1. LA ACELERACION GRAVITACIONAL NO ES CONSTANTE.
Como vimos en el tema 4, la caída de los cuerpos en un movimiento uniformemente acelerado
cuya aceleración se denomina gravitacional y se debe a la fuerza de atracción que le proporciona
La Tierra a todo objeto cerca de la superficie. Aunque en un principio se puede considerar – en
una buena aproximación – que el valor de la aceleración gravitacional es constante, es decir, que
en cualquier lugar del planeta su valor es el mismo se puede ver que en realidad varia en la
medida que la distancia al centro del planeta es mayor o menor y en la medida en que nos
acerquemos o alejamos de los polos terrestres.
En la tabla 1,9 se indican los valores de la aceleración en algunos lugares a distintas alturas sobre
el nivel del mar y en distintas latitudes.
Lugar Latitud Norte Elevación g(m/s)²
Zona Del Canal 9° 0 9,78243
Jamaica 18° 0 9,78591
Bermudas 32° 0 9,79806
Denver 40° 1638 9,79609
Cambridge 42° 0 9,80348
Lugar De Patrón 9,80665
Groenlandia 70° 0 9,62534
Realizar un experimento muy sencillo que te permita calcular el valor de la aceleración
gravitacional en el lugar en el que te encuentras.
Suspende de un hilo un objeto preferiblemente metálico (tornillo, candado, etc.) como se indica
en la tabla. De forma tal que te permita medir el ángulo formado por el hilo y la vertical. Retira el
péndulo de su posición de equilibrio cuidando que el ángulo entre el hilo y la vertical, no sea
mayor a 15°. Suéltalo y en un cronometro mide el tiempo que tarda el péndulo en hacer 10
oscilaciones completas. Consigna la medición en una tabla como la siguiente y repite la
experiencia por lo menos 10 veces.
Medición 1 2 3 4 5 6 7 8 9 10
Tiempo
De
Oscilaciones
Sin importa que tan cuidadoso se sea a la hora de hacer mediciones esta siempre se ve afectada
por circunstancias difíciles de controlar. Por ejemplo, nuestra velocidad de reacción para poner en
marcha y detener el cronometro en el momento indicado, acarrea siempre un error en la medición
que se debe calcular siempre y expresar como parte de la medición. De una cantidad X la mejor
2. estimación del error o incertidumbre producida por causa aleatorias como la mencionada
anteriormente se denota como (ƠX y se calcula así:
1. Calcula el promedio mayor con menor de todas las medidas sumándolas y dividiendo la
suma por el número total de medición.
2. Resta a cada medida el promedio.
3. Eleva al cuadrado cada una de las restas del punto anterior y suma los resultados
divididos.
4. Divide la suma entre el número total de mediciones multiplicada por el mismo número
restado en 1. Por ejemplo, si son 10 mediciones, se debe dividir la suma de cuadrados
entre 10(10-1)=90.
5. Saca raíz cuadrada al cociente obteniendo en el punto anterior.
6. Todo el resultado experimental o medida hacha en el laboratorio debe de ir acompañada
del valor estimado del error de la medida X las unidades empleadas así: < X > ±ƠX
“unidad de medida”
Realiza los cálculos respectivos y expresa el tiempo de las 10 oscilaciones del péndulo de esa
manera y calcula el periodo del péndulo dividiendo, entre 10 teniendo en cuenta que el periodo
tendrá el valor de incertidumbre que no puedes ignorar.
El valor de la aceleración gravitacional es < g > = ) donde ʆ es la longitud del péndulo y que
superior a oscilación. Calcula empleando< ʈ > y calculando la incertidumbre de g de la siguiente
manera.
) (Promedio de incertidumbre)
Por ultimo expresa su medición como se ha indicado. Es decir,
Aceleración gravitacional del lugar = < g >±Ơg = g √( ) √ .
Donde 1 y Ơ son la longitud del péndulo y la Ơ experimental de esta longitud respectivamente.
Ơ, la puedes estimar 0.1 cm aproximadamente.
3. 1. Haz una consulta bibliográfica y explica para que se debe hacer oscilar el péndulo desde
el ángulo inicial mayor a 15°.
2. ¿Cómo explicar el hecho que la aceleración gravitacional sea distinto en 2 ciudades a la
misma altura en distintas latitudes?
3. Debes verificar que la aceleración gravitacional varié con la altura y con la latitud ¿Qué
esperarías que ocurrieses con el periodo de oscilación del péndulo en un lugar a mayor
altura que en el que esta para corroborar este hecho?
4. ¿Qué diferencia abra entre el valor de la aceleración gravitacional medida en Leticia y el
medido en La Guajira que tanto entre Miami y España?
5. ¿Sería posible generar un patrón de tiempo con un péndulo así. Describe los
inconvenientes que generaría.
TALLER “ACELERACION GRAVITACIONAL”
OBJETIVO.
Demostrar que la aceleración gravitacional no es constante.
MARCO TEORICO.
La aceleración causada por la gravedad, denominada aceleración de gravedad, varía de un
lugar a otro en la Tierra. A mayores latitudes, la aceleración es mayor. La razón de ello,
la discutiremos en lecciones próximas. Sin embargo, para fines de cálculos matemáticos
utilizamos el valor de 9.81 m/s². Este es un valor promedio de los valores medidos en
distintas latitudes en la Tierra. ¿Sabías que la aceleración gravitacional es diferente para
cualquier lugar del mundo? Este valor normalmente se representa con la letra “g”. Así
que g = 9.81 m/s². Para un objeto que cae libremente su aceleración será de 9.8 m/s². Sin
embargo, para un objeto que es lanzado hacia arriba, su aceleración será de -9.8m/s². Esto
explica porque la velocidad del objeto disminuye según altura va aumentando.
MATERIALES.
Temática
Cronometro
Arandela
Hilo
Escuadra
Microsoft Word
Internet
Computador
Cámara digital
4. MONTAJE.
Hacer un péndulo.
PROCEDIMIENTO.
Armamos el péndulo (parte superior)
Luego tomamos el tiempo que se demora la arandela y el hilo en hacer 10 oscilaciones.
Plasmamos esos datos en una tabla
Medición 1 2 3 4 5 6 7 8 9 10
Tiempo
De
Oscilaciones
6.23 s 6,56 s 6,68 s 6,28 s 6,14 s 6,43 s 6,42 s 6,41 s 6,54 s 6,56 s
Hallamos promedio.
Resta a cada medida el promedio.
Medición 1 2 3 4 5 6 7 8 9 10
Tiempo de
Oscilaciones
(-) promedio
6,24–
6,28=
-0,04
6,56–
6,28=
0,28
6,67–
6,28=
-0,39
6,24–
6,28=
-0,04
6,13–
6,28=
-0,15
6,41–
6,28=
0,13
6,43 -
6,28=
0,15
6,44-
6,28=
0.16
6,55-
6,28=
-0,27
6,23-
6,28=
-0,05
Realiza los cálculos respectivos y expresa el tiempo de las 10 oscilaciones del péndulo de esa
manera y calcula el periodo del péndulo dividiendo, entre 10 teniendo en cuenta que el periodo
tendrá el valor de incertidumbre que no puedes ignorar.
Medición 1 2 3 4 5 6 7 8 9 10
Tiempo
de 1
oscilación
0,624
s
0,656
s
0,667
s
0,624
s
0,613
s
0,641
s
0,643
s
0,644
s
0,625
s
0,623
s
1. (6,24 / 10) = 0,624
2. (6,56 / 10) = 0,656
3. (6,67 / 10) = 0,667
4. (6,24 / 10) = 0,624
5. (6,13/ 10) = 0,613
6. (6,41 / 10) = 0,641
7. (6,43/ 10) = 0,643
8. (6,44 / 10) = 0,644
9. (6,55/ 10) = 0,655