SlideShare una empresa de Scribd logo

Unidad 2 . Seleccion sobre Polinomios

Preguntas propuestas de opcion multiple relativas a Polinomios

1 de 5
Descargar para leer sin conexión
AUTONOMA DE SANTO DOMINGO
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICAS
ALGEBRA SUPERIOR. MAT– 230
PRACTICA PROPUESTA. UNIDAD 2
Preparado por: Prof. Rosa Cristina De Pena Olivares
Encierre en un círculo la expresión que haga cierto lo que se
plantea en cada caso.
1. La determinación del valor numérico correspondiente al valor de X en un polinomio P(x) se
identifica como:
a) Polinomio Iguales b)Forma vectorial de un polinomio.
c) Evaluación del polinomio. d) Raíz o cero de un polinomio
2. El método más general usado para dividir polinomios, manteniendo siempre la variable que
acompaña cada termino es:
a) Método de Ruffini. b) Método de coeficientes separados.
c) División tradicional. d) Algoritmo de la división.
3. El método que requiere formar una expresión general para el cociente q(x) y otra para el resto r(x)
tomando en cuenta su grado es:
a) Teorema de resto. b) División irracional.
c) Espacio Vectorial. d) Método de los coeficientes indeterminados.
4. La suma de números finitos de términos cada uno de los cuales que es el producto de una colección
finita de números y variables se identifica como:
a) Polinomio Nulo b) Polinomio c)Polinomio Incompleto d)Constante
5. El proceso abreviado para efectuar la división de un polinomio entre un binomio de la forma (x-a) es:
a) Polinomio primo. b) Polinomios asociados.
c) Divisibilidad de polinomios. d) División sintética o de Ruffini.
6. Es un polinomio constante de coeficiente irracional.
a) 32 b) √9 c)2 d)√3
7. El resto de dividir el polinomio 15𝑥5
+ 3𝑥4
+ 2𝑥3
+ 30 𝑒𝑛𝑡𝑟𝑒 𝑥3
− 1 es:
a) 0 b) x-3 c) 15𝑥2
+ 3𝑥 + 32 d) ninguna de las anteriores
8. El producto de (5𝑥4
+ 3𝑥3
− 6𝑥2
+ 𝑥 − 3) (2𝑥2
− 3𝑥 + 4) es:
a) 6𝑥7
− 9𝑥4
− 33𝑥2
+ 13𝑥 b) 10𝑥6
− 9𝑥5
− 𝑥4
+ 32𝑥3
− 33𝑥2
+ 13𝑥 − 12
c) 10𝑥6
− 9𝑥5
+ 𝑥4
− 32𝑥3
+ 33𝑥2
− 13𝑥 + 12 d) 10𝑥6
+ 9𝑥5
+ 𝑥4
+ 32𝑥3
− 33𝑥2
+ 13𝑥 + 12
9. El resultado de restar los polinomios P(x) – G(x) siendo P(x) = 4𝑥4
− 5𝑥3
+ 2𝑥2
− 6𝑥 + 7
Y G(x)= 𝑥3
+ 2𝑥2
− 3𝑥 + 4 tenemos:
a)4𝑥4
+ 5𝑥3
− 2𝑥2
− 9𝑥 + 11 b) 2𝑥4
− 3𝑥3
− 5𝑥2
+ 3𝑥 + 4
c)4𝑥4
− 4𝑥3
− 3𝑥 + 4 d) 4𝑥4
− 6𝑥3
− 3𝑥 + 3
10. Si restamos los polinomios P(x) =5𝑥4
+ 2𝑥3
− 7𝑥2
− 3𝑥 + 5 y M(x) = 2𝑥3
− 9𝑥2
+ 3𝑥 + 4
su resultado es:
a) 5𝑥4
+ 3𝑥3
+ 16𝑥2
+ 6𝑥 − 9 b) 2𝑥3
+ 5𝑥2
− 12𝑥 + 7
c) 5𝑥4
+ 4𝑥3
− 16𝑥 − 6𝑥 + 9 d) 5𝑥4
+ 2𝑥2
− 6𝑥 + 1
11. Al dividir (𝑥5
− 2𝑥4
+ 3𝑥 − 2) 𝑒𝑛𝑡𝑟𝑒 (𝑥 − 2) usando la división sintética , el resto es igual a:
a) -7 b) 0 c) -8 d) 4
12. El polinomio que tiene todos sus coeficientes iguales a cero y no tiene grado se identifica como:
a) Incompleto b) Constante c)Nulo d) Normal
13. ¿Qué tipo de grafico resulta al graficar una función polinómica de segundo grado?
a) Línea recta b) Hipérbola c) Parábola d) Una elipse
14. ¿Qué tipo de grafico resulta al graficar una función polinómica de primer grado?
a) Línea recta b) Hipérbola c) Parábola d) Una elipse
15. ¿Qué tipo de grafico resulta al graficar una función polinómica de tercer grado?
a) Línea recta b) Hipérbola c) Parábola d) Una elipse
16. A partir de P(x) = 2𝑥3
+2𝑥2
-3x+2, ¿Cuál de los siguientes binomios es factor del polinomio dado?
a) X-2 b) X+5 c) X+15 d) X+2
17. El polinomio cuyo coeficiente principal es la unidad se llama polinomio:
a) Nulo b) Mónico c) Constante d) Completo
18. P(x)+(-P(x))=0 es una representación de:
a) La propiedad distributiva b) Ley de identidad c) Ley uniforme d) Ley del opuesto
19. Un polinomio donde la variable posea solo coeficientes racionales enteros se identifica como
polinomio:
a)Nulo b) Racional entero c) Irracional d) Completo
20. Mediante el Teorema del resto, que obtenemos al reemplazar a “x” por el término independiente del
binomio con signo contrario:
a) El residuo b) El cociente c)Un término d) El grado
21. Un polinomio está representado por:
a) Una suma de términos semejantes.
b) Una suma de términos ordenados en forma creciente.
c) Una suma de términos no semejantes que pueden estar ordenados en forma creciente o decreciente
d) Una suma de términos no semejantes ordenados solo de manera decreciente.
22. La forma vectorial del polinomio 𝑃(𝑥) = 14𝑥4
− 60𝑥3
+ 49𝑥2
− 21𝑥 + 19 es:
a) (14,49,-21,19) b) (14,0,-60,49,-21,19) c) (19,-21,49,-60,14,0) d)(19,-21,49,-60,14)
23. Al evaluar el polinomio 𝑃(𝑥) = 3𝑥4
− 𝑥2
+ 2𝑥 − 4 en 𝑃 (
1
2
) su resultado es:
a) 3.0625 b) -7/8 c) - 49/16 d) - 3
24. Es un factor de 𝑃(𝑥) = 𝑥3
− 6𝑥2
+ 12𝑥 − 8
a) (x+2) b) (x-1/2) c)(x-2) d) (x-4)
25. El grado de un polinomio se define por:
a) La cantidad de términos que contiene. b) El más alto de los grados de sus términos.
c) El coeficiente más alto de sus términos. d) El menor grado de sus términos.
26. Cuando los coeficientes de un polinomio pertenecen a un cierto campo numérico C, se dice que F(x) es:
a) Un polinomio que no está definido sobre C o que no pertenece a C (x).
b) Es un número natural que muestra el grado del polinomio.
c) Es un polinomio que está dividido por C
d) Es un polinomio que está definido sobre C.
27. El valor de “X” que hace cero la evaluación de P(x) se identifica como:
a) Raíz de un polinomio P(x) b) Polinomios Asociados
c) Polinomio nulo d) Ninguna de las anteriores
28. La operación entre polinomios P(x), M(x), N(x) que se plantea como P(x) + [-M(x)-N(x)] es:
a) División de Polinomios b) Multiplicación de Polinomios
c) Resta de polinomios d) ninguna de las anteriores
29. Es la suma de un número finito de términos cada uno de los cuales es el producto de una colección finita de
números y variables.
a) Vector b) Polinomio c) Matriz d) Ecuación
30. Un polinomio nulo es:
a) El que tiene todos sus coeficientes iguales a cero. b) Aquel cuyo coeficiente principal es la unidad.
c) Polinomio que consta de un número distinto de cero d) b y c son correctas
31. La división sintética se puede utilizar para dividir una función polinómica por un:
a) Binomio b) Monomio y binomio c) Trinomio d) Monomio
32. ¿Cuál es el producto de multiplicar 𝑃(𝑥) = 𝑥4
+ 5𝑥3
+ 2𝑥2
− 𝑥 − 7 por 𝑀(𝑥) = 𝑥 + 1
a) 𝑥5
+3𝑥4
+ 5𝑥3
+ 𝑥2
− 8𝑥 − 7 b) 𝑥5
−4𝑥4
+ 5𝑥3
− 𝑥2
+ 8𝑥 − 7
c) 𝑥5
+4𝑥4
+ 5𝑥3
+ 𝑥2
− 8𝑥 − 7 d) 𝑥5
−4𝑥4
− 5𝑥3
− 𝑥2
− 8𝑥 − 7
33. El resto de dividir 𝑃(𝑥) = 𝑥4
+ 5𝑥3
+ 2𝑥2
− 𝑥 − 7 entre x+1 es igual a:
a) 16 b) 8 c) -8 d) -7
34. A partir de 𝑃(𝑥) = 4𝑥4
+ 3𝑥3
+ 5𝑥2
− 2𝑥 + 3; 𝑀(𝑥) = 5𝑥3
− 3𝑥2
+ 7𝑥 − 3
P(x)-M(x) es igual:
a) 4𝑥4
+ 2𝑥3
+ 8𝑥2
− 9𝑥 + 6 b) 4𝑥4
− 8𝑥3
− 8𝑥2
+ 9𝑥 − 6
c) 4𝑥4
− 2𝑥3
+ 8𝑥2
− 9𝑥 + 6 d) 4𝑥4
+ 8𝑥3
+ 8𝑥2
+ 9𝑥
35. ¿Cuál de estos polinomios es de tercer grado, creciente, completo y de coeficientes enteros
positivos?
a) 8𝑥3
− 8𝑥2
+ 9𝑥 − 6 b) −𝑥3
+ 2 c) 18 + 10𝑥 + 2𝑥2
+ 𝑥3
d) 18 + 10𝑥 − 2𝑥2
− 𝑥3
36. El polinomio opuesto de 𝑀(𝑥) = 𝑥3
+ 2𝑥2
− 5𝑥 + 6 es:
a) 𝑥3
+ 2𝑥2
− 5𝑥 − 6 b) −𝑥3
+ 2𝑥2
+ 5𝑥 + 6 c) 𝑥3
− 2𝑥2
− 5𝑥 + 6 d)− 𝑥3
− 2𝑥2 + 5𝑥 − 6
37. ¿Cuantos términos debe tener el polinomio para estar completo: 𝑃(𝑥) = 𝑥4
+ 2𝑥 + 1
a) 4 b) 3 c) 5 d) 6
38. ¿Cuantos términos le faltan al polinomio para estar completo: 𝑃(𝑥) = 𝑥4
+ 2𝑥 + 1
a) Ninguno b) 3 c) 1 d) 2
39. Cuál de estos polinomios esta ordenado en forma decreciente y es completo?
a) 𝑀(𝑥) = 𝑥 − √2𝑥2
+ 2𝑥3
+ 3𝑥4
− 7𝑥5
b) 𝑃(𝑥) = 1 + 3𝑥2
−
3
4
𝑥3
c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑁(𝑥) = 8 + 4𝑥 + 6𝑥2
+ 5𝑥3
40. Cuál de estos polinomios esta ordenado en forma creciente y es completo?
a) 𝑀(𝑥) = 𝑥 − √2𝑥2
+ 2𝑥3
+ 3𝑥4
− 7𝑥5
b) 𝑃(𝑥) = 1 + 3𝑥2
−
3
4
𝑥3
c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑃(𝑥) = 8 + 4𝑥 + 6𝑥2
+ 5𝑥3
41. Cuál de estos polinomios esta ordenado en forma creciente e incompleto?
a) 𝑀(𝑥) = 6 + 𝑥 − √2𝑥2
+ 2𝑥3
+ 3𝑥4
− 7𝑥5
b) 𝑃(𝑥) = 1 + 3𝑥2
−
3
4
𝑥3
c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑃(𝑥) = 8 + 4𝑥 + 6𝑥2
+ 5𝑥3
42. Cuando decimos que un polinomio es nulo si:
a) Se escribe en orden creciente. b) Se escribe en orden decreciente
c) Posee todos sus coeficientes cero d) a y b son correctas
43. La propiedad distributiva del producto de un polinomio respecto a la adición de escalares es:
a) P(x) + (-P(x)) = 0 b) (K+L) P(x) = K P(x) + L P(x) c) P(x) + 0 = P(x) d) 1P(x) = P(x)
44. Para realizar una división de polinomios por el método de Ruffini el cociente debe ser:
a) Un trinomio cuadrado perfecto b) Un polinomio Mónico
c) Un binomio de primer grado d) La raíz cubica de un número imaginario
45. Es un polinomio de quinto grado, ordenado en forma creciente y completo
a) 𝑀(𝑥) = 1 + 2𝑥2
+ 7𝑥5
b) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 4𝑥5
c) 𝑊( 𝑥) = 3𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 9 + 3𝑥 − 2𝑥2
− 2𝑥3
− 5𝑥5
46. Es un polinomio de quinto grado, ordenado en forma creciente e incompleto?
a) 𝑀(𝑥) = 1 + 2𝑥2
+ 7𝑥5
b) ) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 4𝑥5
c) 𝑊( 𝑥) = 3𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 1 + 3𝑥 − 2𝑥2
− 2𝑥3
+ 𝑥4
− 𝑥5
47. Es un polinomio de quinto grado, ordenado en forma creciente, completo y mónico?
a) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 𝑥5 b) 𝑀(𝑥) = 1 + 2𝑥2
+ 𝑥5
c) 𝑊( 𝑥) = 𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 9 + 3𝑥 − 2𝑥2
− 2𝑥3
− 𝑥5
48. Es un polinomio de quinto grado, ordenado en forma creciente e incompleto y Mónico?
a) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 𝑥5 c) 𝑊( 𝑥) = 𝑥5 − 2𝑥4 + 8𝑥3 + 3𝑥 + 8
d) 𝑃(𝑥) = 1 + 3𝑥 − 2𝑥2
+ 𝑥4
+ 9𝑥5
d) 𝑀(𝑥) = 1 + 2𝑥2
+ 𝑥5
49. Los números que solo admiten como divisores el mismo número y la unidad se identifican como
números:
a) Enteros b) Naturales c) Imaginarios d) Primos
50. Un polinomio es factor de otro cuando al hacer la división tenemos que:
a) El cociente es uno b) El residuo es cero c) La división es exacta d) b y c son correctas
51. Si P(x) = 𝑥5
− 5𝑥4
+ 6𝑥3
; M(𝑥) = 5𝑥3
− 12𝑥2
+ 2𝑥 ; 𝑊( 𝑥) = 𝑥3 − 5𝑥2 + 6𝑥 + 1
El resultado de sumar P(x) + M(x) + W(x) es:
a)5𝑥5
+ 12𝑥4
− 6𝑥3
+ 2𝑥 + 1 b) 𝑥5
− 5𝑥4
+ 12𝑥3
− 17𝑥2
+ 8𝑥 − 1
c) 2𝑥5
− 8𝑥4
+ 5𝑥3
− 𝑥2
+ 6𝑥 + 1 d) 𝑥5
− 5𝑥4
+ 12𝑥3
+ 8𝑥 − 1
52. Polinomio constante es el que posee:
a) Un término de cualquier grado b) Un término de grado cero
c) Término de coeficiente uno d) Término de coeficiente dos y cualquier grado
53. Un Binomio es un polinomio que posee:
a) Grado tres b) Dos términos c) Un término d) Grado cero
54. El polinomio 𝑀(𝑥) = 𝑥2
− 5𝑥 + 6 factorizado es:
a) M(x)= (x + 6)(x-1) b)M(x)= (x-5)(x-1) c) M(x)=(x-3)(x-2) d)M(x)= (x-3)(x+2)
55. Las raíces del polinomio 𝑀(𝑥) = 𝑥2
− 5𝑥 + 6 son:
a) x= -6; x=1 b) x=5; x = 1 c) x = 3; x = 2 d) x= 3; x = -2
56. La evaluación del polinomio 𝑀(𝑥) = 𝑥2
− 5𝑥 + 6 en x= 3 es:
a) M(3)= 6 b) M(3)= 5 c) M(3)= -5 d) M(3)= 0
57. El polinomio de cuarto grado de coeficientes literales y ordenado de forma decreciente es:
a) −e + dx + 𝑐𝑥2
− 𝑏𝑥3
+ 𝑎𝑥4
b) 2𝑥4
+ 4𝑥3
+ 5𝑥2
+ 3x − 2
c) −2 +3x +5𝑥2
4𝑥3
+ 2𝑥4
𝑑) 𝑎𝑥4
+ 𝑏𝑥3
− 𝑐𝑥2
+ dx − e
58. Si P(x) =3𝑥2
+ 4x + 3 y Q(x) = 𝑥2
− 2x + 3 entonces P(x)+Q(x) es igual a:
a) 3𝑥2
− 2x + 6 b) 4𝑥2
− 6x c) 4𝑥4
+ 2𝑥2
+ 6 d) 4𝑥2
+ 2x + 6

Recomendados

Taller potenciación y radicación para la web
Taller potenciación y radicación para la webTaller potenciación y radicación para la web
Taller potenciación y radicación para la webdiomeposada
 
MONOMIOS,Taller de nivelacion grado Octavo periodo dos
MONOMIOS,Taller de nivelacion grado Octavo periodo dosMONOMIOS,Taller de nivelacion grado Octavo periodo dos
MONOMIOS,Taller de nivelacion grado Octavo periodo doscriollitoyque
 
Prueba diagnostica de matematicas grado 11
Prueba diagnostica de matematicas grado 11Prueba diagnostica de matematicas grado 11
Prueba diagnostica de matematicas grado 11Alvaro Soler
 
Examen productos notables
Examen productos notablesExamen productos notables
Examen productos notablescristina cano
 
53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmica53 ejercicios logaritmos y función logarítmica
53 ejercicios logaritmos y función logarítmicaMarcelo Calderón
 

Más contenido relacionado

La actualidad más candente

Perimetro con expresiones algebraicas
Perimetro con expresiones algebraicasPerimetro con expresiones algebraicas
Perimetro con expresiones algebraicasOMAR FREDY RODRIGUEZ
 
Taller las propiedades de la potencia
Taller las propiedades de la potenciaTaller las propiedades de la potencia
Taller las propiedades de la potenciaRamiro Muñoz
 
Ejercicios tipo prueba racionales
Ejercicios tipo prueba racionalesEjercicios tipo prueba racionales
Ejercicios tipo prueba racionalesMayra Alejandra
 
Guia de ejercicios inecuaciones 8 y 7
Guia de ejercicios inecuaciones 8 y 7Guia de ejercicios inecuaciones 8 y 7
Guia de ejercicios inecuaciones 8 y 7Deniss Ale Ulloa
 
Álgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosÁlgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosComputer Learning Centers
 
Modelo de Examen de Reparación de matemática Noveno Grado
Modelo de Examen de Reparación de matemática Noveno Grado Modelo de Examen de Reparación de matemática Noveno Grado
Modelo de Examen de Reparación de matemática Noveno Grado Cliffor Jerry Herrera Castrillo
 
Taller funcion cuadratica chircales
Taller funcion cuadratica chircalesTaller funcion cuadratica chircales
Taller funcion cuadratica chircalesCarlopto
 
Problemas ecuaciones primer grado
Problemas ecuaciones primer gradoProblemas ecuaciones primer grado
Problemas ecuaciones primer gradoMaría Pizarro
 
Ecuación de la recta y circunferencia. examen 1
Ecuación de la recta y circunferencia. examen 1Ecuación de la recta y circunferencia. examen 1
Ecuación de la recta y circunferencia. examen 1math class2408
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013Victor Alegre
 
Guía 1 grado octavo números reales 2015
Guía 1 grado octavo números reales 2015Guía 1 grado octavo números reales 2015
Guía 1 grado octavo números reales 2015PARRA113
 
12 guía 12 sem 1 ecuaciones aditivas y multiplicativas
12 guía 12  sem 1 ecuaciones aditivas y multiplicativas12 guía 12  sem 1 ecuaciones aditivas y multiplicativas
12 guía 12 sem 1 ecuaciones aditivas y multiplicativaseecoronado
 
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticas
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticasTABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticas
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticasAlexandra Sotama Ortiz
 
Prueba de unidad 6º ecuaciones
Prueba de unidad 6º ecuacionesPrueba de unidad 6º ecuaciones
Prueba de unidad 6º ecuacionesAlicia Moreno
 

La actualidad más candente (20)

Perimetro con expresiones algebraicas
Perimetro con expresiones algebraicasPerimetro con expresiones algebraicas
Perimetro con expresiones algebraicas
 
Taller las propiedades de la potencia
Taller las propiedades de la potenciaTaller las propiedades de la potencia
Taller las propiedades de la potencia
 
EXAMEN DE MATEMATICA - TERCERO BACHILLERATO
EXAMEN DE MATEMATICA - TERCERO BACHILLERATOEXAMEN DE MATEMATICA - TERCERO BACHILLERATO
EXAMEN DE MATEMATICA - TERCERO BACHILLERATO
 
Ejercicios tipo prueba racionales
Ejercicios tipo prueba racionalesEjercicios tipo prueba racionales
Ejercicios tipo prueba racionales
 
Guia de ejercicios inecuaciones 8 y 7
Guia de ejercicios inecuaciones 8 y 7Guia de ejercicios inecuaciones 8 y 7
Guia de ejercicios inecuaciones 8 y 7
 
Álgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de PolinomiosÁlgebra Evaluación y Suma y Resta de Polinomios
Álgebra Evaluación y Suma y Resta de Polinomios
 
05 prueba funcion cuadratica
05 prueba funcion cuadratica05 prueba funcion cuadratica
05 prueba funcion cuadratica
 
Modelo de Examen de Reparación de matemática Noveno Grado
Modelo de Examen de Reparación de matemática Noveno Grado Modelo de Examen de Reparación de matemática Noveno Grado
Modelo de Examen de Reparación de matemática Noveno Grado
 
Taller funcion cuadratica chircales
Taller funcion cuadratica chircalesTaller funcion cuadratica chircales
Taller funcion cuadratica chircales
 
Problemas ecuaciones primer grado
Problemas ecuaciones primer gradoProblemas ecuaciones primer grado
Problemas ecuaciones primer grado
 
Unidad 6. Seleccion sobre Determinantes
Unidad 6. Seleccion sobre   DeterminantesUnidad 6. Seleccion sobre   Determinantes
Unidad 6. Seleccion sobre Determinantes
 
Evaluacion funcion lineal grado 9
Evaluacion funcion lineal grado 9Evaluacion funcion lineal grado 9
Evaluacion funcion lineal grado 9
 
Prueba icfes 8 ctavo segundo 2010
Prueba icfes 8 ctavo segundo  2010Prueba icfes 8 ctavo segundo  2010
Prueba icfes 8 ctavo segundo 2010
 
Ejercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendicularesEjercicios de paralelas y perpendiculares
Ejercicios de paralelas y perpendiculares
 
Ecuación de la recta y circunferencia. examen 1
Ecuación de la recta y circunferencia. examen 1Ecuación de la recta y circunferencia. examen 1
Ecuación de la recta y circunferencia. examen 1
 
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013PROBLEMAS CON PRODUCTOS NOTABLES II 2013
PROBLEMAS CON PRODUCTOS NOTABLES II 2013
 
Guía 1 grado octavo números reales 2015
Guía 1 grado octavo números reales 2015Guía 1 grado octavo números reales 2015
Guía 1 grado octavo números reales 2015
 
12 guía 12 sem 1 ecuaciones aditivas y multiplicativas
12 guía 12  sem 1 ecuaciones aditivas y multiplicativas12 guía 12  sem 1 ecuaciones aditivas y multiplicativas
12 guía 12 sem 1 ecuaciones aditivas y multiplicativas
 
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticas
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticasTABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticas
TABLA DE FRECUENCIA DE DATOS AGRUPADOS-Proyecto 7 noveno-matemáticas
 
Prueba de unidad 6º ecuaciones
Prueba de unidad 6º ecuacionesPrueba de unidad 6º ecuaciones
Prueba de unidad 6º ecuaciones
 

Similar a Unidad 2 . Seleccion sobre Polinomios (20)

Unidad 3. Seleccion sobre Ecuaciones
Unidad 3. Seleccion sobre EcuacionesUnidad 3. Seleccion sobre Ecuaciones
Unidad 3. Seleccion sobre Ecuaciones
 
Repaso 4
Repaso 4Repaso 4
Repaso 4
 
DIVISIÓN ALGEBRAICA
DIVISIÓN ALGEBRAICADIVISIÓN ALGEBRAICA
DIVISIÓN ALGEBRAICA
 
01 polinomios i
01 polinomios i01 polinomios i
01 polinomios i
 
2.5 ejercicios del capítulo 2(mayo 07)
2.5 ejercicios del capítulo 2(mayo 07)2.5 ejercicios del capítulo 2(mayo 07)
2.5 ejercicios del capítulo 2(mayo 07)
 
POLINOMIOS
POLINOMIOSPOLINOMIOS
POLINOMIOS
 
Problemas de repaso de Álgebra ADUNI ccesa007
Problemas de repaso de Álgebra  ADUNI ccesa007Problemas de repaso de Álgebra  ADUNI ccesa007
Problemas de repaso de Álgebra ADUNI ccesa007
 
RaicesyFuncionRaizCuadrada.pdf
RaicesyFuncionRaizCuadrada.pdfRaicesyFuncionRaizCuadrada.pdf
RaicesyFuncionRaizCuadrada.pdf
 
Ma 25 2007
Ma 25 2007Ma 25 2007
Ma 25 2007
 
Ma 25 2007
Ma 25 2007Ma 25 2007
Ma 25 2007
 
Ma 25 2007_raíces
Ma 25 2007_raícesMa 25 2007_raíces
Ma 25 2007_raíces
 
Termino algebraico
Termino algebraicoTermino algebraico
Termino algebraico
 
Nm1 algebra
Nm1 algebra Nm1 algebra
Nm1 algebra
 
Nm1 algebra + valoriación
Nm1 algebra + valoriaciónNm1 algebra + valoriación
Nm1 algebra + valoriación
 
Ejercicios de álgebra bach
Ejercicios de álgebra bachEjercicios de álgebra bach
Ejercicios de álgebra bach
 
NM1_algebra .pdf
NM1_algebra .pdfNM1_algebra .pdf
NM1_algebra .pdf
 
monomios-Para-Primero-de-Secundaria.pdf
monomios-Para-Primero-de-Secundaria.pdfmonomios-Para-Primero-de-Secundaria.pdf
monomios-Para-Primero-de-Secundaria.pdf
 
Banco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdfBanco de preguntas de Álgebra_1°.pdf
Banco de preguntas de Álgebra_1°.pdf
 
1 ra semana algebra
1 ra semana algebra1 ra semana algebra
1 ra semana algebra
 
Lección 03 polinomios
Lección 03  polinomiosLección 03  polinomios
Lección 03 polinomios
 

Más de Rosa Cristina De Pena Olivares

Unidad 5. Seleccion sobre Sistemas de Ecuaciones Lineales
Unidad 5.  Seleccion sobre Sistemas de Ecuaciones LinealesUnidad 5.  Seleccion sobre Sistemas de Ecuaciones Lineales
Unidad 5. Seleccion sobre Sistemas de Ecuaciones LinealesRosa Cristina De Pena Olivares
 
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios Vectoriales
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios VectorialesUnidad 1. Seleccion sobre Conjuntos Numericos y Espacios Vectoriales
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios VectorialesRosa Cristina De Pena Olivares
 
Ejercicios resueltos sobre Sistemas Ecuaciones Lineales
Ejercicios  resueltos  sobre  Sistemas Ecuaciones LinealesEjercicios  resueltos  sobre  Sistemas Ecuaciones Lineales
Ejercicios resueltos sobre Sistemas Ecuaciones LinealesRosa Cristina De Pena Olivares
 
Experiencias didacticas en las matematica y fisica virtual, uasd tm 1-
Experiencias didacticas en las matematica y fisica virtual, uasd   tm  1-Experiencias didacticas en las matematica y fisica virtual, uasd   tm  1-
Experiencias didacticas en las matematica y fisica virtual, uasd tm 1-Rosa Cristina De Pena Olivares
 
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepena
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepenaUnidad 1 conj_num y_esp._vect._algebra superior _rosadepena
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepenaRosa Cristina De Pena Olivares
 
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depena
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depenaUnidad5 sistemas ecuaciones lineales_algebra superior_rosa_depena
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depenaRosa Cristina De Pena Olivares
 

Más de Rosa Cristina De Pena Olivares (20)

Unidad 5. Seleccion sobre Sistemas de Ecuaciones Lineales
Unidad 5.  Seleccion sobre Sistemas de Ecuaciones LinealesUnidad 5.  Seleccion sobre Sistemas de Ecuaciones Lineales
Unidad 5. Seleccion sobre Sistemas de Ecuaciones Lineales
 
Unidad 4. Seleccion sobre Matrices
Unidad 4. Seleccion sobre MatricesUnidad 4. Seleccion sobre Matrices
Unidad 4. Seleccion sobre Matrices
 
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios Vectoriales
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios VectorialesUnidad 1. Seleccion sobre Conjuntos Numericos y Espacios Vectoriales
Unidad 1. Seleccion sobre Conjuntos Numericos y Espacios Vectoriales
 
Ejercicios resueltos sobre Sistemas Ecuaciones Lineales
Ejercicios  resueltos  sobre  Sistemas Ecuaciones LinealesEjercicios  resueltos  sobre  Sistemas Ecuaciones Lineales
Ejercicios resueltos sobre Sistemas Ecuaciones Lineales
 
Analisis completo ecuacion grado n
Analisis completo ecuacion  grado nAnalisis completo ecuacion  grado n
Analisis completo ecuacion grado n
 
Ecuacion matricial ejemplo resuelto.
Ecuacion matricial ejemplo resuelto.Ecuacion matricial ejemplo resuelto.
Ecuacion matricial ejemplo resuelto.
 
Solucion sel con parametro
Solucion sel  con  parametroSolucion sel  con  parametro
Solucion sel con parametro
 
Metodo pivotal
Metodo pivotalMetodo pivotal
Metodo pivotal
 
Formas indet. integral imp int. numerica
Formas indet.    integral imp int. numericaFormas indet.    integral imp int. numerica
Formas indet. integral imp int. numerica
 
Mat 350 ejemplos integracion
Mat 350  ejemplos  integracionMat 350  ejemplos  integracion
Mat 350 ejemplos integracion
 
Inversa de una matriz de orden dos
Inversa de una matriz  de orden dosInversa de una matriz  de orden dos
Inversa de una matriz de orden dos
 
Presentacion sobre matrices rosa depena
Presentacion sobre matrices rosa depenaPresentacion sobre matrices rosa depena
Presentacion sobre matrices rosa depena
 
Experiencias didacticas en las matematica y fisica virtual, uasd tm 1-
Experiencias didacticas en las matematica y fisica virtual, uasd   tm  1-Experiencias didacticas en las matematica y fisica virtual, uasd   tm  1-
Experiencias didacticas en las matematica y fisica virtual, uasd tm 1-
 
Unidad3 ecuaciones_ algebra superior_rosa_depena
Unidad3 ecuaciones_ algebra superior_rosa_depenaUnidad3 ecuaciones_ algebra superior_rosa_depena
Unidad3 ecuaciones_ algebra superior_rosa_depena
 
Unidad 2 polinomios_algebra superior_rosa_depena
Unidad 2 polinomios_algebra superior_rosa_depenaUnidad 2 polinomios_algebra superior_rosa_depena
Unidad 2 polinomios_algebra superior_rosa_depena
 
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepena
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepenaUnidad 1 conj_num y_esp._vect._algebra superior _rosadepena
Unidad 1 conj_num y_esp._vect._algebra superior _rosadepena
 
Unidad4 matrices_algebra superior_rosa_depena
Unidad4 matrices_algebra superior_rosa_depenaUnidad4 matrices_algebra superior_rosa_depena
Unidad4 matrices_algebra superior_rosa_depena
 
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depena
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depenaUnidad5 sistemas ecuaciones lineales_algebra superior_rosa_depena
Unidad5 sistemas ecuaciones lineales_algebra superior_rosa_depena
 
Unidad6 determinantes_algebra superior_rosa_depena
Unidad6 determinantes_algebra superior_rosa_depenaUnidad6 determinantes_algebra superior_rosa_depena
Unidad6 determinantes_algebra superior_rosa_depena
 
Fracciones Parciales
Fracciones ParcialesFracciones Parciales
Fracciones Parciales
 

Último

Metodología activa en el proceso de enseñanza aprendizaje 1.pdf
Metodología activa en el proceso de enseñanza aprendizaje 1.pdfMetodología activa en el proceso de enseñanza aprendizaje 1.pdf
Metodología activa en el proceso de enseñanza aprendizaje 1.pdfCESAR TTUPA LLAVILLA
 
240.Exam1.Rev. Spring24.pptxadsfadfadfdd
240.Exam1.Rev. Spring24.pptxadsfadfadfdd240.Exam1.Rev. Spring24.pptxadsfadfadfdd
240.Exam1.Rev. Spring24.pptxadsfadfadfddbrianjars
 
Biología Marina, Elaborado por Sujey Lara
Biología Marina, Elaborado por Sujey LaraBiología Marina, Elaborado por Sujey Lara
Biología Marina, Elaborado por Sujey Larassuserb2b6fc1
 
La mano de Irulegi y los Vascones: del mito a la ciencia
La mano de Irulegi y los Vascones: del mito a la cienciaLa mano de Irulegi y los Vascones: del mito a la ciencia
La mano de Irulegi y los Vascones: del mito a la cienciaJavier Andreu
 
RM N° 587-2023-minedu norma para elñ año escolar 2024pdf
RM N° 587-2023-minedu norma para elñ año escolar 2024pdfRM N° 587-2023-minedu norma para elñ año escolar 2024pdf
RM N° 587-2023-minedu norma para elñ año escolar 2024pdfmiguelracso
 
marco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfmarco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfedugon08
 
Hitos históricos de la transformación del PODER GLOBAL II.pptx
Hitos históricos de la transformación del PODER GLOBAL II.pptxHitos históricos de la transformación del PODER GLOBAL II.pptx
Hitos históricos de la transformación del PODER GLOBAL II.pptxsubfabian
 
Funciones-vitales-de-los-seres-vivos diapositiva.pptx
Funciones-vitales-de-los-seres-vivos diapositiva.pptxFunciones-vitales-de-los-seres-vivos diapositiva.pptx
Funciones-vitales-de-los-seres-vivos diapositiva.pptxkarolbustamante2911
 
Comunidad de aprendizaje virtuales Presentacion Slide Share.
Comunidad de aprendizaje virtuales Presentacion Slide Share.Comunidad de aprendizaje virtuales Presentacion Slide Share.
Comunidad de aprendizaje virtuales Presentacion Slide Share.NoelyLopez1
 
Tema 3 Clasificación de los seres vivos 2024.pdf
Tema 3 Clasificación de los seres vivos 2024.pdfTema 3 Clasificación de los seres vivos 2024.pdf
Tema 3 Clasificación de los seres vivos 2024.pdfIES Vicent Andres Estelles
 
Sesión: ¡Bendito el que viene en el nombre del Señor!
Sesión: ¡Bendito el que viene en el nombre del Señor!Sesión: ¡Bendito el que viene en el nombre del Señor!
Sesión: ¡Bendito el que viene en el nombre del Señor!https://gramadal.wordpress.com/
 
T2-Instrumento de evaluacion_LibroDigital.pdf
T2-Instrumento de evaluacion_LibroDigital.pdfT2-Instrumento de evaluacion_LibroDigital.pdf
T2-Instrumento de evaluacion_LibroDigital.pdfeliecerespinosa
 
Manejo de Emociones en la Escuela ME2 Ccesa007.pdf
Manejo de Emociones en la Escuela ME2  Ccesa007.pdfManejo de Emociones en la Escuela ME2  Ccesa007.pdf
Manejo de Emociones en la Escuela ME2 Ccesa007.pdfDemetrio Ccesa Rayme
 
Francisco Espoz y Mina. Liberal vinculado A Coruña
Francisco Espoz y Mina. Liberal vinculado A CoruñaFrancisco Espoz y Mina. Liberal vinculado A Coruña
Francisco Espoz y Mina. Liberal vinculado A CoruñaAgrela Elvixeo
 
Tema 4. Gráfica Tridimiensional 25-02-24.pdf
Tema 4. Gráfica Tridimiensional 25-02-24.pdfTema 4. Gráfica Tridimiensional 25-02-24.pdf
Tema 4. Gráfica Tridimiensional 25-02-24.pdfNoe Castillo
 

Último (20)

Metodología activa en el proceso de enseñanza aprendizaje 1.pdf
Metodología activa en el proceso de enseñanza aprendizaje 1.pdfMetodología activa en el proceso de enseñanza aprendizaje 1.pdf
Metodología activa en el proceso de enseñanza aprendizaje 1.pdf
 
240.Exam1.Rev. Spring24.pptxadsfadfadfdd
240.Exam1.Rev. Spring24.pptxadsfadfadfdd240.Exam1.Rev. Spring24.pptxadsfadfadfdd
240.Exam1.Rev. Spring24.pptxadsfadfadfdd
 
Biología Marina, Elaborado por Sujey Lara
Biología Marina, Elaborado por Sujey LaraBiología Marina, Elaborado por Sujey Lara
Biología Marina, Elaborado por Sujey Lara
 
La mano de Irulegi y los Vascones: del mito a la ciencia
La mano de Irulegi y los Vascones: del mito a la cienciaLa mano de Irulegi y los Vascones: del mito a la ciencia
La mano de Irulegi y los Vascones: del mito a la ciencia
 
RM N° 587-2023-minedu norma para elñ año escolar 2024pdf
RM N° 587-2023-minedu norma para elñ año escolar 2024pdfRM N° 587-2023-minedu norma para elñ año escolar 2024pdf
RM N° 587-2023-minedu norma para elñ año escolar 2024pdf
 
de la informacion al conocimiento 01.pdf
de la informacion al conocimiento 01.pdfde la informacion al conocimiento 01.pdf
de la informacion al conocimiento 01.pdf
 
Bendito el que viene en el nombre del Señor
Bendito el que viene en el nombre del SeñorBendito el que viene en el nombre del Señor
Bendito el que viene en el nombre del Señor
 
marco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdfmarco conceptual lectura pisa 2018_29nov17.pdf
marco conceptual lectura pisa 2018_29nov17.pdf
 
Dificultad de la escritura alfabética- Estrategia Pukllaspa yachasun - Curo F...
Dificultad de la escritura alfabética- Estrategia Pukllaspa yachasun - Curo F...Dificultad de la escritura alfabética- Estrategia Pukllaspa yachasun - Curo F...
Dificultad de la escritura alfabética- Estrategia Pukllaspa yachasun - Curo F...
 
DIANTE DE TI, BOA MÃE! _
DIANTE DE TI, BOA MÃE!                  _DIANTE DE TI, BOA MÃE!                  _
DIANTE DE TI, BOA MÃE! _
 
Hitos históricos de la transformación del PODER GLOBAL II.pptx
Hitos históricos de la transformación del PODER GLOBAL II.pptxHitos históricos de la transformación del PODER GLOBAL II.pptx
Hitos históricos de la transformación del PODER GLOBAL II.pptx
 
Funciones-vitales-de-los-seres-vivos diapositiva.pptx
Funciones-vitales-de-los-seres-vivos diapositiva.pptxFunciones-vitales-de-los-seres-vivos diapositiva.pptx
Funciones-vitales-de-los-seres-vivos diapositiva.pptx
 
Comunidad de aprendizaje virtuales Presentacion Slide Share.
Comunidad de aprendizaje virtuales Presentacion Slide Share.Comunidad de aprendizaje virtuales Presentacion Slide Share.
Comunidad de aprendizaje virtuales Presentacion Slide Share.
 
Tema 3 Clasificación de los seres vivos 2024.pdf
Tema 3 Clasificación de los seres vivos 2024.pdfTema 3 Clasificación de los seres vivos 2024.pdf
Tema 3 Clasificación de los seres vivos 2024.pdf
 
Sesión: ¡Bendito el que viene en el nombre del Señor!
Sesión: ¡Bendito el que viene en el nombre del Señor!Sesión: ¡Bendito el que viene en el nombre del Señor!
Sesión: ¡Bendito el que viene en el nombre del Señor!
 
T2-Instrumento de evaluacion_LibroDigital.pdf
T2-Instrumento de evaluacion_LibroDigital.pdfT2-Instrumento de evaluacion_LibroDigital.pdf
T2-Instrumento de evaluacion_LibroDigital.pdf
 
Manejo de Emociones en la Escuela ME2 Ccesa007.pdf
Manejo de Emociones en la Escuela ME2  Ccesa007.pdfManejo de Emociones en la Escuela ME2  Ccesa007.pdf
Manejo de Emociones en la Escuela ME2 Ccesa007.pdf
 
1ER GRADO PRESENTACIÓN PEDAGOGÍA PRODUCTIVA.
1ER GRADO PRESENTACIÓN PEDAGOGÍA PRODUCTIVA.1ER GRADO PRESENTACIÓN PEDAGOGÍA PRODUCTIVA.
1ER GRADO PRESENTACIÓN PEDAGOGÍA PRODUCTIVA.
 
Francisco Espoz y Mina. Liberal vinculado A Coruña
Francisco Espoz y Mina. Liberal vinculado A CoruñaFrancisco Espoz y Mina. Liberal vinculado A Coruña
Francisco Espoz y Mina. Liberal vinculado A Coruña
 
Tema 4. Gráfica Tridimiensional 25-02-24.pdf
Tema 4. Gráfica Tridimiensional 25-02-24.pdfTema 4. Gráfica Tridimiensional 25-02-24.pdf
Tema 4. Gráfica Tridimiensional 25-02-24.pdf
 

Unidad 2 . Seleccion sobre Polinomios

  • 1. AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMATICAS ALGEBRA SUPERIOR. MAT– 230 PRACTICA PROPUESTA. UNIDAD 2 Preparado por: Prof. Rosa Cristina De Pena Olivares Encierre en un círculo la expresión que haga cierto lo que se plantea en cada caso. 1. La determinación del valor numérico correspondiente al valor de X en un polinomio P(x) se identifica como: a) Polinomio Iguales b)Forma vectorial de un polinomio. c) Evaluación del polinomio. d) Raíz o cero de un polinomio 2. El método más general usado para dividir polinomios, manteniendo siempre la variable que acompaña cada termino es: a) Método de Ruffini. b) Método de coeficientes separados. c) División tradicional. d) Algoritmo de la división. 3. El método que requiere formar una expresión general para el cociente q(x) y otra para el resto r(x) tomando en cuenta su grado es: a) Teorema de resto. b) División irracional. c) Espacio Vectorial. d) Método de los coeficientes indeterminados. 4. La suma de números finitos de términos cada uno de los cuales que es el producto de una colección finita de números y variables se identifica como: a) Polinomio Nulo b) Polinomio c)Polinomio Incompleto d)Constante 5. El proceso abreviado para efectuar la división de un polinomio entre un binomio de la forma (x-a) es: a) Polinomio primo. b) Polinomios asociados. c) Divisibilidad de polinomios. d) División sintética o de Ruffini. 6. Es un polinomio constante de coeficiente irracional. a) 32 b) √9 c)2 d)√3 7. El resto de dividir el polinomio 15𝑥5 + 3𝑥4 + 2𝑥3 + 30 𝑒𝑛𝑡𝑟𝑒 𝑥3 − 1 es: a) 0 b) x-3 c) 15𝑥2 + 3𝑥 + 32 d) ninguna de las anteriores 8. El producto de (5𝑥4 + 3𝑥3 − 6𝑥2 + 𝑥 − 3) (2𝑥2 − 3𝑥 + 4) es: a) 6𝑥7 − 9𝑥4 − 33𝑥2 + 13𝑥 b) 10𝑥6 − 9𝑥5 − 𝑥4 + 32𝑥3 − 33𝑥2 + 13𝑥 − 12 c) 10𝑥6 − 9𝑥5 + 𝑥4 − 32𝑥3 + 33𝑥2 − 13𝑥 + 12 d) 10𝑥6 + 9𝑥5 + 𝑥4 + 32𝑥3 − 33𝑥2 + 13𝑥 + 12
  • 2. 9. El resultado de restar los polinomios P(x) – G(x) siendo P(x) = 4𝑥4 − 5𝑥3 + 2𝑥2 − 6𝑥 + 7 Y G(x)= 𝑥3 + 2𝑥2 − 3𝑥 + 4 tenemos: a)4𝑥4 + 5𝑥3 − 2𝑥2 − 9𝑥 + 11 b) 2𝑥4 − 3𝑥3 − 5𝑥2 + 3𝑥 + 4 c)4𝑥4 − 4𝑥3 − 3𝑥 + 4 d) 4𝑥4 − 6𝑥3 − 3𝑥 + 3 10. Si restamos los polinomios P(x) =5𝑥4 + 2𝑥3 − 7𝑥2 − 3𝑥 + 5 y M(x) = 2𝑥3 − 9𝑥2 + 3𝑥 + 4 su resultado es: a) 5𝑥4 + 3𝑥3 + 16𝑥2 + 6𝑥 − 9 b) 2𝑥3 + 5𝑥2 − 12𝑥 + 7 c) 5𝑥4 + 4𝑥3 − 16𝑥 − 6𝑥 + 9 d) 5𝑥4 + 2𝑥2 − 6𝑥 + 1 11. Al dividir (𝑥5 − 2𝑥4 + 3𝑥 − 2) 𝑒𝑛𝑡𝑟𝑒 (𝑥 − 2) usando la división sintética , el resto es igual a: a) -7 b) 0 c) -8 d) 4 12. El polinomio que tiene todos sus coeficientes iguales a cero y no tiene grado se identifica como: a) Incompleto b) Constante c)Nulo d) Normal 13. ¿Qué tipo de grafico resulta al graficar una función polinómica de segundo grado? a) Línea recta b) Hipérbola c) Parábola d) Una elipse 14. ¿Qué tipo de grafico resulta al graficar una función polinómica de primer grado? a) Línea recta b) Hipérbola c) Parábola d) Una elipse 15. ¿Qué tipo de grafico resulta al graficar una función polinómica de tercer grado? a) Línea recta b) Hipérbola c) Parábola d) Una elipse 16. A partir de P(x) = 2𝑥3 +2𝑥2 -3x+2, ¿Cuál de los siguientes binomios es factor del polinomio dado? a) X-2 b) X+5 c) X+15 d) X+2 17. El polinomio cuyo coeficiente principal es la unidad se llama polinomio: a) Nulo b) Mónico c) Constante d) Completo 18. P(x)+(-P(x))=0 es una representación de: a) La propiedad distributiva b) Ley de identidad c) Ley uniforme d) Ley del opuesto 19. Un polinomio donde la variable posea solo coeficientes racionales enteros se identifica como polinomio: a)Nulo b) Racional entero c) Irracional d) Completo 20. Mediante el Teorema del resto, que obtenemos al reemplazar a “x” por el término independiente del binomio con signo contrario: a) El residuo b) El cociente c)Un término d) El grado 21. Un polinomio está representado por: a) Una suma de términos semejantes. b) Una suma de términos ordenados en forma creciente. c) Una suma de términos no semejantes que pueden estar ordenados en forma creciente o decreciente d) Una suma de términos no semejantes ordenados solo de manera decreciente.
  • 3. 22. La forma vectorial del polinomio 𝑃(𝑥) = 14𝑥4 − 60𝑥3 + 49𝑥2 − 21𝑥 + 19 es: a) (14,49,-21,19) b) (14,0,-60,49,-21,19) c) (19,-21,49,-60,14,0) d)(19,-21,49,-60,14) 23. Al evaluar el polinomio 𝑃(𝑥) = 3𝑥4 − 𝑥2 + 2𝑥 − 4 en 𝑃 ( 1 2 ) su resultado es: a) 3.0625 b) -7/8 c) - 49/16 d) - 3 24. Es un factor de 𝑃(𝑥) = 𝑥3 − 6𝑥2 + 12𝑥 − 8 a) (x+2) b) (x-1/2) c)(x-2) d) (x-4) 25. El grado de un polinomio se define por: a) La cantidad de términos que contiene. b) El más alto de los grados de sus términos. c) El coeficiente más alto de sus términos. d) El menor grado de sus términos. 26. Cuando los coeficientes de un polinomio pertenecen a un cierto campo numérico C, se dice que F(x) es: a) Un polinomio que no está definido sobre C o que no pertenece a C (x). b) Es un número natural que muestra el grado del polinomio. c) Es un polinomio que está dividido por C d) Es un polinomio que está definido sobre C. 27. El valor de “X” que hace cero la evaluación de P(x) se identifica como: a) Raíz de un polinomio P(x) b) Polinomios Asociados c) Polinomio nulo d) Ninguna de las anteriores 28. La operación entre polinomios P(x), M(x), N(x) que se plantea como P(x) + [-M(x)-N(x)] es: a) División de Polinomios b) Multiplicación de Polinomios c) Resta de polinomios d) ninguna de las anteriores 29. Es la suma de un número finito de términos cada uno de los cuales es el producto de una colección finita de números y variables. a) Vector b) Polinomio c) Matriz d) Ecuación 30. Un polinomio nulo es: a) El que tiene todos sus coeficientes iguales a cero. b) Aquel cuyo coeficiente principal es la unidad. c) Polinomio que consta de un número distinto de cero d) b y c son correctas 31. La división sintética se puede utilizar para dividir una función polinómica por un: a) Binomio b) Monomio y binomio c) Trinomio d) Monomio 32. ¿Cuál es el producto de multiplicar 𝑃(𝑥) = 𝑥4 + 5𝑥3 + 2𝑥2 − 𝑥 − 7 por 𝑀(𝑥) = 𝑥 + 1 a) 𝑥5 +3𝑥4 + 5𝑥3 + 𝑥2 − 8𝑥 − 7 b) 𝑥5 −4𝑥4 + 5𝑥3 − 𝑥2 + 8𝑥 − 7 c) 𝑥5 +4𝑥4 + 5𝑥3 + 𝑥2 − 8𝑥 − 7 d) 𝑥5 −4𝑥4 − 5𝑥3 − 𝑥2 − 8𝑥 − 7 33. El resto de dividir 𝑃(𝑥) = 𝑥4 + 5𝑥3 + 2𝑥2 − 𝑥 − 7 entre x+1 es igual a: a) 16 b) 8 c) -8 d) -7 34. A partir de 𝑃(𝑥) = 4𝑥4 + 3𝑥3 + 5𝑥2 − 2𝑥 + 3; 𝑀(𝑥) = 5𝑥3 − 3𝑥2 + 7𝑥 − 3 P(x)-M(x) es igual: a) 4𝑥4 + 2𝑥3 + 8𝑥2 − 9𝑥 + 6 b) 4𝑥4 − 8𝑥3 − 8𝑥2 + 9𝑥 − 6 c) 4𝑥4 − 2𝑥3 + 8𝑥2 − 9𝑥 + 6 d) 4𝑥4 + 8𝑥3 + 8𝑥2 + 9𝑥
  • 4. 35. ¿Cuál de estos polinomios es de tercer grado, creciente, completo y de coeficientes enteros positivos? a) 8𝑥3 − 8𝑥2 + 9𝑥 − 6 b) −𝑥3 + 2 c) 18 + 10𝑥 + 2𝑥2 + 𝑥3 d) 18 + 10𝑥 − 2𝑥2 − 𝑥3 36. El polinomio opuesto de 𝑀(𝑥) = 𝑥3 + 2𝑥2 − 5𝑥 + 6 es: a) 𝑥3 + 2𝑥2 − 5𝑥 − 6 b) −𝑥3 + 2𝑥2 + 5𝑥 + 6 c) 𝑥3 − 2𝑥2 − 5𝑥 + 6 d)− 𝑥3 − 2𝑥2 + 5𝑥 − 6 37. ¿Cuantos términos debe tener el polinomio para estar completo: 𝑃(𝑥) = 𝑥4 + 2𝑥 + 1 a) 4 b) 3 c) 5 d) 6 38. ¿Cuantos términos le faltan al polinomio para estar completo: 𝑃(𝑥) = 𝑥4 + 2𝑥 + 1 a) Ninguno b) 3 c) 1 d) 2 39. Cuál de estos polinomios esta ordenado en forma decreciente y es completo? a) 𝑀(𝑥) = 𝑥 − √2𝑥2 + 2𝑥3 + 3𝑥4 − 7𝑥5 b) 𝑃(𝑥) = 1 + 3𝑥2 − 3 4 𝑥3 c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑁(𝑥) = 8 + 4𝑥 + 6𝑥2 + 5𝑥3 40. Cuál de estos polinomios esta ordenado en forma creciente y es completo? a) 𝑀(𝑥) = 𝑥 − √2𝑥2 + 2𝑥3 + 3𝑥4 − 7𝑥5 b) 𝑃(𝑥) = 1 + 3𝑥2 − 3 4 𝑥3 c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑃(𝑥) = 8 + 4𝑥 + 6𝑥2 + 5𝑥3 41. Cuál de estos polinomios esta ordenado en forma creciente e incompleto? a) 𝑀(𝑥) = 6 + 𝑥 − √2𝑥2 + 2𝑥3 + 3𝑥4 − 7𝑥5 b) 𝑃(𝑥) = 1 + 3𝑥2 − 3 4 𝑥3 c) 𝑊( 𝑥) = 3𝑥4 − 2𝑥3 + (2 + 3𝑖) 𝑥2 − [log 2]𝑥 + 3 d) 𝑃(𝑥) = 8 + 4𝑥 + 6𝑥2 + 5𝑥3 42. Cuando decimos que un polinomio es nulo si: a) Se escribe en orden creciente. b) Se escribe en orden decreciente c) Posee todos sus coeficientes cero d) a y b son correctas 43. La propiedad distributiva del producto de un polinomio respecto a la adición de escalares es: a) P(x) + (-P(x)) = 0 b) (K+L) P(x) = K P(x) + L P(x) c) P(x) + 0 = P(x) d) 1P(x) = P(x) 44. Para realizar una división de polinomios por el método de Ruffini el cociente debe ser: a) Un trinomio cuadrado perfecto b) Un polinomio Mónico c) Un binomio de primer grado d) La raíz cubica de un número imaginario 45. Es un polinomio de quinto grado, ordenado en forma creciente y completo a) 𝑀(𝑥) = 1 + 2𝑥2 + 7𝑥5 b) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 4𝑥5 c) 𝑊( 𝑥) = 3𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 9 + 3𝑥 − 2𝑥2 − 2𝑥3 − 5𝑥5 46. Es un polinomio de quinto grado, ordenado en forma creciente e incompleto? a) 𝑀(𝑥) = 1 + 2𝑥2 + 7𝑥5 b) ) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 4𝑥5 c) 𝑊( 𝑥) = 3𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 1 + 3𝑥 − 2𝑥2 − 2𝑥3 + 𝑥4 − 𝑥5
  • 5. 47. Es un polinomio de quinto grado, ordenado en forma creciente, completo y mónico? a) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 𝑥5 b) 𝑀(𝑥) = 1 + 2𝑥2 + 𝑥5 c) 𝑊( 𝑥) = 𝑥5 − 2𝑥4 + 8𝑥3 − 2𝑥2 + 3𝑥 + 8 d) 𝑃(𝑥) = 9 + 3𝑥 − 2𝑥2 − 2𝑥3 − 𝑥5 48. Es un polinomio de quinto grado, ordenado en forma creciente e incompleto y Mónico? a) 𝑁( 𝑥) = 8 + 3𝑥 − 2𝑥2 − 2𝑥3 + 8𝑥4 + 𝑥5 c) 𝑊( 𝑥) = 𝑥5 − 2𝑥4 + 8𝑥3 + 3𝑥 + 8 d) 𝑃(𝑥) = 1 + 3𝑥 − 2𝑥2 + 𝑥4 + 9𝑥5 d) 𝑀(𝑥) = 1 + 2𝑥2 + 𝑥5 49. Los números que solo admiten como divisores el mismo número y la unidad se identifican como números: a) Enteros b) Naturales c) Imaginarios d) Primos 50. Un polinomio es factor de otro cuando al hacer la división tenemos que: a) El cociente es uno b) El residuo es cero c) La división es exacta d) b y c son correctas 51. Si P(x) = 𝑥5 − 5𝑥4 + 6𝑥3 ; M(𝑥) = 5𝑥3 − 12𝑥2 + 2𝑥 ; 𝑊( 𝑥) = 𝑥3 − 5𝑥2 + 6𝑥 + 1 El resultado de sumar P(x) + M(x) + W(x) es: a)5𝑥5 + 12𝑥4 − 6𝑥3 + 2𝑥 + 1 b) 𝑥5 − 5𝑥4 + 12𝑥3 − 17𝑥2 + 8𝑥 − 1 c) 2𝑥5 − 8𝑥4 + 5𝑥3 − 𝑥2 + 6𝑥 + 1 d) 𝑥5 − 5𝑥4 + 12𝑥3 + 8𝑥 − 1 52. Polinomio constante es el que posee: a) Un término de cualquier grado b) Un término de grado cero c) Término de coeficiente uno d) Término de coeficiente dos y cualquier grado 53. Un Binomio es un polinomio que posee: a) Grado tres b) Dos términos c) Un término d) Grado cero 54. El polinomio 𝑀(𝑥) = 𝑥2 − 5𝑥 + 6 factorizado es: a) M(x)= (x + 6)(x-1) b)M(x)= (x-5)(x-1) c) M(x)=(x-3)(x-2) d)M(x)= (x-3)(x+2) 55. Las raíces del polinomio 𝑀(𝑥) = 𝑥2 − 5𝑥 + 6 son: a) x= -6; x=1 b) x=5; x = 1 c) x = 3; x = 2 d) x= 3; x = -2 56. La evaluación del polinomio 𝑀(𝑥) = 𝑥2 − 5𝑥 + 6 en x= 3 es: a) M(3)= 6 b) M(3)= 5 c) M(3)= -5 d) M(3)= 0 57. El polinomio de cuarto grado de coeficientes literales y ordenado de forma decreciente es: a) −e + dx + 𝑐𝑥2 − 𝑏𝑥3 + 𝑎𝑥4 b) 2𝑥4 + 4𝑥3 + 5𝑥2 + 3x − 2 c) −2 +3x +5𝑥2 4𝑥3 + 2𝑥4 𝑑) 𝑎𝑥4 + 𝑏𝑥3 − 𝑐𝑥2 + dx − e 58. Si P(x) =3𝑥2 + 4x + 3 y Q(x) = 𝑥2 − 2x + 3 entonces P(x)+Q(x) es igual a: a) 3𝑥2 − 2x + 6 b) 4𝑥2 − 6x c) 4𝑥4 + 2𝑥2 + 6 d) 4𝑥2 + 2x + 6