SlideShare a Scribd company logo
1 of 60
INTRODUZIONE  ALL’ASTRONOMIA CAPITOLO 1
«Solo due cose sono infinite: l'universo e la stupidità umana, e non sono sicuro della prima.» (Albert Einstein)
IL NOSTRO UNIVERSO... Noi viviamo sul pianeta TERRA, il quale è parte del SISTEMA SOLARE (con centro il Sole), che a sua volta è parte della galassia chiamata VIA LATTEA
FIG. 1 - Diagramma del Sistema Solare Il SISTEMA SOLARE  è un insieme di corpi in movimento che risentono dell'attrazione gravitazionale del sole. Composizione:  8 pianeti , diversi pianeti nani (tra cui ora PLUTONE, recentemente declassato), comete, meteore,meteoriti, asteroidi e IL SOLE...
Il sole è una STELLA GIALLA NELLA FASE STABILE DELLA SUA VITA, ed appartiene alla classe spettrale G. Intorno ad esso si muovono i pianeti effettuando 2 moti ,[object Object]
Moto di RIVOLUZIONE intorno al sole, i pianeti percorrono traiettorie ellittiche (il Sole occupa uno dei 2 fuochi delle ellissi) Molti pianeti posseggono uno o piu satelliti che a loro volta effettuano RIVOLUZIONE intorno al pianeta e ROTAZIONE su se stessi ( ad esempio, LA LUNA E’ UN SATELLITE DELLA TERRA ) FIG. 2 – Sole e Terra/Luna – Schema del moto
SCHEMA DEI MOTI PLANETARI La Terra o il pianeta gira intorno al Sole e al contempo gira su sè stesso, muovendosi con tutto il Sistema Solare e l’intera galassia
COSA SONO LE GALASSIE? Le GALASSIE sono associazioni di stelle (formate da polveri e gas ) e di pianeti, che compiono una lenta rivoluzione intorno  al centro dela galassia. Stime recenti ipotizzano che l'universo ne contenga miliardi FIG. 3 – Esempio di una galassia Chec’è in unagalassia? Stelle Resti di stelle   Gas e polvere
La galassia a cui appartiene il Sistema Solare è la Via Lattea: essa contiene centinaia di miliardi di stelle. Il Sistema Solare si trova in posizione periferica e compie il moto di rivoluzione intorno alla galassia in circa 225 MILIONI DI ANNI! Il diametro della Via Lattea è di circa 100,000 anni luce... Volete calcolare quant’è grande? Calcolate che la luce viaggia a 300.000 km/s, calcolate che in un anno ci sono 31,5 milioni di secondi... Ora moltiplicate i secondi per 300,000, e otterrete un numero enorme... e questi sono solo i chilometri di 1 ANNO LUCE!!!!  FIG. 4 – La Via Lattea, galassia a spirale
FIG. 5-7 – La Via Lattea d’inverno e d’estate VEDUTE DELLA  VIA LATTEA
galassia di Andromeda ESEMPIO DI UNA GALASSIA ,[object Object]
Dista da noi "soltanto" 2 Milioni di anni luce
E' una galassia a spirale, più vasta della nostra
E' indicata la costellazione di AndromedaFIG. 8 – La Galassia di Andromeda
[object Object]
Il telescopio spaziale Hubble ha rilevato un'immagine del più lontano ammasso di galassie distante 12 miliardi di anni luce
La nostra Galassia, la Via Lattea, comprende circa 100 miliardi di stelle ed ha la forma di una spirale normale. Il nostro sistema solare si trova in un braccio periferico, chiamato braccio di Orione,[object Object]
ELLITTICHEsonodifferentiperchèsonocomposte solo in minima parte da (o addirittura non hanno) gas e polvere. Hanno solo stelle concentrate intorno al lorocentro, cheassomiglia ad un bozzoenorme. Sonoovali.
IRREGOLARI hanno un aspettocaotico, con enorminuvole di gas e polveremischiate con stelle di etàdiversa. Non presentanobracciaspirali o bozzo del nucleo. Sono circa il25% dellegalassietotali. Sonopocoluminose!FIG. 9-11: Galassie a spirale, ellittica ed irregolare
FIG. 12-15: Immagini raffiguranti galassie di vari tipi.
Questa rappresenta la Via Lattea, col relativo diametro in km e rappresentata la posizione del Sistema Solare (il Sole, che ne è centro, in posizione periferica rispetto al centro della galssia)
LA SFERA CELESTE FIG. 16 – Raffigurazione della sfera celeste completa (con le coordinate di riferimento assolute) La SFERA CELESTE è un modello matematico utilizzato per rappresentare e studiare la posizione nello spazio dei vari corpi celesti intorno alla Terra, che costituisce infatti il centro di questa sfera immaginaria.
FIG. 17 – Rappresentazione grafica della sfera celeste con le stelle delle varie costellazioni Essa ci appare come una sfera cava di raggio infinito sulla cui superficie sono disposti i corpi celesti. NON ESISTE REALMENTE, ED è divisibile, come la Terra, in emisfero AUSTRALE ed emisfero BOREALE. FIG. 2 – Sole e Terra/Luna – Schema del motoD
FIG. 18 – Diagramma della sfera celeste con tutte le 88 costellazioni ed i loro confini. Sulla sfera noi individuiamo ad occhio nudo CIRCA 6000 ASTRI, e tra questi lo spazio è composto da materia interstellare (gas di particelle rarefatte e polveri cosmiche). Sulla sfera dividiamo gli astri in COSTELLAZIONI
20 Diagrammadellasfera celeste FIG. 19 – Rappresentazione grafica della sfera celeste con indicate le coordinate principali di riferimento Polo Nord celeste Stella Polare Costellazioni Boreali Cost. Orione T Equatore celeste Costellazioni Australi Polo Sud celeste
FIG. 20 – In questo disegno la sfera celeste è rappresentato nelle sue costellazioni e stelle, di cui è indicata la magnitudine (intensità di colore)
FIG. 21 –  Al centro della sfera celeste si trova la Terra, sulla sfera le stelle. Sono indicati ascensione retta e declinazione, nonchè Equatore celeste e terrestre e Poli N/S celesti e terrestri (vedi slide successive)
LE COSTELLAZIONI  FIG. 22 –  Raffigurazione delle costellazioni di stelle che compongono la sfera celeste...
Si chiamano COSTELLAZIONI delle associazioni di stelle totalmente casuali, che formano aree poligonali sulla sfera celeste... Nel cielo gli astronomi HANNO INDIVIDUATO 88 COSTELLAZIONI CON VARIE FORME . La figura poligonale tipica della costellazione, che la contraddistingue tra le 88, viene chiamata ASTERISMA DELLA COSTELLAZIONE. Una costellazione, così come le stelle che la compongono, è identificabile con due SISTEMI DI COORDINATE(vedi succ.) FIG. 23 –  La sfera celeste con alcune delle più famose costellazioni
FAMOSI ASTERISMI… Una caratteristica importante delle costellazioni è che anticamente, marinai ed esploratori LE UTILIZZAVANO COME RIFERIMENTI CELESTI PER CAPIRE IN CHE DIREZIONE STESSERO PROCEDENDO... Ecco alcune tra le più note costellazioni, da sempre punti di riferimento nel cielo notturno... FIG. 24 – L’ORSA MINORE contiene la stella più famosa, POLARIS, anche nota come la Stella Polare, UNICA STELLA che NEL CIELO SEMBRA ESSERE FISSA... Seguendo Polaris verso l’alto raggiungiamo l’ORSA MAGGIORE (il Grande Carro)
FIG. 25–  La costellazione dell’ORSA MAGGIORE. Le stelle più evidenziate sono quelle che compongono il cosiddetto «GRANDE CARRO», della stessa forma dell’ORSA MINORE, della slide precedente, col «PICCOLO CARRO». L’orsa maggiore è così chiamata perchè ASSOMIGLIA AD UN ORSO. Nell’immagine sono raffigurate anche galassie e nebulose vicine alla costellazione.
FIG. 26 – E’ raffigurata la costellazione di ORIONE, in cui spiccano le stelle RIGEL E BETELGEUSE (facilmente identificabili anche nel diagramma H-R). E’ una delle costellazioni più facili da riconoscere ad occhio nudo nel cielo stellato, lontani da forti luci.
FIG. 27 –  D’estatenell’emisferoborealein cielosipuòosservare un triangolo. Esso è costituito dalle stelle più luminose di tre costellazioni (Cigno, Lira ed Aquila) ,[object Object]
Vega:  Lyrae
Altair:  AquilaeD’estatenell’emisferoborealein cielosipuòosservare un triangolo. Esso ècostituito dalle stelle più luminose di tre costellazioni (Cigno, Lira ed Aquila) ,[object Object]
Vega:  Lyrae
Altair: AquilaeMolte altre figure si possono vedere nel cielo con fantasia: rappresentano, ma solo per un effetto prospettico, figure di animali, oggetti o personaggi mitologici!  
COSA VEDI DI NOTTE? «Grazie al modello matematico posso dirvi come è nato l'universo: non chiedetemi il perché»(Stephen Hawking)
Le stelle di unacostellazioneci sembranoesserevicine, ma in realtà non lo sono. Quest’effetto è conosciuto come EFFETTO DI PROIEZIONE. In realtà, le distanzetraessesonoancheenormi! FIG. 28 – Schema dell’effetto di proiezione
METTETEVI ALLA PROVA: FATTI POCO NOTI AGLI STUDENTI La stellaPolaris è l’unicastellachenelnostrocielonotturno non simuove… Ma perchè? Il nostropianetaruota sotto a questastella e fasembrare Polaris FERMA mentretutte le altre le ruotanoattorno (circumpolari od occidue). Infatti, la Stella Polareè ilmassimoriferimentodeiviaggiatori in quanto TI PORTA SEMPRE NELLA STESSA DIREZIONE! FIG. 29-30: Le «tracce stellari» e la Stella Polare, fissa
Il moto apparente degli astri, dalla Terra, ci permette, fotografando le stelle continuamente con l’otturatore della macchina fotografica aperto ad intervalli di tempo regolari, di ottenere quelli che gli astronomi chiamano «STAR TRAILS» (scie stellari), che mostrano come le stelle si muovano durante il giorno da varie posizioni della Terra per vari osservatori (apparentemente, in realtà è LA TERRA A GIRARE!)
Notato qualcosa...?? Al centro C’E’ UNA SOLA STELLA CHE NON DESCRIVE ALCUN MOTO... Ed è proprio POLARIS, LA STELLA POLARE: come detto prima, a noi sembra statica in quanto la Terra si trova proprio sotto di essa, e quando gira non vediamo alcuna variazione di posizione per Polaris!!
«Un tale ordine non può appartenere a una materia che si agiti casualmente. Un incontro di elementi senza piano e senza disegno non avrebbe questo equilibrio, né una così saggia disposizione. L'universo non può essere senza Dio.» (Lucio Anneo Seneca) Come possiamoorientarci nelcaosche è l’Universo? Analizziamo I SISTEMI DI COORDINATE…
Nel cielo possiamo identificare le stelle o i corpi celesti in base a due sistemi di coordinate celesti che sono composte da vari riferimenti e da 2 ANGOLI PARTICOLARI Le coordinate astronomiche sono COORDINATE ALTAZIMUTALI/RELATIVE COORDINATE EQUATORIALI/ASSOLUTE Esse dipendono dalla POSIZIONE DELL’OSSERVATORE (RELATIVE) e si servono di ELEMENTI DI RIFERIMENTO AD ESSA RELATIVI Esse NON dipendono dalla posizione dell’osservatore e si servono di ELEMENTI DI RIFERIMENTO ASSOLUTI ASSE ROTAZIONE TERRESTRE, EQUATORE CELESTE, POLO N/S CELESTI, CIRCOLI ORARI, DECLINAZIONE, ASCENSIONE RETTA VERTICALE DEL LUOGO, ZENIT, NADIR, ORIZZONTI, CIRCOLI VERTICALI, ALTEZZA, AZIMUT
RIFERIMENTI RELATIVI - Ogniosservatore ha i suoi - ,[object Object]
ZENITH è il punto in cui la verticale del luogo interseca la SFERA CELESTE SOPRA l’osservatore
NADIR è il punto in cui la verticale del luogo interseca la SFERA CELESTE SOTTO l’osservatore,[object Object]
O. SENSIBILE: è l’effettiva porzione di spazio visibile all’osservatore. VARIA al variare della quota (altezza) a cui si trova l’osservatore.
O. GEOGRAFICO: è l’orizzonte tangente al punto di stazione dell’osservatore (PARALLELO a quello ASTRONOMICO)
O. ASTRONOMICO: è l’orizzonte parallelo a quello GEOGRAFICO, passante per IL CENTRO DELL TERRA e PERPENDICOLARE ALLA VERTICALE DEL LUOGO dell’osservatore.
CIRCOLI VERTICALI: Sono dei semicerchi aventi per diametro la verticale del luogo e passanti per lo ZENIT e per il NADIR, in cui intersecano la sfera celeste. Per ogni stella o corpo celeste passa un circolo verticale
ALTEZZA: E’ la misura angolare dell’ARCO DI CIRCOLO VERTICALE COMPRESO TRA LA STELLA ED IL PIANO DELL’ORIZZONTE ASTRONOMICO.
AZIMUTH: E’ la misura angolare formata dallo SPOSTAMENTO IN SENSO ORARIO DELLA PORZIONE DI LINEA DI MERIDIANA CHE CONGIUNGE IL NORD ALL’OSSERVATORE, FINO AD INCONTRARE IL CIRCOLO VERTICALE PASSANTE PER LA STELLA. LE «COORDINATE ALTAZIMUTALI» (parte dei riferimenti relativi)
RIFERIMENTI ASSOLUTI - Universalmentevalidi - ,[object Object]
ECLITTICA TERRESTRE (incl. 23,5° rispetto all’equatore celeste)

More Related Content

What's hot

Presentazione costellazioni
Presentazione costellazioniPresentazione costellazioni
Presentazione costellazioni
Simone Lentini
 
Presentazione giove Stefano Naldoni
Presentazione giove Stefano NaldoniPresentazione giove Stefano Naldoni
Presentazione giove Stefano Naldoni
claudiaterzi
 
Le galassie sveva de silva
Le galassie sveva de silvaLe galassie sveva de silva
Le galassie sveva de silva
classe3Achiavari
 

What's hot (20)

Saturno
SaturnoSaturno
Saturno
 
Presentazione sistema solare
Presentazione sistema solarePresentazione sistema solare
Presentazione sistema solare
 
Presentazione costellazioni
Presentazione costellazioniPresentazione costellazioni
Presentazione costellazioni
 
Presentazione giove Stefano Naldoni
Presentazione giove Stefano NaldoniPresentazione giove Stefano Naldoni
Presentazione giove Stefano Naldoni
 
La via lattea
La via lattea La via lattea
La via lattea
 
Le galassie sveva de silva
Le galassie sveva de silvaLe galassie sveva de silva
Le galassie sveva de silva
 
Sistema Solare classe quinta scuola primaria
Sistema Solare classe quinta scuola primariaSistema Solare classe quinta scuola primaria
Sistema Solare classe quinta scuola primaria
 
Pianeti sistema solare
Pianeti sistema solarePianeti sistema solare
Pianeti sistema solare
 
urano
uranourano
urano
 
Il sole
Il sole Il sole
Il sole
 
Giove, il pianeta gigante
Giove, il pianeta giganteGiove, il pianeta gigante
Giove, il pianeta gigante
 
Universo
UniversoUniverso
Universo
 
La terra e la luna PowerPoint
La terra e la luna PowerPointLa terra e la luna PowerPoint
La terra e la luna PowerPoint
 
Atomo
AtomoAtomo
Atomo
 
Venere
VenereVenere
Venere
 
Reticolato geografico
Reticolato geograficoReticolato geografico
Reticolato geografico
 
La struttura della Terra e la tettonica delle placche
La struttura della Terra e la tettonica delle placcheLa struttura della Terra e la tettonica delle placche
La struttura della Terra e la tettonica delle placche
 
I movimenti della terra
I movimenti della terraI movimenti della terra
I movimenti della terra
 
Il vento - didattica differenziata
Il vento - didattica differenziataIl vento - didattica differenziata
Il vento - didattica differenziata
 
mercurio
mercuriomercurio
mercurio
 

Viewers also liked

Astronomia le stelle
Astronomia le stelleAstronomia le stelle
Astronomia le stelle
Outsider92
 
Mestiere di astrofilo
Mestiere di  astrofiloMestiere di  astrofilo
Mestiere di astrofilo
Mario Sandri
 

Viewers also liked (20)

Stelle e Costellazioni
Stelle e CostellazioniStelle e Costellazioni
Stelle e Costellazioni
 
Il sistema solare e le costellazioni per la V elementare
Il sistema solare e le costellazioni per la V elementareIl sistema solare e le costellazioni per la V elementare
Il sistema solare e le costellazioni per la V elementare
 
01 sfera celeste
01 sfera celeste01 sfera celeste
01 sfera celeste
 
Le costellazioni
Le costellazioniLe costellazioni
Le costellazioni
 
Mi sono perso
Mi sono persoMi sono perso
Mi sono perso
 
Al di là del cielo... guardando oltre le stelle
Al di là del cielo... guardando oltre le stelleAl di là del cielo... guardando oltre le stelle
Al di là del cielo... guardando oltre le stelle
 
Astronomia le stelle
Astronomia le stelleAstronomia le stelle
Astronomia le stelle
 
L'universo - Presentazione Gloria De Blasi
L'universo - Presentazione Gloria De BlasiL'universo - Presentazione Gloria De Blasi
L'universo - Presentazione Gloria De Blasi
 
Il sistema solare
Il sistema solareIl sistema solare
Il sistema solare
 
Stelle
StelleStelle
Stelle
 
Mestiere di astrofilo
Mestiere di  astrofiloMestiere di  astrofilo
Mestiere di astrofilo
 
Cosmologia
CosmologiaCosmologia
Cosmologia
 
Le distanze in astronomia
Le distanze in astronomiaLe distanze in astronomia
Le distanze in astronomia
 
Il centro del mondo
Il centro del mondoIl centro del mondo
Il centro del mondo
 
A caccia di buchi neri
A caccia di buchi neriA caccia di buchi neri
A caccia di buchi neri
 
Mestiere di astronomo
Mestiere di astronomoMestiere di astronomo
Mestiere di astronomo
 
Nel regno delle galassie
Nel regno delle galassieNel regno delle galassie
Nel regno delle galassie
 
L’universo di einstein
L’universo di einsteinL’universo di einstein
L’universo di einstein
 
Costellazioni e Asterismi
Costellazioni e AsterismiCostellazioni e Asterismi
Costellazioni e Asterismi
 
1 dall'origine dell’universo alla comparsa dell'uomo
1 dall'origine dell’universo alla comparsa dell'uomo1 dall'origine dell’universo alla comparsa dell'uomo
1 dall'origine dell’universo alla comparsa dell'uomo
 

Similar to Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo nero

Stage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetariStage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetari
IAPS
 
Stage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianetiStage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianeti
IAPS
 
Astronomia2
Astronomia2Astronomia2
Astronomia2
Renata
 
Sistema solare e newton
Sistema solare e newtonSistema solare e newton
Sistema solare e newton
Fabio Calvi
 

Similar to Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo nero (20)

S
SS
S
 
Stage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetariStage2011 badiali-formazione sistemi planetari
Stage2011 badiali-formazione sistemi planetari
 
Le stelle e l'universo
Le stelle e l'universoLe stelle e l'universo
Le stelle e l'universo
 
Stage astrofisica 2010- 6. Popolazioni stellari - M.Badiali
Stage astrofisica 2010- 6. Popolazioni stellari - M.BadialiStage astrofisica 2010- 6. Popolazioni stellari - M.Badiali
Stage astrofisica 2010- 6. Popolazioni stellari - M.Badiali
 
1° Corso di Astronomia - Alla scoperta del Sistema Solare
1° Corso di Astronomia - Alla scoperta del Sistema Solare1° Corso di Astronomia - Alla scoperta del Sistema Solare
1° Corso di Astronomia - Alla scoperta del Sistema Solare
 
Scopriamo cosa c'è nell'Universo
Scopriamo cosa c'è nell'UniversoScopriamo cosa c'è nell'Universo
Scopriamo cosa c'è nell'Universo
 
Stage astrofisica 2010- 7. Il Sistema Solare - G.Magni
Stage astrofisica 2010- 7. Il Sistema Solare - G.MagniStage astrofisica 2010- 7. Il Sistema Solare - G.Magni
Stage astrofisica 2010- 7. Il Sistema Solare - G.Magni
 
Il sistema solare
Il sistema solareIl sistema solare
Il sistema solare
 
Stage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianetiStage2011 badiali-popolazioni stelle pianeti
Stage2011 badiali-popolazioni stelle pianeti
 
Astronomia2
Astronomia2Astronomia2
Astronomia2
 
Sistema solare
Sistema solareSistema solare
Sistema solare
 
L’universo
L’universo L’universo
L’universo
 
Sistema solare leggi Keplero
Sistema solare leggi KepleroSistema solare leggi Keplero
Sistema solare leggi Keplero
 
Stage astrofisica 2010- 2. Il moto dei Pianeti, la Luna - G. D'Abramo
Stage astrofisica 2010- 2. Il moto dei Pianeti, la Luna - G. D'AbramoStage astrofisica 2010- 2. Il moto dei Pianeti, la Luna - G. D'Abramo
Stage astrofisica 2010- 2. Il moto dei Pianeti, la Luna - G. D'Abramo
 
Sistema solare
Sistema solare Sistema solare
Sistema solare
 
L’universo
L’universoL’universo
L’universo
 
I movimenti della terra
I movimenti della terraI movimenti della terra
I movimenti della terra
 
Sistema solare e newton
Sistema solare e newtonSistema solare e newton
Sistema solare e newton
 
Le galassie
Le galassieLe galassie
Le galassie
 
Il sistema solare martina n
Il sistema solare martina nIl sistema solare martina n
Il sistema solare martina n
 

Recently uploaded

Presentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informaticaPresentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informatica
nico07fusco
 
presentazione varietà allotropiche del carbonio.pptx
presentazione varietà allotropiche del carbonio.pptxpresentazione varietà allotropiche del carbonio.pptx
presentazione varietà allotropiche del carbonio.pptx
michelacaporale12345
 

Recently uploaded (20)

magia, stregoneria, inquisizione e medicina.pptx
magia, stregoneria, inquisizione e medicina.pptxmagia, stregoneria, inquisizione e medicina.pptx
magia, stregoneria, inquisizione e medicina.pptx
 
Pancia Asia-La vita di Steve Jobs-Adriano Olivetti-Bill Gates.pptx
Pancia Asia-La vita di Steve Jobs-Adriano Olivetti-Bill Gates.pptxPancia Asia-La vita di Steve Jobs-Adriano Olivetti-Bill Gates.pptx
Pancia Asia-La vita di Steve Jobs-Adriano Olivetti-Bill Gates.pptx
 
TeccarelliLorenzo-PrimadiSteveJobselasuaconcorrenza.pptx
TeccarelliLorenzo-PrimadiSteveJobselasuaconcorrenza.pptxTeccarelliLorenzo-PrimadiSteveJobselasuaconcorrenza.pptx
TeccarelliLorenzo-PrimadiSteveJobselasuaconcorrenza.pptx
 
Pancia Asia_relazione laboratorio(forza d'attrito).docx
Pancia Asia_relazione laboratorio(forza d'attrito).docxPancia Asia_relazione laboratorio(forza d'attrito).docx
Pancia Asia_relazione laboratorio(forza d'attrito).docx
 
TeccarelliLorenzo-i4stilidellapitturaromana.docx
TeccarelliLorenzo-i4stilidellapitturaromana.docxTeccarelliLorenzo-i4stilidellapitturaromana.docx
TeccarelliLorenzo-i4stilidellapitturaromana.docx
 
Una breve introduzione ad Elsa Morante, vita e opere
Una breve introduzione ad Elsa Morante, vita e opereUna breve introduzione ad Elsa Morante, vita e opere
Una breve introduzione ad Elsa Morante, vita e opere
 
Palestini Aurora-Steve Jobs,Olivetti e Gates.pptx
Palestini Aurora-Steve Jobs,Olivetti e Gates.pptxPalestini Aurora-Steve Jobs,Olivetti e Gates.pptx
Palestini Aurora-Steve Jobs,Olivetti e Gates.pptx
 
Educazione civica-Asia Pancia powerpoint
Educazione civica-Asia Pancia powerpointEducazione civica-Asia Pancia powerpoint
Educazione civica-Asia Pancia powerpoint
 
Pancia Asia-Pelusi Sara-La pittura romana - Copia (1).pptx
Pancia Asia-Pelusi Sara-La pittura romana - Copia (1).pptxPancia Asia-Pelusi Sara-La pittura romana - Copia (1).pptx
Pancia Asia-Pelusi Sara-La pittura romana - Copia (1).pptx
 
magia, stregoneria, inquisizione e medicina.pptx
magia, stregoneria, inquisizione e medicina.pptxmagia, stregoneria, inquisizione e medicina.pptx
magia, stregoneria, inquisizione e medicina.pptx
 
Le forme allotropiche del C-Palestini e Pancia.docx
Le forme allotropiche del C-Palestini e Pancia.docxLe forme allotropiche del C-Palestini e Pancia.docx
Le forme allotropiche del C-Palestini e Pancia.docx
 
PalestiniAurora-la conoscenzatestoita.docx
PalestiniAurora-la conoscenzatestoita.docxPalestiniAurora-la conoscenzatestoita.docx
PalestiniAurora-la conoscenzatestoita.docx
 
Le forme allotropiche del C-Palestini e Pancia.docx
Le forme allotropiche del C-Palestini e Pancia.docxLe forme allotropiche del C-Palestini e Pancia.docx
Le forme allotropiche del C-Palestini e Pancia.docx
 
Presentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informaticaPresentazione tre geni della tecnologia informatica
Presentazione tre geni della tecnologia informatica
 
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
CHIẾN THẮNG KÌ THI TUYỂN SINH VÀO LỚP 10 THPT MÔN NGỮ VĂN - PHAN THẾ HOÀI (36...
 
presentazione varietà allotropiche del carbonio.pptx
presentazione varietà allotropiche del carbonio.pptxpresentazione varietà allotropiche del carbonio.pptx
presentazione varietà allotropiche del carbonio.pptx
 
TeccarelliLorenzo-Mitodella.cavernaa.pdf
TeccarelliLorenzo-Mitodella.cavernaa.pdfTeccarelliLorenzo-Mitodella.cavernaa.pdf
TeccarelliLorenzo-Mitodella.cavernaa.pdf
 
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
Esame di Stato 2024 - Materiale conferenza online 09 aprile 2024
 
Storia-CarloMagno-TeccarelliLorenzo.pptx
Storia-CarloMagno-TeccarelliLorenzo.pptxStoria-CarloMagno-TeccarelliLorenzo.pptx
Storia-CarloMagno-TeccarelliLorenzo.pptx
 
a scuola di biblioVerifica: come utilizzare il test TRAAP
a scuola di biblioVerifica: come utilizzare il test TRAAPa scuola di biblioVerifica: come utilizzare il test TRAAP
a scuola di biblioVerifica: come utilizzare il test TRAAP
 

Galassie, sfera celeste, costellazioni, luce, spettroscopia e leggi del corpo nero

  • 2. «Solo due cose sono infinite: l'universo e la stupidità umana, e non sono sicuro della prima.» (Albert Einstein)
  • 3. IL NOSTRO UNIVERSO... Noi viviamo sul pianeta TERRA, il quale è parte del SISTEMA SOLARE (con centro il Sole), che a sua volta è parte della galassia chiamata VIA LATTEA
  • 4. FIG. 1 - Diagramma del Sistema Solare Il SISTEMA SOLARE è un insieme di corpi in movimento che risentono dell'attrazione gravitazionale del sole. Composizione: 8 pianeti , diversi pianeti nani (tra cui ora PLUTONE, recentemente declassato), comete, meteore,meteoriti, asteroidi e IL SOLE...
  • 5.
  • 6. Moto di RIVOLUZIONE intorno al sole, i pianeti percorrono traiettorie ellittiche (il Sole occupa uno dei 2 fuochi delle ellissi) Molti pianeti posseggono uno o piu satelliti che a loro volta effettuano RIVOLUZIONE intorno al pianeta e ROTAZIONE su se stessi ( ad esempio, LA LUNA E’ UN SATELLITE DELLA TERRA ) FIG. 2 – Sole e Terra/Luna – Schema del moto
  • 7. SCHEMA DEI MOTI PLANETARI La Terra o il pianeta gira intorno al Sole e al contempo gira su sè stesso, muovendosi con tutto il Sistema Solare e l’intera galassia
  • 8. COSA SONO LE GALASSIE? Le GALASSIE sono associazioni di stelle (formate da polveri e gas ) e di pianeti, che compiono una lenta rivoluzione intorno al centro dela galassia. Stime recenti ipotizzano che l'universo ne contenga miliardi FIG. 3 – Esempio di una galassia Chec’è in unagalassia? Stelle Resti di stelle Gas e polvere
  • 9. La galassia a cui appartiene il Sistema Solare è la Via Lattea: essa contiene centinaia di miliardi di stelle. Il Sistema Solare si trova in posizione periferica e compie il moto di rivoluzione intorno alla galassia in circa 225 MILIONI DI ANNI! Il diametro della Via Lattea è di circa 100,000 anni luce... Volete calcolare quant’è grande? Calcolate che la luce viaggia a 300.000 km/s, calcolate che in un anno ci sono 31,5 milioni di secondi... Ora moltiplicate i secondi per 300,000, e otterrete un numero enorme... e questi sono solo i chilometri di 1 ANNO LUCE!!!! FIG. 4 – La Via Lattea, galassia a spirale
  • 10. FIG. 5-7 – La Via Lattea d’inverno e d’estate VEDUTE DELLA VIA LATTEA
  • 11.
  • 12. Dista da noi "soltanto" 2 Milioni di anni luce
  • 13. E' una galassia a spirale, più vasta della nostra
  • 14. E' indicata la costellazione di AndromedaFIG. 8 – La Galassia di Andromeda
  • 15.
  • 16. Il telescopio spaziale Hubble ha rilevato un'immagine del più lontano ammasso di galassie distante 12 miliardi di anni luce
  • 17.
  • 18. ELLITTICHEsonodifferentiperchèsonocomposte solo in minima parte da (o addirittura non hanno) gas e polvere. Hanno solo stelle concentrate intorno al lorocentro, cheassomiglia ad un bozzoenorme. Sonoovali.
  • 19. IRREGOLARI hanno un aspettocaotico, con enorminuvole di gas e polveremischiate con stelle di etàdiversa. Non presentanobracciaspirali o bozzo del nucleo. Sono circa il25% dellegalassietotali. Sonopocoluminose!FIG. 9-11: Galassie a spirale, ellittica ed irregolare
  • 20. FIG. 12-15: Immagini raffiguranti galassie di vari tipi.
  • 21. Questa rappresenta la Via Lattea, col relativo diametro in km e rappresentata la posizione del Sistema Solare (il Sole, che ne è centro, in posizione periferica rispetto al centro della galssia)
  • 22.
  • 23.
  • 24. LA SFERA CELESTE FIG. 16 – Raffigurazione della sfera celeste completa (con le coordinate di riferimento assolute) La SFERA CELESTE è un modello matematico utilizzato per rappresentare e studiare la posizione nello spazio dei vari corpi celesti intorno alla Terra, che costituisce infatti il centro di questa sfera immaginaria.
  • 25. FIG. 17 – Rappresentazione grafica della sfera celeste con le stelle delle varie costellazioni Essa ci appare come una sfera cava di raggio infinito sulla cui superficie sono disposti i corpi celesti. NON ESISTE REALMENTE, ED è divisibile, come la Terra, in emisfero AUSTRALE ed emisfero BOREALE. FIG. 2 – Sole e Terra/Luna – Schema del motoD
  • 26. FIG. 18 – Diagramma della sfera celeste con tutte le 88 costellazioni ed i loro confini. Sulla sfera noi individuiamo ad occhio nudo CIRCA 6000 ASTRI, e tra questi lo spazio è composto da materia interstellare (gas di particelle rarefatte e polveri cosmiche). Sulla sfera dividiamo gli astri in COSTELLAZIONI
  • 27. 20 Diagrammadellasfera celeste FIG. 19 – Rappresentazione grafica della sfera celeste con indicate le coordinate principali di riferimento Polo Nord celeste Stella Polare Costellazioni Boreali Cost. Orione T Equatore celeste Costellazioni Australi Polo Sud celeste
  • 28. FIG. 20 – In questo disegno la sfera celeste è rappresentato nelle sue costellazioni e stelle, di cui è indicata la magnitudine (intensità di colore)
  • 29. FIG. 21 – Al centro della sfera celeste si trova la Terra, sulla sfera le stelle. Sono indicati ascensione retta e declinazione, nonchè Equatore celeste e terrestre e Poli N/S celesti e terrestri (vedi slide successive)
  • 30. LE COSTELLAZIONI FIG. 22 – Raffigurazione delle costellazioni di stelle che compongono la sfera celeste...
  • 31. Si chiamano COSTELLAZIONI delle associazioni di stelle totalmente casuali, che formano aree poligonali sulla sfera celeste... Nel cielo gli astronomi HANNO INDIVIDUATO 88 COSTELLAZIONI CON VARIE FORME . La figura poligonale tipica della costellazione, che la contraddistingue tra le 88, viene chiamata ASTERISMA DELLA COSTELLAZIONE. Una costellazione, così come le stelle che la compongono, è identificabile con due SISTEMI DI COORDINATE(vedi succ.) FIG. 23 – La sfera celeste con alcune delle più famose costellazioni
  • 32. FAMOSI ASTERISMI… Una caratteristica importante delle costellazioni è che anticamente, marinai ed esploratori LE UTILIZZAVANO COME RIFERIMENTI CELESTI PER CAPIRE IN CHE DIREZIONE STESSERO PROCEDENDO... Ecco alcune tra le più note costellazioni, da sempre punti di riferimento nel cielo notturno... FIG. 24 – L’ORSA MINORE contiene la stella più famosa, POLARIS, anche nota come la Stella Polare, UNICA STELLA che NEL CIELO SEMBRA ESSERE FISSA... Seguendo Polaris verso l’alto raggiungiamo l’ORSA MAGGIORE (il Grande Carro)
  • 33. FIG. 25– La costellazione dell’ORSA MAGGIORE. Le stelle più evidenziate sono quelle che compongono il cosiddetto «GRANDE CARRO», della stessa forma dell’ORSA MINORE, della slide precedente, col «PICCOLO CARRO». L’orsa maggiore è così chiamata perchè ASSOMIGLIA AD UN ORSO. Nell’immagine sono raffigurate anche galassie e nebulose vicine alla costellazione.
  • 34. FIG. 26 – E’ raffigurata la costellazione di ORIONE, in cui spiccano le stelle RIGEL E BETELGEUSE (facilmente identificabili anche nel diagramma H-R). E’ una delle costellazioni più facili da riconoscere ad occhio nudo nel cielo stellato, lontani da forti luci.
  • 35.
  • 37.
  • 39. Altair: AquilaeMolte altre figure si possono vedere nel cielo con fantasia: rappresentano, ma solo per un effetto prospettico, figure di animali, oggetti o personaggi mitologici!  
  • 40.
  • 41. COSA VEDI DI NOTTE? «Grazie al modello matematico posso dirvi come è nato l'universo: non chiedetemi il perché»(Stephen Hawking)
  • 42. Le stelle di unacostellazioneci sembranoesserevicine, ma in realtà non lo sono. Quest’effetto è conosciuto come EFFETTO DI PROIEZIONE. In realtà, le distanzetraessesonoancheenormi! FIG. 28 – Schema dell’effetto di proiezione
  • 43. METTETEVI ALLA PROVA: FATTI POCO NOTI AGLI STUDENTI La stellaPolaris è l’unicastellachenelnostrocielonotturno non simuove… Ma perchè? Il nostropianetaruota sotto a questastella e fasembrare Polaris FERMA mentretutte le altre le ruotanoattorno (circumpolari od occidue). Infatti, la Stella Polareè ilmassimoriferimentodeiviaggiatori in quanto TI PORTA SEMPRE NELLA STESSA DIREZIONE! FIG. 29-30: Le «tracce stellari» e la Stella Polare, fissa
  • 44. Il moto apparente degli astri, dalla Terra, ci permette, fotografando le stelle continuamente con l’otturatore della macchina fotografica aperto ad intervalli di tempo regolari, di ottenere quelli che gli astronomi chiamano «STAR TRAILS» (scie stellari), che mostrano come le stelle si muovano durante il giorno da varie posizioni della Terra per vari osservatori (apparentemente, in realtà è LA TERRA A GIRARE!)
  • 45.
  • 46. Notato qualcosa...?? Al centro C’E’ UNA SOLA STELLA CHE NON DESCRIVE ALCUN MOTO... Ed è proprio POLARIS, LA STELLA POLARE: come detto prima, a noi sembra statica in quanto la Terra si trova proprio sotto di essa, e quando gira non vediamo alcuna variazione di posizione per Polaris!!
  • 47. «Un tale ordine non può appartenere a una materia che si agiti casualmente. Un incontro di elementi senza piano e senza disegno non avrebbe questo equilibrio, né una così saggia disposizione. L'universo non può essere senza Dio.» (Lucio Anneo Seneca) Come possiamoorientarci nelcaosche è l’Universo? Analizziamo I SISTEMI DI COORDINATE…
  • 48. Nel cielo possiamo identificare le stelle o i corpi celesti in base a due sistemi di coordinate celesti che sono composte da vari riferimenti e da 2 ANGOLI PARTICOLARI Le coordinate astronomiche sono COORDINATE ALTAZIMUTALI/RELATIVE COORDINATE EQUATORIALI/ASSOLUTE Esse dipendono dalla POSIZIONE DELL’OSSERVATORE (RELATIVE) e si servono di ELEMENTI DI RIFERIMENTO AD ESSA RELATIVI Esse NON dipendono dalla posizione dell’osservatore e si servono di ELEMENTI DI RIFERIMENTO ASSOLUTI ASSE ROTAZIONE TERRESTRE, EQUATORE CELESTE, POLO N/S CELESTI, CIRCOLI ORARI, DECLINAZIONE, ASCENSIONE RETTA VERTICALE DEL LUOGO, ZENIT, NADIR, ORIZZONTI, CIRCOLI VERTICALI, ALTEZZA, AZIMUT
  • 49.
  • 50. ZENITH è il punto in cui la verticale del luogo interseca la SFERA CELESTE SOPRA l’osservatore
  • 51.
  • 52. O. SENSIBILE: è l’effettiva porzione di spazio visibile all’osservatore. VARIA al variare della quota (altezza) a cui si trova l’osservatore.
  • 53. O. GEOGRAFICO: è l’orizzonte tangente al punto di stazione dell’osservatore (PARALLELO a quello ASTRONOMICO)
  • 54. O. ASTRONOMICO: è l’orizzonte parallelo a quello GEOGRAFICO, passante per IL CENTRO DELL TERRA e PERPENDICOLARE ALLA VERTICALE DEL LUOGO dell’osservatore.
  • 55. CIRCOLI VERTICALI: Sono dei semicerchi aventi per diametro la verticale del luogo e passanti per lo ZENIT e per il NADIR, in cui intersecano la sfera celeste. Per ogni stella o corpo celeste passa un circolo verticale
  • 56. ALTEZZA: E’ la misura angolare dell’ARCO DI CIRCOLO VERTICALE COMPRESO TRA LA STELLA ED IL PIANO DELL’ORIZZONTE ASTRONOMICO.
  • 57. AZIMUTH: E’ la misura angolare formata dallo SPOSTAMENTO IN SENSO ORARIO DELLA PORZIONE DI LINEA DI MERIDIANA CHE CONGIUNGE IL NORD ALL’OSSERVATORE, FINO AD INCONTRARE IL CIRCOLO VERTICALE PASSANTE PER LA STELLA. LE «COORDINATE ALTAZIMUTALI» (parte dei riferimenti relativi)
  • 58.
  • 59.
  • 60. ECLITTICA TERRESTRE (incl. 23,5° rispetto all’equatore celeste)
  • 61.
  • 62. ASCENSIONE RETTA: E’ la porzione di equatore celeste compresa TRA IL PUNTO γ ED IL PUNTO IN CUI IL CIRCOLO ORARIO PASSANTE PER LA STELLA INTERSECA IL PIANO EQUATORIALE CELESTE. Si misura in ore e frazioni di ore, che dall’ora 0 del punto crescono fino a tornare al punto (mezzanotte).
  • 63. Es. Stella x può avere DEC= 60° e A.R.= 6h15’20’’LE «COORDINATE EQUATORIALI» (parte dei riferimenti assoluti)
  • 64. IL MOTO APPARENTE DEGLI ASTRI Osservando la sfera celeste noteremo che essa si muove da est verso ovest ed il tempo che impiega ad effettuare questo movimento viene chiamato GIORNO SIDEREO ( 23h 56’ 4’’). Questo moto viene anche definito moto apparente giornaliero poiché in realtà è la terra a ruotare su se stessa da ovest verso est. I tragitti giornalieri delle stelle appaiono diversi a seconda della posizione dell’osservatore.
  • 65. LE STELLE (NON) SI MUOVONO Le stelle possono apparire di 3 tipi diversi a seconda della posizione dell’osservatore sulla Terra: Se l’osservatore è posto al polo nord le stelle a lui visibili vengono definite CIRCUMPOLARI,ovvero percorrono una circonferenza in cielo restando sempre sopra l’orizzonte per tutto il giorno(l’osservatore ne vede tutto il movimento circolare!) Se invece l’osservatore è posto all’equatore,le stelle a lui visibili vengono definite OCCIDUE: sorgono,raggiungono il punto massimo(culminazione) e tramontano. Perciò l’osservatore vedrà la stella per metà del suo tragitto. Se invece l’osservatore è posto a latitudini intermedie le stelle visibili saranno in parte occidue ed in parte circumpolari.  
  • 66. Qui vediamo le stelle e le costellazioni che, dalla nostra latitudine, VEDIAMO DI NOTTE COME CIRCUMPOLARI...
  • 67. LA LUCE… L.D’ONDA La LUCE è un insieme di radiazioni elettromagnetiche che si propaga da una sorgente nello spazio con una velocità definita e costante che nel vuoto è pari a 300,000 km/s. Queste radiazioni vengono rappresentate come un’onda. Ventre
  • 68.
  • 69. FREQUENZA (ν)=il numero di oscillazioni complete di un’onda per unità di tempo,misurata inHertz (Hz nel SI).  La lunghezza d’onda e la frequenza sono inversamente proporzionali.
  • 71. La luce ha uno spettro composto da varie componenti. Queste, in ordine per LUNGHEZZA D’ONDA DECRESCENTE E FREQUENZA CRESCENTE, sono: Onde radio Micro onde Raggi infrarossi (IR) SPETTRO VISIBILE DELLA LUCE Raggi ultravioletti (UV) Raggi X Raggi γ   L’occhio umano può percepire SOLO LO SPETTRO VISIBILE, composto da onde che hanno LUNGHEZZA D’ONDA TRA 400 E 700 nm. In quest’intervallo, l’occhio percepisce i cambiamenti di lunghezza d’onda come VARIAZIONI DI COLORE (DAL ROSSO , DOPO GLI IR, AL VIOLETTO, PRIMA DEGLI UV)  
  • 72. Le radiazioni elettromagnetiche della luce trasportano nello spazio energia prodotta dalla sorgente di luce sotto forma di fotoni,considerati a loro volta particelle di luce poiché trasportano una quantità definita e descritta di energia.Inoltre l’energia dei fotoni dipende dalla frequenza: maggiore è la frequenza, maggiore sarà la quantità d’energia trasportata.
  • 73.
  • 74.
  • 75.  RADIOTELESCOPI= Sono composti da sistemi di antenne che consentono di registrare ed amplificare le ONDE RADIO provenienti dagli astri. Nel campo della radioastronomia si sono effettuate notevoli scoperte nell’ultimo trentennio.   Altre informazioni nel campo dell’ infrarosso,dell’ultravioletto e dei raggi x possono essere raccolte tramite altri strumenti.
  • 76. LA SPETTROSCOPIA - Come studiamo GLI ASTRI -  Quasi tutte le informazioni di cui disponiamo riguardo alle stelle sono state ricavate analizzando le radiazioni elettromagnetiche da esse emesse. La SPETTROSCOPIA è la scienza che studia: FREQUENZA INTENSITA’ LUNGHEZZA D’ONDA Il primo ad eseguire l’ esperimento sulla dispersione della luce fu Isaac Newton nel 1666, dando così l avvio a questa scienza. delle radiazioni emesse dalle stelle
  • 77.
  • 78. SPETTRO DI EM. DISCONTINUA (A RIGHE/BANDE)
  • 79.
  • 80. SPETTRO DI EMISSSIONE: Cisono solo linee di specifichelunghezzed’onda (bande col.)
  • 81. SPETTRO DI ASSORBIMENTO:sonovisibiliquasi tutti I colori, ad eccezione di pochelunghezzed’onda (bandenere)NUBE GASSOSA GAS COMPRESSO, LIQUIDO O SOLIDO INCANDESCENTE GLI SPETTRI DI EMISSIONE E DI ASSORBIMENTO SONO CARATTERISTICI DELLA COMPOSIZIONE CHIMICA DELLA NUBE GASSOSA (PER OGNI GAS, CAMBIANO)
  • 82. SPETTRO DI EMISSIONE CONTINUA Questo si ottiene facendo passare attraverso una fenditura ed un prisma di vetro le radiazioni emesse da un solido o da un liquido  in  incandescenza oppure da un gas denso riscaldato. Questo tipo di spettro contiene tutte le radiazioni del campo elettromagnetico. UN PARTICOLARE SPETTRO CONTINUO È IL CORPO NERO : in fisica si chiama corpo nero un corpo capace di assorbire tutte le radiazioni e di riemetterle sotto forma di spettro ad emissione continuo solo se riscaldato.
  • 83. SPETTRO DISCONTINUO E SPETTRO DI ASSORBIMENTO Si ottiene uno SPETTRO DI EMISSIONE DISCONTINUO quando viene utilizzato come sorgente un gas rarefatto ad alta temperatura. Lo spettro non sarà quindi continuo ma costituito da righe (se il gas è formato da atomi) o bande (se il gas è formato da molecole)colorate, poste in corrispondenza delle radiazioni elettromagnetiche assorbite dal gas.     Si ottiene uno SPETTRO DI ASSORBIMENTO quando la radiazione proviene da una sorgente luminosa edattraversa un gas a bassa pressione meno caldo rispetto alla sorgente. Questo gas assorbirà alcune delle radiazioni emesse dalla sorgente. Se la radiazione viene successivamente rifratta si otterrà uno spettro colorato nel quale sono presenti righe o bande scure in corrispondenza delle radiazioni assorbite dal gas. Si può infatti dire che questo tipo di spettro è il «negativo» dello spettro discontinuo.
  • 84. LEGGI DEL CORPO NERO Lo spettro del corpo nero obbedisce a due leggi fisiche secondo le quali l’intensità di ciascuna radiazionedello spettro varia a seconda della temperatura del corpo nero.  La quantità di energia emessa da un corpo nero dipende da superficie e temperatura superficiale (vedi leggi) 1° LEGGE – LEGGE DI WIEN  Enunciato: «La lunghezza d’onda a cui avviene il massimo dell’irraggiamento è inversamente proporzionale alla temperatura assoluta del corpo nero» cost λmax = T
  • 85. 2° LEGGE – LEGGE DI STEFAN-BOLTZMANN  Enunciato: «la quantità di energia emessa in tutte le lunghezze d’onda in una determinata unità di tempo da un’unità di superficie è proporzionale alla temperatura assoluta elevata alla quarta potenza» Dove σ è la costante di Stefan-Boltzmann, E l’energia emessa e T la temperatura assoluta E = σ T4   Poiché la luminosità assoluta è la quantità di energia emessa da una superficie che si comporta come un corpo nero, secondo la legge: L = 4Πr2E L = 4Πr2 σ T4