt

  1. 1. GFD 2007 Boundary Layers The idea of the boundary layer dates back at least to the time of Prandtl (1904, see the article: Ludwig Prandtl’s boundary layer, Physics Today, 2005, 58, no.12, 42-48).
  2. 2. Contemporaneously, Ekman… Considered the effects of rotation although he did not really think of his solutions in terms of what we would call boundary layer theory. V.W. Ekman Young Ekman
  3. 3. The principal concept of the boundary originally springs from the particular form of the fluid continuum equations in which the dissipation terms involve higher order derivatives than the inertial, advective terms, e.g. for the Navier Stokes equations for a non rotating fluid:  ui t  uj ui xj   p xi  Fi   2 ui xjxj For fluids like air or water the coefficient of viscosity  is often sufficiently small, in a non- dimensional sense to be clarified more formally below, such that the physical effects of friction would seem to be negligible allowing the neglect of the last term on the right hand side of the equation.
  4. 4. This is a singular perturbation. The order of the equations is reduced and we can no longer satisfy all the boundary conditions if the viscous term is neglected. The mathematical issue is how to retain the higher order derivatives only where they are needed to help satisfy the boundary conditions and the physical issue is to understand through the applications of boundary layer theory how (and whether) the action of friction in very localized regions may affect the fluid flow in regions outside the domain directly affected by friction. The interplay between the outer region, in which friction is not directly important, and the inner region in which friction directly acts is a key feature of boundary layer theory (a form of singular perturbation theory).
  5. 5. An Oceanic example Wind-driven ocean circulation model J(,2  ) x  r2  4   T(x,y) J(a,b)  axby  aybx   U / L2   AH L3 , r  r* L If r and v neglected and the no slip condition is dropped, there will still be a singular perturbation to the equations if the  term, i.e. the nonlinear advection terms are ignored. This leads to an inertial boundary layer.This equation in its entirety will be discussed more fully later.
  6. 6. An outline of where we will be going 1) Linear boundary layer theory Ekman layers, Boundary layers in density stratified fluids, control of interior, experimental applications. 2) Coastal bottom boundary layer. Boundary layer on shelf for upwelling and downwelling. Observations (Lentz) 3) Boundary layers in the General Oceanic Circulation. Sverdrup theory, Stommel, Munk, inertial boundary layers, inertial runaway,thermocline and its boundary layer structure.
  7. 7. Equations of motion uux  vuy  wuz  2v   1  px  uxx  uyy  uzz     uvx  vvy  wvz  2u   1  py  vxx  vyy  vzz     uwx  vwy  wwz   1  pz  g  wxx  wyy  wzz     ux  vy  wz  0 Incompressible fluid in a rotating system. If the density is not constant must add an ernery equation We are interested in cases where  is “small”. Must introduce scales.
  8. 8. The Ekman Layer z  U x  vuy  wuz      v  E 2 uzz  uyy      vvy  wvz      u   p y  E 2 vzz  vyy      vwy  wwz       p z  E 2 wzz  wyy     vy  wz  0 Far from the boundary the velocity is U(y). Motion is independent of x (for simplicity) The pressure has been scaled with 2LU0 Lengths with L and velocity with U0   Uo 2L , the Rossby number E   L2 , the Ekman number <<1
  9. 9. The solution far from the boundary uI  U(y), pI   U(y')dy' y  , vI  0, wI  0. This is an exact solution of the equations of motion but does not satisfy the no slip condition on z =0. z  E1/2  We introduce the stretched, boundary layer variable. e          1/2 , Corresponding to using as a vertical scale,
  10. 10. In the new variable  z  E1/2   , 2 z2  E1 2 2 w  E1/2 W(y,)  vuy  Wu      v  1 2 u  E uyy      vvy  Wv      u   p y  1 2 v  E vyy     E vWy  WW       p   E 2 W  E Wyy     vy  W  0 Initially consider  small
  11. 11. Linear Ekman layer problem v  1 2 u u   p y  1 2 v 0   p  vy  W  0 The pressure is uniform in the boundary layer and so is equal to its freestream value p  pI (y), p y  pI y  U(y) v  1 2 u u  U  1 2 v vy  W  0 thus
  12. 12. The solution (1)   (u U)iv 2   2  2i let  o exp( 1i  ) u  U  e Acos  Bsin   v  e Asin  Bcos   or The conditions that both u and v vanish on z= =0, yields AU(y), B 0 u  U(y) 1 e cos   v U(y)e sin
  13. 13. The solution (2) Note the overshoot cross isobar flow perpendicular to U(y) U v
  14. 14. The Ekman spiral
  15. 15. The cross isobar flow (in y direction) and Ekman “pumping” vdz 0    e vd 0    e 2 U(y) U Pressure force Cross isobar flow W   1 2 U y 1 e cos sin       wI (y,0) E1/2 W(y, ) E1/2 Uy /2 and
  16. 16. Spin Down (1) this vertical velocity is small but it can have a substantial effect on the interior flow and is, in many cases the primary mechanism for the destruction of otherwise inviscid motion in the interior. For example, a positive relative vorticity will give rise to a positive vertical velocity out of the boundary layer. If the interior is bounded from above this will usually imply that a column of fluid in the interior is squashed and the result will be to decrease the relative vorticity by the inertial effects of vortex squashing. The rate will depend on the Ekman number but the resulting spin-down time will be of the order of and so will be long compared with a rotation period of the system but short compared to a characteristic diffusion time . 1 E1/2 1 E1
  17. 17. Spin down (2)  dz dt  w z For small   dz dt  Ev 1/2 w(z  0) Ev 1/2 (Uy /2) Ev 1/2 z 2 Ts  2 E1/2 Non dimensional decay time T*s  L Uo Uo L L  /   1/2  L   1/2 In dimensional (non dimensionless) units
  18. 18. Nonlinear modifications of the Ekman Layer We can expect that nonlinearity will force additional terms in the solution but it will also be the case that it will change the structure of the O(1) solution. Since the boundary layer, in linear theory depends on the ratio of the viscosity to the rotation , it is often assumed, heuristically, that the first effect of nonlinearity is to change the thickness to something like , where f =2 (the Coriolis parameter and the planetary vorticity and where  is the relative vorticity . Hence, the expectation is that positive relative vorticity in the interior flow will make the boundary layer thinner. However, positive vorticity produces a vertical velocity that will tend to thicken the layer   2 / ( f z )     1/2 z  vx  uy
  19. 19. A new stretched variable Z     E1/2 z And consider all variables to be functions of both  and Z  z  E1/2    E1/2  Z To order   vuy  Wu      v  1 2 u  2uZ  E uyy      vvy  Wv      u   p y  1 2 v  2vZ  E vyy     E vWy  WW       p   E 2 W  2WZ  E Wyy     vy  W  WZ  0
  20. 20. The  expansion u  uo  u1  ... uo  U  A(y,Z)e cos  B(y,Z)e sin, vo  A(y,Z)e sin  B(y,Z)e cos A(0)U, B(0) 0 Wo  C(Z) 1 2 A y e sin  cos   B y e cos sin   C(0)   1 2 U y
  21. 21. The solution for W0 the vertical velocity must be independent of z at least to order  and E. This implies that C is independent of Z Wo   1 2 U y  1 2 A y e sin  cos   B y e cos sin  
  22. 22. The next order problem 1  2i1  Ru  iRv, 1  u1  iv1, Ru  2 vouoy  Wouo      2uoZ , Rv  2 vovoy  Wovo      2voZ Evaluating the terms in Ru and Rv reveals that a combination of some of the terms will have the form of the homogeneous operator on the left hand side of the eqn. If left unaltered those terms would introduce spatial secular terms, i.e. solutions of the form and would render our expansion invalid for =Z=O(1). To prevent that, the terms in Ru and Rv involving the derivatives of the coefficients with Z are used to eliminate all secular terms. e(1i)
  23. 23. Removing secular terms Eliminating terms of the form e(1i) leaves us with a differential eqn. in Z for A and B  Z A  iB   A  iB   C w term {  UIy 2i(1 i) vorticity term 6 7 4 8 4            0 C  UIy and so A  iB UIe UIyZ /4 e iUIyZ /4 UIe UIyZ /4 cos(UIyZ / 4) isin(UIyZ / 4)  
  24. 24. The weakly nonlinear solution A(Z)  Ue Uy Z /4 cosUyZ / 4, B(Z)  Ue Uy Z /4 sinUyZ / 4 or vo  Ue  1Uy /4     sin( 1 Uy / 4    ) uo  U 1 e  1Uy /4     cos  1 Uy / 4             The exponential decay decreases when the relative vorticity is positive, i.e. when Uy < 0. The effect of the vertical velocity in thickening the boundary layer dominates the vorticity effect in determining the boundary layer thickness.
  25. 25. The vertical velocity Wo   1 2 Uy 1 e (UyZ/4) sin( UyZ / 4) cos( UyZ / 4)         At lowest order To complete the solution we need to find the next order corrections to u and v, i.e. to solve 1  2i1  Ru  iRv, 1  u1  iv1, Ru  2 vouoy  Wouo      2uo Z , Rv  2 vovoy  Wovo      2vo Z after the secular terms have been removed.
  26. 26. The non secular problem (no particular religious meaning implied) Runonsec  e2 AAy  BBy  ABy  BAy      iUye(1i) (A  iB), Rvnonsec  e2 AAy  BBy  ABy  BAy     1  u1  iv1 let 1 2i1  e2(Z) (1i)UUy iUUye(1i) eZ(1i)  Uy / 4 1 UUy (1 3i) 10 e2( Z)  e(1i)  1/ 4 e(1i) Z(1i)  e(1i)        
  27. 27. The cross isobar flux to order  E1/2 (vo  v1)d  E1/2 1 2 U   7 20 UUy       0   linear nonlinear The divergence of this flow yields the vertical velocity at the edge of the boundary layer wI (y,0)  E1/2 Uy   7 40 Uy 2 UUyy        
  28. 28. The form of the cross isobar flow to order to order  The panel on the left shows the cross isobar (v) flow for the linear solution (R0=0, solid line) and the solution corrected for nonlinear effects (R0= 0.5, dashed line – and clearly “pushing” the validity of the expansion). The panel on the left is for negative , uniform shear (positive relative vorticity) and the panel on the right is for positive shear (negative vorticity).
  29. 29. references Benton G.S., F.B. Lipps and S.Y. Tuann. 1964 .The structure of the Ekman layer for geostrophic flows with lateral shear. Tellus 16, 186-199 Hart, J.E. 2000 A note on the nonlinear correction to the Ekman layer pumping velocity. Phys.of Fluids. 12, 131-135 Brink, K.H.1997 Time dependent motions and the nonlinear bottom Ekman layer, J.Marine Res. 55, 613- 631
  30. 30. Nansen’s problem sea surface z=0 f/2 wind stress ocean Uo  2o  fe , f  2 Scale for velocity   z  0 u  , v  0 (non dimensional) 2v  u 2u  v vy  W  0 linear problem
  31. 31. Ekman’s solution u   2 e cos(   / 4) v   2 e sin(   / 4) u /2, v /2  as goes to zero stress Surface velocity
  32. 32. The profiles of velocity and the Ekman flux The Ekman velocities u (solid) and v(dashed) for a stress in the x direction. Ue  ud 0    0, Ve  vd 0     / 2 total flux is to the right of the stress. In dimensional units: Ve * Uoeg Ve   2o fe e  2   * f U*e   k̂  r *  f In general:
  33. 33. The Ekman hodograph spiral
  34. 34. The vertical velocity W   1 2  y 1 e cos     W ()   1 2  y with dimensions restored and in vector form, we  Ue L W    k̂g   ( r * / f ) Nonlinear similar to previous example. However one simple result follows almost immediately. For a wind stress of one dyne/cm2 the vertical velocity is order of 10-4 cm/sec ~ 10 cm/day and is responsible for driving the major part of the ocean circulation.
  35. 35. Role of nonlinearity on Ekman transport (and pumping) Consider stress in x direction but now include a very strong geostrophic current in the x direction whose scale is much greater than the Ekman depth. Again, with solutions independent of x  vuy  Wu      v  1 2 u  E uyy      vvy  Wv      u   p y  1 2 v  E vyy     E vWy  WW       p   E 2 W  EWyy     vy  W Z  0
  36. 36. The linearized equations  p y  ug (y)  ue    fe vugy  v  1 2 u u  ug  1 2 v Vertically integrating and using u , v  0 Ve   2 1  ugy     , Ue  0
  37. 37. Ekman transport (dimensional) U*e   k̂  r  /  f g Relative vorticity Refs. M. E. Stern 1965 Interaction of a uniform wind stress with a geostrophic vortex. Deep Sea Res. 12, 355-367 P.P. Niiler 1969 On the Ekman divergence in an oceanic jet. J. Geophys. Res. 74, 7048-7052 This holds only when the stress and geostrophic current are collinear
  38. 38. General nonlinear formulation Again, expand in a series in  and introduce the “slow” variable Z =  0  A(Z)e (1i) , 0  uo  ivo uo  ug (y)  e Ar cos  Ai sin  , vo  e Ai sin  Ar cos   Ar(0) 2 Ai(0)  2 W0   y 2  e 2  y Ai  Ar  cos  Ai  Ar  sin    
  39. 39. Order  problem 1 2 1  i  e(1i)  Z (Ar  Ai ) i(Ar  Ai )   e(1i)  y 2 (Ar  Ai ) i(Ar  Ai )   ugy 2i Ar  iAi         e(1i) ugy 2i Ar  iAi   e2 (1 i) 2 Ai (Ary  Aiy ) Ar (Ary  Aiy )     Possible resonant terms Removing the secular terms leads to Ar   21/2 e Z y /2ugy /4     cos(Zugy / 4   / 4) Ai    21/2 e Z y /2ugy /4     sin(Zugy / 4   / 4)
  40. 40. The structure of the O(1) solution uo  ug   21/2 e  1 y 2  ugy 4               cos (1 ugy / 4) / 4  , vo   21/2 e  1 y 2  ugy 4               sin (1 ugy / 4) / 4      1  y  ugy / 2     1/2 Boundary layer thickness *  2 f  2*y*  f  u*gy* 2             1/2 dimensional same result if we linearize in transition region around ug(y) and W= -y/2
  41. 41. Boundary layer flux to O( Solution for non secular forcing yields v1d  0    3 8 ugy And using the O(1) solution’s dependence on  (vo  v1)d  0     2   y 8  ugy 2       W()   y vo  v1  0        d W()   1 2  y  1 ugy y / 4           Thomas, L.N. and P.B. Rhines, 2002. Nonlinear stratified spinup. J.Fluid Mech., 473, 211-244

×