SlideShare una empresa de Scribd logo
1 de 2
PROPIEDADES DE LA SUMA.
Propiedad conmutativa: si el orden de los factores cambia no altera el
resultado: a+b=b+a.
Propiedad asociativa: Propiedad que establece que cuando se suma tres
o más números, la suma siempre es la misma independientemente de su
agrupamiento.2 Un ejemplo es: a+(b+c) = (a+b)+c.
Elemento neutro: 0. Para cualquier número a, a + 0 = 0 + a = a.
Elemento opuesto o inverso aditivo: Para cualquier número entero,
racional, real o complejo a, existe un número −a tal que a + (−a) = (−a) + a
= 0. Este número −a se denomina elemento opuesto, y es único para
cada a. No existe en algunos conjuntos, como el de los números naturales.
Propiedad distributiva: La suma de dos números multiplicada por un
tercer número es igual a la suma del producto de cada sumando
multiplicado por el tercer número. Por ejemplo, (6+3) * 4 = 6*4 + 3*4.
Propiedad de cerradura:Cuando se suman números naturales el resultado
es siempre un número natural. Por ejemplo a+b=c.
Estas propiedades pueden no cumplirse en casos del límite de sumas parciales
cuando tienden al infinito

PROPIEDADES DE LA MULTIPLICACIÓN:
Conmutativa: el orden de los factores no altera el producto.2 x 3 = 3 x 2
Asociativa: en una multiplicación de 3 o más factores se puede empezar
multiplicando los 2 primeros y el resultado multiplicarlo por el tercero; o
empezar multiplicando el segundo por el tercero y el resultado multiplicarlo
por el primero.
4 x 2 x 5 = (4 x 2) x 5 = 8 x 5 = 40
5 4 x 2 x 5 = 4 x (2 x 5) = 4 x 10 = 40
Elemento neutro: la multiplicación tiene un elemento neutro que es el 1. Si
se multiplica cualquier número por 1 el resultado es el mismo número:
9x1=9
Propiedad distributiva: cuando se multiplica un número por una suma
(resta) se puede:
Resolver primero la suma (resta) y el resultado multiplicarlo por el número.
O multiplicar el número por cada uno de los elementos de la suma (resta) y
luego sumar (restar) los resultados.
Ejemplos: (4 + 7) x 3
(4 + 7) x 3= (11) x 3 = 33
(4 + 7) x 3= (4 x 3) + (7 x 3) = 12 + 21 = 33
Ejemplos: (5 - 3) x 2
(5 - 3) x 2= (2) x 2 = 4
(5 - 3) x 2= (5 x 2) - (3 x 2) = 10 - 6 = 4

PROPIEDADES DE LA RESTA
Cálculo de los elementos de la resta:
El minuendo es igual a la suma del sustraendo y la diferencia:10 - 7 = 3
El minuendo (10) es igual: 10 = 7 + 3
El sustraendo es igual al minuendo menos la diferencia:12 – 8 = 4
El sustraendo (8) es igual:8 = 12 - 4
NUMERO IRRACIONAL:
En matemáticas,
se
llama número
racional a
todo número que
puede
representarse como el cociente de dos números enteros (más precisamente, un
entero y un natural positivo1 ) es decir, una fracción común a/b con numerador a y
denominador b distinto de cero
NUMEROS PRIMOS:
En matemáticas, un número primo es un número naturalmayor que 1 que tiene
únicamente dos divisores distintos: él mismo y el 1.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,79, 83, 8
9 y 97.1

Más contenido relacionado

La actualidad más candente

Ordenando Números Naturales
Ordenando Números NaturalesOrdenando Números Naturales
Ordenando Números NaturalesMiguel Valverde
 
Mapas conceptuales de las cuatro operaciones básicas
Mapas conceptuales de las cuatro operaciones básicasMapas conceptuales de las cuatro operaciones básicas
Mapas conceptuales de las cuatro operaciones básicasspm12
 
Ejercicios de-fracciones-para-1-secundaria
Ejercicios de-fracciones-para-1-secundariaEjercicios de-fracciones-para-1-secundaria
Ejercicios de-fracciones-para-1-secundariadeybol cayetano
 
Frecuencia relativa absoluta (ejercicios propuestos)
Frecuencia relativa  absoluta (ejercicios propuestos)Frecuencia relativa  absoluta (ejercicios propuestos)
Frecuencia relativa absoluta (ejercicios propuestos)Lina Cárdenas Crespo
 
Operaciones aritméticas mapa conceptual
Operaciones aritméticas mapa conceptualOperaciones aritméticas mapa conceptual
Operaciones aritméticas mapa conceptualisraelacvs
 
Practica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosPractica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosrjmartinezcalderon
 
Dibujo lobo
Dibujo lobo Dibujo lobo
Dibujo lobo Crisalys
 
PLAN DE CLASE POTENCIAS
PLAN DE CLASE POTENCIASPLAN DE CLASE POTENCIAS
PLAN DE CLASE POTENCIASNORMAN ARMIJOS
 
Pasos para resolver problemas de matemáticas
Pasos para resolver problemas de matemáticasPasos para resolver problemas de matemáticas
Pasos para resolver problemas de matemáticasRafael Rodriguez
 
Ejercicios jerarquia de operaciones
Ejercicios jerarquia de operacionesEjercicios jerarquia de operaciones
Ejercicios jerarquia de operacionesHaydee Garcia
 

La actualidad más candente (20)

Ecuaciones de primer grado
Ecuaciones de primer gradoEcuaciones de primer grado
Ecuaciones de primer grado
 
Ordenando Números Naturales
Ordenando Números NaturalesOrdenando Números Naturales
Ordenando Números Naturales
 
Multiplicacion y division en z
Multiplicacion y division en zMultiplicacion y division en z
Multiplicacion y division en z
 
Propiedades de la multiplicacion
Propiedades de la multiplicacionPropiedades de la multiplicacion
Propiedades de la multiplicacion
 
Ejercicios + solucionario potencias
Ejercicios + solucionario potenciasEjercicios + solucionario potencias
Ejercicios + solucionario potencias
 
Mapas conceptuales de las cuatro operaciones básicas
Mapas conceptuales de las cuatro operaciones básicasMapas conceptuales de las cuatro operaciones básicas
Mapas conceptuales de las cuatro operaciones básicas
 
Ejercicios de-fracciones-para-1-secundaria
Ejercicios de-fracciones-para-1-secundariaEjercicios de-fracciones-para-1-secundaria
Ejercicios de-fracciones-para-1-secundaria
 
prueba multiplos y divisores
 prueba multiplos y divisores  prueba multiplos y divisores
prueba multiplos y divisores
 
Frecuencia relativa absoluta (ejercicios propuestos)
Frecuencia relativa  absoluta (ejercicios propuestos)Frecuencia relativa  absoluta (ejercicios propuestos)
Frecuencia relativa absoluta (ejercicios propuestos)
 
Operaciones aritméticas mapa conceptual
Operaciones aritméticas mapa conceptualOperaciones aritméticas mapa conceptual
Operaciones aritméticas mapa conceptual
 
Practica 1 numeros naturales y enteros
Practica 1 numeros naturales y enterosPractica 1 numeros naturales y enteros
Practica 1 numeros naturales y enteros
 
Guía de aprendizaje poligonos
Guía de aprendizaje poligonosGuía de aprendizaje poligonos
Guía de aprendizaje poligonos
 
Cuadros magicos
Cuadros magicosCuadros magicos
Cuadros magicos
 
Dibujo lobo
Dibujo lobo Dibujo lobo
Dibujo lobo
 
Fracciones
FraccionesFracciones
Fracciones
 
PLAN DE CLASE POTENCIAS
PLAN DE CLASE POTENCIASPLAN DE CLASE POTENCIAS
PLAN DE CLASE POTENCIAS
 
Propiedades de la adición
Propiedades de la adiciónPropiedades de la adición
Propiedades de la adición
 
Pasos para resolver problemas de matemáticas
Pasos para resolver problemas de matemáticasPasos para resolver problemas de matemáticas
Pasos para resolver problemas de matemáticas
 
6º grado de primaria - Geometría 1
6º grado de primaria - Geometría 16º grado de primaria - Geometría 1
6º grado de primaria - Geometría 1
 
Ejercicios jerarquia de operaciones
Ejercicios jerarquia de operacionesEjercicios jerarquia de operaciones
Ejercicios jerarquia de operaciones
 

Similar a Propiedades de la suma

temas matemáticos
temas matemáticos temas matemáticos
temas matemáticos brito49
 
Secretaria de educacion publica
Secretaria de educacion  publicaSecretaria de educacion  publica
Secretaria de educacion publicaFrannypuebla
 
CURSO DE MATEVOCA4
CURSO DE MATEVOCA4CURSO DE MATEVOCA4
CURSO DE MATEVOCA4negugorriak
 
Propiedadeas de la sumarestaymultiplicacion
Propiedadeas de la sumarestaymultiplicacionPropiedadeas de la sumarestaymultiplicacion
Propiedadeas de la sumarestaymultiplicacionAnha Rivera
 
Escuela Normal De Texcoco:Contenidos conceptuales Del Programa De Matemátic...
Escuela  Normal  De Texcoco:Contenidos conceptuales Del Programa De Matemátic...Escuela  Normal  De Texcoco:Contenidos conceptuales Del Programa De Matemátic...
Escuela Normal De Texcoco:Contenidos conceptuales Del Programa De Matemátic...LUIS HORACIO Y JOSE HORACIO HERNANDEZ DIAZ
 
Mate nivelatoria semana1
Mate nivelatoria semana1Mate nivelatoria semana1
Mate nivelatoria semana1Medardo Galindo
 
Introduccion matematica
Introduccion matematica Introduccion matematica
Introduccion matematica Medardo Galindo
 
Propiedad de la suma, resta, multiplicacion
Propiedad de la suma, resta, multiplicacionPropiedad de la suma, resta, multiplicacion
Propiedad de la suma, resta, multiplicacionMaritza Bautista'
 
Operaciones basicas
Operaciones basicasOperaciones basicas
Operaciones basicasElia Anez
 
Concepto de propiedades y potencias
Concepto de propiedades y potenciasConcepto de propiedades y potencias
Concepto de propiedades y potenciascolegiopeumayen
 
La Multiplicación presentación
La Multiplicación presentación La Multiplicación presentación
La Multiplicación presentación Julian Bolaños
 
Propiedades de los números
Propiedades de los númerosPropiedades de los números
Propiedades de los númerosUJED
 
Numeros Naturales Y Enteros
Numeros Naturales Y EnterosNumeros Naturales Y Enteros
Numeros Naturales Y Enterosnekkito
 

Similar a Propiedades de la suma (20)

temas matemáticos
temas matemáticos temas matemáticos
temas matemáticos
 
Secretaria de educacion publica
Secretaria de educacion  publicaSecretaria de educacion  publica
Secretaria de educacion publica
 
CURSO DE MATEVOCA4
CURSO DE MATEVOCA4CURSO DE MATEVOCA4
CURSO DE MATEVOCA4
 
Números naturales g1
Números naturales g1Números naturales g1
Números naturales g1
 
numeros reales (1).pdf
numeros reales (1).pdfnumeros reales (1).pdf
numeros reales (1).pdf
 
Propiedadeas de la sumarestaymultiplicacion
Propiedadeas de la sumarestaymultiplicacionPropiedadeas de la sumarestaymultiplicacion
Propiedadeas de la sumarestaymultiplicacion
 
Escuela Normal De Texcoco:Contenidos conceptuales Del Programa De Matemátic...
Escuela  Normal  De Texcoco:Contenidos conceptuales Del Programa De Matemátic...Escuela  Normal  De Texcoco:Contenidos conceptuales Del Programa De Matemátic...
Escuela Normal De Texcoco:Contenidos conceptuales Del Programa De Matemátic...
 
Taller de adriana
Taller de adrianaTaller de adriana
Taller de adriana
 
Números enteros
Números enterosNúmeros enteros
Números enteros
 
Mate nivelatoria semana1
Mate nivelatoria semana1Mate nivelatoria semana1
Mate nivelatoria semana1
 
Numeros reales
Numeros reales Numeros reales
Numeros reales
 
Introduccion matematica
Introduccion matematica Introduccion matematica
Introduccion matematica
 
1) los números naturales
1) los números naturales1) los números naturales
1) los números naturales
 
Propiedad de la suma, resta, multiplicacion
Propiedad de la suma, resta, multiplicacionPropiedad de la suma, resta, multiplicacion
Propiedad de la suma, resta, multiplicacion
 
Operaciones basicas
Operaciones basicasOperaciones basicas
Operaciones basicas
 
Concepto de propiedades y potencias
Concepto de propiedades y potenciasConcepto de propiedades y potencias
Concepto de propiedades y potencias
 
La Multiplicación presentación
La Multiplicación presentación La Multiplicación presentación
La Multiplicación presentación
 
Propiedades de los números
Propiedades de los númerosPropiedades de los números
Propiedades de los números
 
Numeros Naturales Y Enteros
Numeros Naturales Y EnterosNumeros Naturales Y Enteros
Numeros Naturales Y Enteros
 
Numeros matematicos
Numeros matematicosNumeros matematicos
Numeros matematicos
 

Más de Rocio Hernandez Casanova (20)

Horario
HorarioHorario
Horario
 
Cronograma de actividades
Cronograma de actividadesCronograma de actividades
Cronograma de actividades
 
Rubrica2
Rubrica2Rubrica2
Rubrica2
 
Planea artisticas2
Planea artisticas2Planea artisticas2
Planea artisticas2
 
Planea artisticas
Planea artisticasPlanea artisticas
Planea artisticas
 
Horario
HorarioHorario
Horario
 
Rubrica expresion
Rubrica expresionRubrica expresion
Rubrica expresion
 
Cronograma de actividades
Cronograma de actividadesCronograma de actividades
Cronograma de actividades
 
Mtra dania ana
Mtra dania anaMtra dania ana
Mtra dania ana
 
Equipo 4 capitulo 3 presen hercy
Equipo 4 capitulo 3 presen hercyEquipo 4 capitulo 3 presen hercy
Equipo 4 capitulo 3 presen hercy
 
La mente no escolarizada
La mente no escolarizadaLa mente no escolarizada
La mente no escolarizada
 
Expo hercy-equipo 3
Expo hercy-equipo 3Expo hercy-equipo 3
Expo hercy-equipo 3
 
La enseñanza para la comprensión
La enseñanza para la comprensiónLa enseñanza para la comprensión
La enseñanza para la comprensión
 
Exposición estrategias docentes equipo 1
Exposición estrategias docentes equipo 1Exposición estrategias docentes equipo 1
Exposición estrategias docentes equipo 1
 
Yanet expo procesos mentales
Yanet expo procesos mentalesYanet expo procesos mentales
Yanet expo procesos mentales
 
Aprender en la vida y en la escuela cap. 10 14
Aprender en la vida y en la escuela cap. 10 14Aprender en la vida y en la escuela cap. 10 14
Aprender en la vida y en la escuela cap. 10 14
 
como pensamos parte 3
como pensamos parte 3como pensamos parte 3
como pensamos parte 3
 
2 cómo pensamos john dewey
2 cómo pensamos  john dewey2 cómo pensamos  john dewey
2 cómo pensamos john dewey
 
1 como pensamos
1 como pensamos1 como pensamos
1 como pensamos
 
Equipo4 la competencia como organizadora
Equipo4 la competencia como organizadoraEquipo4 la competencia como organizadora
Equipo4 la competencia como organizadora
 

Último

Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Pere Miquel Rosselló Espases
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIASandra Mariela Ballón Aguedo
 
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdfDemetrio Ccesa Rayme
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfANEP - DETP
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteinmaculadatorressanc
 
EVALUACION del tercer trimestre 2024 nap.docx
EVALUACION  del tercer trimestre 2024 nap.docxEVALUACION  del tercer trimestre 2024 nap.docx
EVALUACION del tercer trimestre 2024 nap.docxuniversidad Indoamerica
 
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptx
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptxHidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptx
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptxNathaly122089
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióPere Miquel Rosselló Espases
 
En un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfEn un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfAni Ann
 
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptxnelsontobontrujillo
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docxCarlosEnriqueArgoteC
 
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptxPATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptxSusanaAlejandraMende
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasFlor Idalia Espinoza Ortega
 
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...helmer del pozo cruz
 
TEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilizaciónTEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilizaciónVasallo1
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesChema R.
 
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdfGran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdfEdgar R Gimenez
 

Último (20)

TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdfTÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
TÉCNICAS OBSERVACIONALES Y TEXTUALES.pdf
 
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
Realitat o fake news? – Què causa el canvi climàtic? - Modificacions dels pat...
 
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIALA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
LA GEOMETRÍA Y LOS SISTEMAS ANGULARES, APRENDER LEYENDO LA BIBLIA
 
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdfEstrategia Nacional de Refuerzo Escolar  SJA  Ccesa007.pdf
Estrategia Nacional de Refuerzo Escolar SJA Ccesa007.pdf
 
Power Point : Motivados por la esperanza
Power Point : Motivados por la esperanzaPower Point : Motivados por la esperanza
Power Point : Motivados por la esperanza
 
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdfRESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
RESPONSABILIDAD SOCIAL EN LAS ORGANIZACIONES (4).pdf
 
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanenteDiapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
Diapositivas unidad de trabajo 7 sobre Coloración temporal y semipermanente
 
EVALUACION del tercer trimestre 2024 nap.docx
EVALUACION  del tercer trimestre 2024 nap.docxEVALUACION  del tercer trimestre 2024 nap.docx
EVALUACION del tercer trimestre 2024 nap.docx
 
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptx
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptxHidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptx
Hidrocarburos cíclicos, EJERCICIOS, TEORIA Y MÁS.pptx
 
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertitzacióRealitat o fake news? – Què causa el canvi climàtic? - La desertització
Realitat o fake news? – Què causa el canvi climàtic? - La desertització
 
En un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdfEn un aposento alto himno _letra y acordes.pdf
En un aposento alto himno _letra y acordes.pdf
 
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
3. ELEMENTOS QUE SE EMPLEAN EN LAS ESTRUCTURAS.pptx
 
2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx2.15. Calendario Civico Escolar 2024.docx
2.15. Calendario Civico Escolar 2024.docx
 
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptxPATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
PATRONES DE REFERENCIA, CRITERIOS Y DIAGNOSTICO Angeles.pptx
 
ciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemasciclos biogeoquimicas y flujo de materia ecosistemas
ciclos biogeoquimicas y flujo de materia ecosistemas
 
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
RESOLUCION_VICE_MINISTERIAL-00048-2024-M-EVALUACIÓN EVALAUCION FORMATIVA MINE...
 
TEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilizaciónTEMA EGIPTO.pdf. Presentación civilización
TEMA EGIPTO.pdf. Presentación civilización
 
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLAACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
ACERTIJO CÁLCULOS MATEMÁGICOS EN LA CARRERA OLÍMPICA. Por JAVIER SOLIS NOYOLA
 
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOcialesTema 9. Roma. 1º ESO 2014. Ciencias SOciales
Tema 9. Roma. 1º ESO 2014. Ciencias SOciales
 
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdfGran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
Gran Final Campeonato Nacional Escolar Liga Las Torres 2017.pdf
 

Propiedades de la suma

  • 1. PROPIEDADES DE LA SUMA. Propiedad conmutativa: si el orden de los factores cambia no altera el resultado: a+b=b+a. Propiedad asociativa: Propiedad que establece que cuando se suma tres o más números, la suma siempre es la misma independientemente de su agrupamiento.2 Un ejemplo es: a+(b+c) = (a+b)+c. Elemento neutro: 0. Para cualquier número a, a + 0 = 0 + a = a. Elemento opuesto o inverso aditivo: Para cualquier número entero, racional, real o complejo a, existe un número −a tal que a + (−a) = (−a) + a = 0. Este número −a se denomina elemento opuesto, y es único para cada a. No existe en algunos conjuntos, como el de los números naturales. Propiedad distributiva: La suma de dos números multiplicada por un tercer número es igual a la suma del producto de cada sumando multiplicado por el tercer número. Por ejemplo, (6+3) * 4 = 6*4 + 3*4. Propiedad de cerradura:Cuando se suman números naturales el resultado es siempre un número natural. Por ejemplo a+b=c. Estas propiedades pueden no cumplirse en casos del límite de sumas parciales cuando tienden al infinito PROPIEDADES DE LA MULTIPLICACIÓN: Conmutativa: el orden de los factores no altera el producto.2 x 3 = 3 x 2 Asociativa: en una multiplicación de 3 o más factores se puede empezar multiplicando los 2 primeros y el resultado multiplicarlo por el tercero; o empezar multiplicando el segundo por el tercero y el resultado multiplicarlo por el primero. 4 x 2 x 5 = (4 x 2) x 5 = 8 x 5 = 40 5 4 x 2 x 5 = 4 x (2 x 5) = 4 x 10 = 40 Elemento neutro: la multiplicación tiene un elemento neutro que es el 1. Si se multiplica cualquier número por 1 el resultado es el mismo número: 9x1=9 Propiedad distributiva: cuando se multiplica un número por una suma (resta) se puede: Resolver primero la suma (resta) y el resultado multiplicarlo por el número.
  • 2. O multiplicar el número por cada uno de los elementos de la suma (resta) y luego sumar (restar) los resultados. Ejemplos: (4 + 7) x 3 (4 + 7) x 3= (11) x 3 = 33 (4 + 7) x 3= (4 x 3) + (7 x 3) = 12 + 21 = 33 Ejemplos: (5 - 3) x 2 (5 - 3) x 2= (2) x 2 = 4 (5 - 3) x 2= (5 x 2) - (3 x 2) = 10 - 6 = 4 PROPIEDADES DE LA RESTA Cálculo de los elementos de la resta: El minuendo es igual a la suma del sustraendo y la diferencia:10 - 7 = 3 El minuendo (10) es igual: 10 = 7 + 3 El sustraendo es igual al minuendo menos la diferencia:12 – 8 = 4 El sustraendo (8) es igual:8 = 12 - 4 NUMERO IRRACIONAL: En matemáticas, se llama número racional a todo número que puede representarse como el cociente de dos números enteros (más precisamente, un entero y un natural positivo1 ) es decir, una fracción común a/b con numerador a y denominador b distinto de cero NUMEROS PRIMOS: En matemáticas, un número primo es un número naturalmayor que 1 que tiene únicamente dos divisores distintos: él mismo y el 1. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,79, 83, 8 9 y 97.1